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Abstract
Understanding the response dynamics of plants to biotic stress is essential to improve man-

agement practices and breeding strategies of crops and thus to proceed towards a more

sustainable agriculture in the coming decades. In this context, hyperspectral imaging offers

a particularly promising approach since it provides non-destructive measurements of plants

correlated with internal structure and biochemical compounds. In this paper, we present a

cascade of data mining techniques for fast and reliable data-driven sketching of complex

hyperspectral dynamics in plant science and plant phenotyping. To achieve this, we build

on top of a recent linear time matrix factorization technique, called Simplex Volume Maximi-

zation, in order to automatically discover archetypal hyperspectral signatures that are char-

acteristic for particular diseases. The methods were applied on a data set of barley leaves

(Hordeum vulgare) diseased with foliar plant pathogens Pyrenophora teres, Puccinia hordei
and Blumeria graminis hordei. Towards more intuitive visualizations of plant disease dy-

namics, we use the archetypal signatures to create structured summaries that are inspired

by metro maps, i.e. schematic diagrams of public transport networks. Metro maps of plant

disease dynamics produced on several real-world data sets conform to plant physiological

knowledge and explicitly illustrate the interaction between diseases and plants. Most impor-

tantly, they provide an abstract and interpretable view on plant disease progression.

Introduction
Plant diseases are responsible for the loss of at least 10% of the global food production thus ex-
acerbating the problem of food shortages in a world where at least 800 million people suffer
frommalnutrition [1, 2]. Plant diseases are therefore a key challenge in crop production and re-
quire close attention. However, understanding and modeling the response behavior of diseased
plants is itself a challenging task. Pathogenesis results from complex interactions between the

PLOSONE | DOI:10.1371/journal.pone.0116902 January 26, 2015 1 / 20

a11111

OPEN ACCESS

Citation:Wahabzada M, Mahlein A-K, Bauckhage C,
Steiner U, Oerke E-C, Kersting K (2015) Metro Maps
of Plant Disease Dynamics—Automated Mining of
Differences Using Hyperspectral Images. PLoS ONE
10(1): e0116902. doi:10.1371/journal.pone.0116902

Academic Editor: David A Lightfoot, College of Agri-
cultural Sciences, UNITED STATES

Received: May 29, 2014

Accepted: December 17, 2014

Published: January 26, 2015

Copyright: © 2015 Wahabzada et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work could be carried out due to the fi-
nancial support of the German Federal Ministry of Ed-
ucation and Research (BMBF) within the scope of the
competitive grants program “Networks of excellence
in agricultural and nutrition research -http://www.
cropsense.uni-bonn.de/ (Funding code: 0315529).
The funders had no role in study design, data collec-
tion and analysis, decision to publish, or preparation
of the manuscript. CB and KK are with the Fraunhofer
IAIS, a non-for-profit research institute of the Fraun-
hofer-Society in Germany. Fraunhofer IAIS provided
support in the form of salaries for both of them, but

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0116902&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0116902&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0116902&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.cropsense.uni-bonn.de/
http://www.cropsense.uni-bonn.de/


genotype of the plant, the pathogen, and the environment leading to disease symptoms. While
genetic and biochemical approaches towards understanding stress reactions are constantly im-
proving, phenomic approaches which measure the structural and functional status of plants
have recently been found to overcome the limited predictive capabilities of current methods
[3] and form an instance of the current trend of “modeling the life on earth”[4].

A particularly promising approach towards bridging the gap between current “omic”-
technologies, such as transcriptomics, genomics, metabolomics and phenomics [5–7] consists
in non-invasive, hyperspectral imaging (HSI). This kind of sensor-based phenotyping has al-
ready been proven successful in monitoring physiological traits and plant genotype specific re-
sponses to biotic and abiotic stresses [7,8]. Currently, different automated phenotyping
platforms are available which comprise automated handling and organization of experimental
plants, innovative technologies from robotics, and new sensors and imaging technologies and
therefore allow for a wide range of applications, ranging from lab research to screening systems
on the field scale [6,9]. However, state-of-the-art sensor techniques and increasing amounts of
sensor data lead to new challenges in plant science, because data needs to be interpreted and re-
lated to plant traits. Ultimately, quantitative and qualitative plant traits have to be determine
automatically in order to achieve high-throughput phenotyping. This requires efficient and re-
liable analysis techniques which avoid costly and time consuming manual interventions.

Information as to plant health and plant physiology can be inferred from nearly any part of
the electromagnetic spectrum. For instance, the visible region (VIS) from 400 to 700 nm is
influenced by the pigment content, the near infrared (NIR) reflects structural characteristics of
plants, and the shortwave infrared (SWIR) mainly reflects leaf chemical components and water
content [10]. Plant diseases, in turn, influence these biophysical and biochemical properties
during pathogenesis as they cause variation of pigments and leaf structure due to chlorosis, ne-
crosis and fungal structures on the leaf surface. These changes will result in specific spectral sig-
natures which vary dynamically during disease development in plants and crop stands.
Therefore, phenotyping processes may benefit from hyperspectral analysis and corresponding
models of disease dynamics.

Barley (Hordeum vulgare), an important crop for food and feed production, may suffer
from several economically relevant leaf diseases during the vegetation period, resulting in a sig-
nificant loss in yield and grain quality [11]. Net blotch, brown rust and powdery mildew are de-
structive pathogens in barley production. A timely detection of primary disease foci in the field
is therefore vital for effective plant protection strategies. As the examples in Fig. 1 show, each
of these diseases exhibits distinct symptoms and affects the host plant metabolism and function
in a specific way [12]. This results in characteristic spectral reflectance signatures. In order for
hyperspectral sensors to support an automated detection of plant diseases, characteristic spec-
tral dynamics during symptom development need to be known and information available from
hyperspectral imaging should be visualized in an intuitive way.

Yet, any automated analysis of biological processes based on hyperspectral imaging imposes
challenges with respect to scalability and interpretability. For instance, scientists working on
plant phenotyping frequently encounter the problem of having to deal with massive, high-
dimensional, and temporally varying observations contained in large collections of hyperspec-
tral data cubes (as used in the present study). Moreover, put in colloquial terms, today’s “large”
is tomorrow’s “medium” and next week’s “small”. Finally, in addition to multispectral and
hyperspectral sensors first ultraspectral sensors are coming into operation. Hence, in addition
to the problem of optimization of technical solutions for automated phenotyping, research has
to address the problem of interpretation and handling of phenomic data. Motivated by these
observations, we approached the challenge of how to efficiently analyze huge amounts of
hyperspectral data in phenomics. In particular, we investigated the question “Can machines
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automatically provide interpretable summaries of plant diseases progressions at massive
scale?” This issue of “interpretability” is pivotal in our work since plant phenotyping is neces-
sarily an interdisciplinary endeavor where scientists with complementary skills work together.
Intuitively, interpretable summaries, which we call sketches, can be defined as a description of
the hyperspectral dynamics of a plant disease, consisting of one (single sketch) or several paths
(metro maps) which describe the development or highlighting interesting moments of diseases.
The sketches are drawn at different points in time during disease development and are based
on so-called “disease archetypal hyperspectral signatures”. These signatures characterize extre-
mal measurements for a particular disease and therefore differ from the signatures of other dis-
eases or healthy plants. Moreover, they can be discovered automatically at massive scale while
taking into account any given information such as hyperspectral images or manually assigned
labels.

The above challenges make it difficult to use off-the-shelf statistical techniques such as Prin-
cipal Component Analysis, Hidden Markov Models, Support Vector Machines, or Gaussian
Processes for analyzing sequences of hyperspectral images: they often do not provide easy-to-
interpret features or models and—unless one resorts to approximations that entail information
loss— they typically do not scale well to large amounts of data. In this paper, we therefore build
on recent, fast data-driven approaches for mining abiotic stress signals [13–16] that meet the
challenges of interpretability and scalability.

The main objectives of the presented study are (i) to automatically extract disease specific
spectral signatures over time (archetypal signatures), (ii) to link the spectral dynamics to bio-
logical processes during pathogenesis, and (iii) to visualize disease progression by sketching the
hyperspectral dynamics in an easily interpretable and intuitive way using metro maps. In order
to achieve these goals, we adapt machine learning and data mining methods for a fast and accu-
rate analysis and apply a recent linear time, easy-to-parallelize data driven approach to obtain
suitable representations of the data.

Figure 1. Characteristic phenotypes of healthy and diseased barley leaves. (A) Healthy barley leaf, (B) net blotch caused by Pyrenophora teres,
(C) brown rust caused by Puccinia hordei, and (C) powdery mildew caused by Blumeria graminis hordei.

doi:10.1371/journal.pone.0116902.g001
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Results and Discussion
The procedure for creating interpretable summaries can be briefly decomposed in five consecu-
tive steps that are summarized in Fig. 2 (bottom). We start by determining a new representa-
tion using interpretable matrix factorization (Step 1). That is to say, based on a data set of
hyperspectral images of healthy and diseased barley leaves that were recorded during disease
development, representative data are automatically determined by Simplex Volume Maximiza-
tion across all images. This provides us with global characteristics of healthy and diseased
leaves. Then, each hyperspectral signature is expressed as a combination of these representa-
tives, leading to a parametric distribution (Step 2) for each hyperspectral image. These repre-
sentations capture local dependencies. Based on the estimated parameter distributions, we
automatically discover disease archetypal signatures using Bayes factors (Step 3) and capture
their dynamics using Dirichlet Aggregation Regression (Step 4). Finally, this information is
used for visualizing plant disease dynamics in form of metro maps (Step 5).

The intention behind this approach is to investigate our main question (MQ): Do automati-
cally produced sketches of hyperspectral dynamics conform to plant physiological knowledge
and produce a characteristic and plausible picture of disease progress and symptom appear-
ance? Additionally, we investigate the supporting question (SQ): Do the selected disease arche-
typal signatures distinguish between plants with different diseases better then signatures that
neglect available disease label information?

Evaluation of Disease Archetypal Signatures
To answer questions (MQ) and (SQ) we compared hyperspectral signatures before and after a
selection of disease archetypal signatures. Automatically determined Dirichlet mean signatures
per day are shown in Fig. 3 where the Dirichlet mean signatures in the left column were

Figure 2. Mapping disease progression in plants at massive scale.Consecutive steps from hyperspectral imaging data of healthy and diseased barley
leaves to interpretable summaries by metro maps in five consecutive steps. (Best viewed in color)

doi:10.1371/journal.pone.0116902.g002
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obtained prior to a selection of disease archetypal signatures, and the mean signatures in the
right column were determined after selecting disease archetypal signatures. Disease archetypal
signatures only consider pixels which are relevant and characteristic for a disease (Fig. 4),
healthy pixels are neglected. Thus they constitute an accurate measure for a differentiation
among diseases (Fig. 3, right column). Characteristic changes in the spectral reflectance are
more distinct compared to regular mean signatures extracted from entire leaves (Fig. 3, left col-
umn). These archetypal signatures are additionally useful for distinguishing among different
time points during pathogenesis which is discussed below. That is, each pathogen caused a
characteristic disease progress and symptom appearance on barley plants and the following
cold be deduced from archetypal signatures:

Net blotch, caused by the necrotrophic pathogen P. teres appeared 4 dai (days after inocula-
tion). Small brown and necrotic spots appeared at the infection site 24 h after penetration [17].

Figure 3. Interpolated mean signatures and archetypal signatures for visible-near infrared (VNIR) and shortwave infrared (SWIR) wavelengths
(measured 4–14 dai). In the left column mean signatures of diseased barley plants before selecting disease archetypal signatures and in the right column
mean archetypal signatures for η = 1 are illustrated. Archetypal signatures allow a better differentiation between different developing stages of the diseases.
Moreover, they are in accordance to visually and manually extracted reflectance signatures during disease development. (Best viewed in color)

doi:10.1371/journal.pone.0116902.g003
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The early symptoms increased reflectance in the VIS from 550 to 700 nm, slight changes in the
NIR were observable (Fig. 3, first row). These lesions grew along leaf veins forming a net-like
pattern. Over time, the surrounding tissue became chlorotic and water-soaked which may be
caused by diffusible toxins or effectors secreted from fungal hyphae [17]. Physiological changes
during pathogenesis were well reflected in automatically assessed disease archetypal signatures.
Increase in reflectance in the visible range resulted from local loss of chlorophyll when necrosis
appeared; similar effects are reported by [12] for symptom development of Cercospora beticola
in sugar beet. Symptom development is observed to proceed steady going over time, changes in
reflectance were more gradually than escalating, correlating to the stage of the diseases, respec-
tively. In later stages of pathogenesis, barley tissue became necrotic; the loss of water in symp-
tomatic areas influenced the spectral reflectance in the SWIR-region (Fig. 3, first row) [18].

Within the first days after inoculation of P. hordei, small chlorotic rust spots appeared on the
leaf surface, resulting in an increase of reflectance in the range 550–700 nm, as shown in Fig. 3,
second row. This reflectance change confirmed results from Teng and Close [19] who measured
reflectance of barley leaves differing in rust severities. The chlorotic spots proliferated until 6 dai.
Between 6 and 8 dai, accumulation of orange brown uredino spores under the epidermis became
visible at infection sites. Explicit changes in spectral signatures were observed 12 dai, when the
epidermal layer ruptured, and the rust spores became visible on the leaf surface, causing a reflec-
tance shift peaking at 520 nm. Teng et al. [19] stated that the reflectance of rust infected leaves is
a function of the erupted uredina and sub-epidermal fungal growth. The reflectance increase
around 600 nm resulted from the high amount of orange-brown rust spores on the leaf [20, 21].
However the impact of P. hordei on leaf structure and on the water content of the tissue was com-
paratively low. This was clearly apparent in the NIR and SWIR of the archetypal signatures.

Powdery mildew causes white, fluffy pustules distributed on the upper and lower leaf side.
The first pustules caused an overall increase of reflectance in the VIS. Similar effects on leaf re-
flectance of barley were observed in barley fields diseased with powdery mildew [22, 23]. This
parallel shift of the reflectance was clearly described by archetypal signatures (Fig. 3, third
row). The size and number of these symptoms increased within 10 dai, resulting in changes of
NIR reflectance. As a biotrophic pathogen, B. graminis hordei is establishing a long-term feed-
ing relationship with living host plant cells [24]. After ten days of powdery mildew infection,
the tissue next to the colonies became chlorotic and finally necrotic. This conspicuous impact

Figure 4. Disease archetypal selections. An example image showing diseased barley plants (RGB, first column) with powdery mildew (first row), net blotch
(second row) and rust (third row) 14 dai. False color images present automatically determined diseased plant pixels based on disease archetypal signatures
for VNIR and SWIR data (middle and right columns). The yellower/redder the color, the greather the difference of the pixel to a healthy plant. (Best viewed in
color)

doi:10.1371/journal.pone.0116902.g004
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on leaf structure and leaf phenology was reflected in archetypal signatures, where the strongest
differences occured in the period 10 to 14 dai [22]. At this time point, the SWIR-reflectance
was significantly higher due to a successive loss of water at and around lesions.

Additionally, we computed the accuracy of correctly classified signatures using training ex-
amples from all as well as only from disease archetypal selections using the nearest convex hull
classification approach [25]. The accuracy results for the test set with all data showed that tak-
ing training examples from disease archetypal signatures can significantly outperform those
from all data, indicating a better differentiation between diseases. We note, classification was
not the goal in this work. Here we only investigated whether disease archetypal signatures
allow for differentiating between different diseases. For classifier training, we only considered
labels for whole images only and did not consider whether individual signatures/pixels repre-
sented healthy or diseased parts of a leaf. Nevertheless, the classification of diseased plants
using sensor data such as hyperspectral images is of considerable practical interest. We leave
this question for the future work.

Mapping Disease Progression
Hyperspectral reflectances differed between net botch, rust, and powdery mildew depending
on the developing stages of the diseases. This was clearly visible in disease archetypal signa-
tures. Regarding question (MQ), we further asked at which point in time during pathogenesis
relevant dynamics and changes in reflectance become apparent? We therefore provide comput-
ed summaries by sketching hyperspectral dynamics of diseased plants which we will discuss in
detail in the next subsections.

Disease Progression via Single Sketches
for the VNIR ranges, single sketches of the barley diseases based on mean reflectance arche-
types are shown in Fig. 5 (for the sake of clarity, the figure omits results for SWIR ranges,
which are provided in supporting information). Each sketch consists of parts (line segments)
which encode major stages of the dynamics using similar weights. Thus, the shorter a part, the
higher the impact of the corresponding period.

Major states of the dynamics appeared to differ between diseases: Net blotch diseased leaves
exhibited a steady development in the first 7 days. From 7 dai to 12 dai significant reflectance
changes appeared in the VNIR and SWIR ranges which corresponds to biological processes
during pathogenesis. First symptoms are chlorosis and small necroses 4 dai to 7 dai, reflected
in changes in the VNIR. Severe structural and biochemical changes of the leaf tissue occur 7
dai to 12 dai, and a considerable water loss can be deduced from a period with high impact in
the sketch of the SWIR data. The impact of rust on barley leaves was comparatively minor and
more consistent over time. The biotrophic pathogen aims to feed from living host cells to pro-
duce new rust spores. Time points with crucial processes appear in the VNIR between 5 dai to
7 dai where first chloroses appeared and changed into small brownish rust pustules. Starting 10
dai, the rust spores ruptured the epidermis and massive amounts of spores were released from
each pustule; this relevant step during rust pathogenesis was clearly marked in the sketches
(Fig. 5). The dynamics of rust pathogenesis in the SWIR were minor as the effect depends on
the biotrophic lifestyle of P. hordei. The characteristic powdery mildew pustules on the leaf sur-
face constantly grew during the first 9 days of pathogenesis. Notable changes in pustule size
could be recorded; however, the color of powdery mildew colonies stayed whitish and the sur-
rounding barley tissues seemed to remain intact to the greatest possible extent. From 9 dai on-
wards, the color of the powdery mildew mycelium changed from whitish over gray to
brownish. This process can be traced in the sketches of hyperspectral dynamics of powdery
mildew (Fig. 5). Barley tissue became necrotic beginning 12 dai, and, in turn, SWIR reflectance
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increased noticeably. The sketches based on disease archetypal signatures highlight relevant
steps during disease progression. This characteristic information is hidden when using mean
signatures without archetypal selection.

Metro Maps of Disease Dynamics
So called metro maps provide an innovative and intuitive way to illustrate spectral dynamics
and changes during pathogenesis (Fig. 6) as they can be seen as a concise structured set of sa-
lient information. Metro maps of disease development therefore provide a metric of the inter-
action between each pathogen and the host tissue as well as a simply structured summary of
the spectral information during disease development. The connectivity of a map conveys the

Figure 5. Single sketches of hyperspectral dynamics of plant diseases for visible-near infrared (VNIR)
wavelengths. Each sketch consists of parts encoding major states during pathogenesis of the plant disease
with similar weights. Thus, the shorter a part, the higher the impact of the corresponding period. (Best viewed
in color)

doi:10.1371/journal.pone.0116902.g005
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underlying biophysical and biochemical processes during disease development as well as simi-
larities between the three diseases at different developmental stages.

Each disease track exhibits a specific route in the metro map. The start of all routes is set at
the same time point/train station (day of inoculation, gray circle). From the first days after in-
oculation the appearance of powdery mildew on barley is different to that of other diseases; the
relatively intact tissue is covered by white mycelium colonies producing an increasing amount
of conidia with a dominant influence on the VNIR spectrum (Fig. 6, top). Net blotch and rust
share the occurrence of chloroses in early stages of disease development. However, net blotch
causes early necrotic tissue damage and followed a different path until 10 dai; here, the routes
of rust and net blotch disease are interlaced in the VNIR, as the epidermis of rust diseased bar-
ley leaves is ruptured and thousands of brownish rust spores are released. The path of healthy
barley plants has a different general direction than the other treatments in the VNIR and SWIR
metro map, because only natural senescence processes influence the spectral course of healthy
barley plants (Fig. 6). SWIR spectral reflectance is mainly influenced by water content. During
rust pathogenesis only tiny chlorotic spots with rust uredina appear on the tissue; necrosis and
loss of water occurred only at later stages and were not present in our experiments. Thus, the
deviation of the rust track from the one of healthy plants is minor (Fig. 6, bottom). A major im-
pact on SWIR reflectance by powdery mildew and net blotch was observed and described by ar-
chetypal signatures. Metro maps are an easily interpreted graphical image of this effect. The
course of powdery mildew and net blotch is summarized in a similar manner until day 9, after-
wards the destructive characteristic of net blotch affects SWIR reflectance to a greater extent
than powdery mildew which causes rather local necrosis and tissue damage.

Discussion of Methodology
The present paper provides a novel and efficient data analysis cascade for plant phenotyping
data recorded from plants diseased with different pathogens. The developed framework aims

Figure 6. Collective disease progression via Metro Maps of hyperspectral dynamics of diseased
plants for visible-near infrared (VNIR) (top) and short-wave infrared (SWIR) wavelengths (bottom).
Each disease track from hyperspectral images exhibits a specific route in the metro map, the direction and
the dynamic steps are in correspondence to biophysical and biochemical processes during disease
development. The beginning of all routes is at the same time point/train station (day of inoculation, gray
circle). (Best viewed in color)

doi:10.1371/journal.pone.0116902.g006
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at an automatic information extraction from hyperspectral images and at an intuitive visualiza-
tion of results; a particular focus is on potential practical impact and the potential for imple-
mentation in automated phenotyping platforms.

The benefits of the presented sketching approaches, summarized in Fig. 2, are manifold:
Metro maps are natural tools for passengers to navigate in large urban areas [26]. Because peo-
ple easily read and understand such maps, the metro map metaphor currently emerges as an
easy-to-understand technique for visualization of abstract interconnected “trains of thoughts”
[27] and as a tool to automatically construct structured summaries of information in scientific
texts or news articles [28]. An additional favorable property is that metro maps illustrate rela-
tions between case lines which, in our study, are the dynamics of healthy and diseased barley
leaves. Single sketches as well as metro maps are expressed in terms of disease archetypal signa-
tures which carry meaningful information for plant biologists. They conform to plant physio-
logical knowledge, explicitly illustrate the interaction between plants and pathogens, and
provide an interpretable summary of disease progressions.

Disease archetypal signatures can be discovered at massive scale by using a recent linear
time matrix factorization approaches, which re-parameterizes each hyperspectral image of a
disease (a data matrix) in terms of a distribution on the simplex spanned by a few extreme sig-
natures (a small number of pixels in the hyperspectral images). This facilitates high-throughput
phenotyping and avoids running the risk of loosing information when selecting typical signa-
tures manually at some diseased spots only. Since extreme data points (approximately) form a
simplex, there are natural candidates to describe their statistical distribution, namely simplex
distributions such as the Dirichlet distribution. In contrast to other “data cloud” embedding
methods, see e.g. [29], we therefore do not make any assumptions as to the true generating dis-
tribution of each input data matrix, which is good practice since these are typically unknown.
In contrast to histogram based embedding approaches such as, for instance, proposed by
Sakurai et al.[30], probabilistic inference can be performed to quantify the “impact” of ex-
tremes in a dispersion model or to determine the “distance” between the data matrices in an in-
formation theoretic manner, cf. Kersting et al.[14]. Generally, distributions pave the way to
statistical data analysis methods such as regression techniques, similarity metrics, low-rank
embeddings, and advanced visualization techniques.

To summarize, linking disease symptomatology with disease archetypal signatures and
metro maps of the diseased plants clearly shows that questions (MQ) and (SQ) can be an-
swered affirmatively.

Materials and Methods

Data Description

Plant Material and Pathogens
A data set of hyperspectral images recorded from barley plants formed the basis for further
analysis in this research. Barley plants (Hordeum vulgare cv. Leibniz, KWS Lochow, Bergen-
Wohlde, Germany) grown in a controlled greenhouse environment were used for hyperspectral
measurements after reaching growth stage (GS) 32 [31]. For each pathogen treatment, 9 plants
were inoculated with Pyrenophora teres (causing net blotch disease), Puccinia hordei (causing
leaf rust of barley) and Blumeria graminis hordei (causing powdery mildew), respectively. A
control group was kept non-inoculated. Conidia of P. teres were harvested from diseased barley
leaves, sampled from fields during spring and incubated in a moist chamber for 24 h at room
temperature. Pyrenophora teres was inoculated by spaying a spore suspension (1 × 104 conidia
ml−1) onto leaves using a hand sprayer. Subsequently, plants were placed in transparent plastic
boxes to realize 100% relative humidity (RH) at 23/20�C for 24 h. Uredospores of P. hordei for
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inoculation were obtained of from diseased leaves and were stored at 4�C. Suspension of P. hor-
dei (4 × 104 uredosporesml−1) were sprayed onto leaves before placing the barley plants in
plastic boxes and incubating them for 24 h at 23/20�C and 100% RH. After 24 h the plants
were removed from the plastic boxes. For inoculation of B. graminis hordei, conidia from spor-
ulating colonies were distributed over barley leaves in a ventilator chamber. After incubation,
all plants were kept in the greenhouse at 21/18�C and 60% RH, whereas B. graminis hordei in-
oculated plants were kept in an extra chamber to avoid cross-contamination of the other treat-
ments. Disease progress of the foliar pathogens Pyrenophora teres, Puccinia hordei, and
Blumeria graminis hordei were observed for 2 weeks after inoculation. For each treatment 9
leaves (each belonging to a different plant, respectively) were assessed at each measuring day.

Hyperspectral Imaging and Data Representation
Hyperspectral images of barley leaves were recorded with two line scanning spectrographs 4, 6,
8, 10, 12 and 14 days after inoculation (dai). The ImSpector V10E (Spectral Imaging Ltd.,
Oulu, Finland) covers the VIS and the NIR ranges from 400 to 1000 nm, with a spectral resolu-
tion of up to 2.8 nm and a spatial resolution of 0.12 mm per pixel, resulting in 210 hyperspec-
tral bands. A SWIR-camera (Spectral Imaging Ltd., Oulu, Finland) was used to record
hyperspectral images in the SWIR ranges from 1000 to 2500 nm, with a spectral resolution of
5.8 nm and a spatial resolution of 0.4 mm per pixel, resulting in 226 bands. Constant illumina-
tion was provided by six ASD-Pro-Lamps (Analytical Spectral Devices Inc., Boulder, USA).
The hyperspectral cameras and the illumination system were installed on a motorized line
scanner (Spectral Imaging Ltd., Oulu, Finland) to obtain a second spatial dimension. The cam-
era settings and the control of the motorized line scanner were adapted using the SpectralCube
software (Spectral Imaging Ltd., Oulu, Finland). The hyperspectral images were recorded in a
dark chamber in order to realize constant and reproducible illumination and measurement
conditions. For a detailed description of the measuring setup, see Mahlein et al. [12]. Normali-
zation and smoothing of raw hyperspectral images were performed using the software ENVI
4.6 + IDL 7.0 (EXELIS Visual Information Solutions, Boulder, USA). Reflectance was calculat-
ed relative to a white reference bar and to dark current measurement. Then the Savitzky-Golay
filter [32] was applied to remove noise and to smooth the spectral information of the hyper-
spectral images. Furthermore the background of the images was masked applying band
thresholds of R551 nm< 0.045, R667 nm> 0.085 and R798 nm< 0.8 in the VNIR, and of
R1124 nm< 0.1 in the SWIR (R = reflectance at wavelengths indicated).

For subsequent analysis, each hyperspectral image was represented as dense Λ × Nmatrix,
where N denotes the number of pixels and Λ the number of spectral bands (see Fig. 2 (top) for
an abstract illustration). By stacking all data matrices recorded during pathogenesis, we ob-
tained a data matrix with approximately 10 millions columns or about 2 billion matrix entries
(encoding the reflected energy at different spectral bands) for the VNIR and about 200 million
entries for the SWIR data set. Furthermore, each hyperspectral data set contains temporal in-
formation (day after inoculation) and one of the four labels “healthy”, “rust”, “powdery mildew”
and “net blotch” which were used throughout the analysis in this work.

From Hyperspectral Data to Interpretable Summary
This section covers the methodological part of this work and we describe the steps of the analy-
sis cascade shown in Fig. 2. The starting point of our analysis are hyperspectral images repre-
sented as dense data matrices. In the following, we motivate the use of interpretable matrix
factorization techniques [33] and discuss how they lead to parametric distributions. Given
these parameters, we can automatically discover disease archetypal signatures using Bayes
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factors and capture their dynamics using Dirichlet Aggregation Regression [15]. Finally, we
present further details on creating interpretable summaries. That is, steps (3) and (5) in Fig. 2
(bottom) and on how to devise the overall cascade that produces interpretable summaries that
are the main algorithmic contributions of the present paper.

Step 1: Interpretable Matrix Factorization
In the first step of our framework, we employ interpretable matrix factorization at massive
scale. Matrix factorization methods allow for embedding high dimensional data in lower di-
mensional spaces and can therefore mitigate effects due to noise, uncover latent relations, or fa-
cilitate further processing and ultimately help finding patterns in the data set distribution.
More precisely, they factorize a matrixX 2 R

m�n into two matrices

X � X̂ ¼ WH; ð1Þ
where the matrix of basis vectorsW 2 R

m�c and the coefficient matrixH 2 R
c�n containing

the low dimensional coordinates, are typically determined by minimizing a cost function, such
as the squared Frobenius norm. A widely used technique for the factorization in Eq. (1) is Prin-
cipal Component Analysis (PCA) [34] which is known to retain as much of the variation pres-
ent in the data as possible. It is effective in terms of data compression, noise and redundancy
reduction and typically projects the data points into a lower dimensional space spanned by the
top eigenvectors of the covariance matrix. While these basis vectors are optimal in a statistical
sense, PCA has been criticized for being less faithful to the nature of the data at hand. For in-
stance, data mining practitioners often tend to assign a “physical”meaning to the resulting fac-
tors. Such reification must be based on an intimate knowledge of the application domain and
can often not be justified from mathematics. This also holds for other techniques such as Non-
Negative Matrix Factorization due to [35] and K-means clustering which implicitly performs
matrix factorization. More importantly, classical approaches pose the difficulty of characteriz-
ing sophisticated patterns of data point distributions in a unified parametric and interpretable
form. This is generally intractable [36].

An alternative are interpretable matrix factorizations methods, which compute low rank ap-
proximations from selected columns of a data matrix [37]. They are increasingly popular in the
data mining community [33, 38–43] since they preserve properties such as sparseness or non-
negativity and were successfully applied in many important applications, e.g. fraud detection,
fMRI segmentation, drought detection in plants or collaborative filtering. Here we consider in-
terpretable data driven methods in the context of convexity constrained matrix factorization
that can be written as

E ¼ kX�XGHk2F ¼ kX�WHk2

F

s:t: gi binary;
X

j
gij ¼ 1;

hi � 0;
X

j
hij ¼ 1;

ð2Þ

where k�kF denote the Forbenius norm, the values in matrixH have non-negativity constraints
and the matrix G is restricted to be binary. Consequently, the basis vectorsW are real data
points, i.e. columns of the data matrix X that represent actual observations. Therefore, they
have naturally a biological meaning and can easily be interpreted by a domain expert. As point-
ed out by Cutler and Breiman [44], basis vectors in convexity constrained matrix factorization
correspond to the most extreme, rather than to average columns. Moreover, it was shown that
a good subset of columns maximize their volume [45,46]. Therefore, we determine c columns
from the input data matrix X as basis vectorsW, such that the volume of the simplex spanned

Metro Maps of Plant Disease Dynamics—Automated Mining of Differences

PLOS ONE | DOI:10.1371/journal.pone.0116902 January 26, 2015 12 / 20



by the columns ofW, is maximized. However, the maximum-volume criterion is provably NP-
hard [45]. An approximation called Simplex Volume Maximization (SiVM), was introduced
by Thurau et al. (2012) [33] and empirically proven to be feasible and reliable. The authors pre-
sented an efficient and linear time greedy approach that iteratively determines basis vectors
using the notion of distance geometry. An example of how SiVM works is illustrated in Fig. 7
on a synthetic data set consisting of three Gaussians components. For the first data points to be
selected, we simply take the two points which are most likely furthest away from each other.
Pairwise distances computed in one iteration can be reused in later iterations so that, for re-
trieving c columns, we need to compute distances from the last selected column to all other
data points exactly c + 1 times. As c is constant, we have an overall effort ofOðnÞ since the coef-
ficients inH can computed in a single pass over the data set solving a constrained quadratic
program [47] of fixed dimensions per datapoint. We refer to [33] for more details.

We make use of SiVM in (Step 1) of our approach in order to determine the most extreme
columns (hyperspectral signatures) and to use them as basis vectorsW in Eq. (2). For the plant
data, however, before computing the decomposition, we stacked all matrices of hyperspectral
images. On the resulting matrix we first selected c = 25 extreme signatures per data set (VNIR
and SWIR) that form the matrix of basis vectorsW. This allows us to capture global dependen-
cies. Since the basis vectors correspond to actual data points, they can be identified as signa-
tures of a diseased, dry or healthy leaf. Given the matrixW, we then computed the coefficients
H, i.e. the coordinates of all signatures in the space spanned by the extreme data points, in a
single pass over the entire data set. Experiments were run on a standard Intel Quad-Core CPU
with 3.06 GHz and 8 GB main memory. For the larger VNIR data, it took about 80 minutes on
only a single core to determine the c basis vectors; for the smaller SWIR data set, it took less
than 1 minute. The computation of the reconstruction matrixH for all images took less than
2 hours by using all cores. However, computing the factorization was the most time consuming
part of the cascade, whereas performing the remaining steps was a matter of minutes in each
case.

Steps 2–3: Archetypal Bayes Factors
One of our goals is to find the archetypal hyperspectral signatures for a disease. Up to now,
hyperspectral signatures are represented by means of convex combinationsH of extreme signa-
turesW discovered by stacking the hyperspectral signatures of all plants and diseases. There-
fore, we next address the question of how to turn these “global” reconstructions into disease-
specific reconstructions? That is, how to make use of the available disease label of each hyper-
specral image?

Step 2: From Reconstructions to Distributions on the Simplex: The resulting reconstruc-
tionsH are proportions that sum to one and describe the relative contribution of each of the c
columns inW to a hyperspectral pixel. From a geometric point of view, the columns h1, . . ., hn

Figure 7. Example in which way Simplex VolumeMaximization iteratively determines basis vectors for interpretable matrix factorization.

doi:10.1371/journal.pone.0116902.g007
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ofH can be considered as data points residing in a simplex spanned byW so that there are nat-
ural parametric distributions for hi on the simplex. Probably the best known one is the Dirich-
let distribution

DirðhijαÞ ¼
G

Xc

j¼1
aj

� �
Qc

j¼1 GðajÞ
Yc

j¼1
h
aj�1

ij ;

which is parametrized by a vector a ¼ ða1; a2; . . . ; acÞ and where G denotes the gamma func-
tion, see Fig. 2 (Step 2) for an illustration. Dirichlets naturally enforce convexity constraints on

the reconstructions, 0� hij � 1 and
Xc

j¼1
hij ¼ 1, so that changing one hij impacts all other

hik. To estimate the parameters α from the reconstructionsHi, we follow a maximum-
likelihood approach [48]. The simplex distribution induced by the reconstructionsHi per
class/disease i results without having made any priori assumption as to the underlying distribu-
tion next to the distance measure used within SiVM.

Step 3: Using Labels to Select Disease Archetypes:Having distributions at hand opens the
door to statistical machine learning. In particular, we make use of the label information. Given
the Dirichlet distributions with parameters αk for a disease k and αh for the healthy plant, the
task is to decide which is the best distribution describing signatures Sk within a diseased plant

k. To this end, we apply Bayes factor [49, 50]: BFðSÞ ¼ PðSjHiÞ
PðSjHjÞ . Here, two distributionsHi and

Hj are compared by forming the posterior odds. Note that we assume that the prior over the

models is uniform, i.e. PðHÞ is a constant. Since our models are distributions of classes learned
on the simplex we are dealing with the simplest case where Bayes factors coincide with the like-
lihood ratio [49]. Specifically, we advocate the use of log-likelihood ratio together with Dirich-
lets:

LLRðSÞij ¼ logDirðS j aiÞ � log DirðS j ajÞ: ð3Þ

The interpretation of LLRij w.r.t. class i is as follows: if LLRij � log(1) there is no difference
to j but if LLRij > log(1) there are a differences, and, the larger the LLRij, the more pronounced
the differences. Fig. 2 (Step 3) illustrates this using three overlapping Gaussians; the darker
data points for Gaussian 2 denote a higher difference, i.e. a higher minj LLR2j value for j = 1, 3.
Using the LLR, we can select highly differential archetypal signatures for each disease. Exam-
ples of diseased spots and their differences to a healthy plant, which were selected in (Step 3) of
our approach are shown in Fig. 4. The more yellow or red a pixel in this figure is, the more it
differs.

Step 4: Dirichlet Aggregation Regression and Mean Archetypal Signatures
Given sequences of disease distributions, we are interested in capturing their dynamics over
time. To capture the dynamics of a single disease, we make use of Dirichlet-Aggregation Re-
gression (DAR) [15]. DAR allows for modeling and predicting the distribution over disease ar-
chetypal signatures at any time. Specifically, DAR assumes a Bayesian perspective and
supposes that the reconstruction hk

t , computed for a single pixel in hyperspectral image of a
plant k at time t, was generated from a hidden Dirichlet distribution parameterized by the vari-

able αk
t ¼ ½akt1; . . . ; aktc	T , where c denotes the reconstruction dimension. To do so, it puts a

Gaussian process [51] prior on the Dirichlet distributions induced on the simplex spanned by
the extremes. For more details we refer to [15].
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DAR is realized in (Step 4) of our approach (cf. Fig. 2). In order to sketch the hyperspectral
dynamics of diseased plants, we first predict Dirichlets αk

t using the GP for T intermediate time
points and compute the Dirichlet mean archetypal signature Bkt ¼ ½Bkt1 . . . ; BktL	 for a plant k at
time t as

Bktl ¼
Xc

i¼1
E½akti	Wil ð4Þ

where E½akti	 ¼ akti=ð
P

ja
k
tjÞ andW 2 R

Λ�c contains c extreme signatures selected across all

plants and time steps and λ denotes the current dimension (wavelength in hyperspectral signa-
ture). Examples of mean archetypal signatures for different diseased plants are shown in Fig. 3.
As discussed above, they allow us to automatically sketch the hyperspectral dynamics of plant
diseases, as illustrated in Fig. 5 and Fig. 6. Next, we discuss how to draw such interpretable
summaries.

Step 5: Mapping Hyperspectral Dynamics of Diseased Plants
Given the K sequences of automatically assessed mean disease archetypal signatures for differ-
ent stages of diseases progression (where K is the number of diseases), we are left with summa-
rizing their dynamics, highlighting interesting time points, and describing the behavior of
disease symptoms. We distinguish between multiple and single sketches, which we formally de-
fine as

Definition 1 (Summary) A sketch S is a directed connected graph G = (V, E), where V is a
set of nodes and E is a set of edges, andP a set of D paths in G. Each edge e 2 E belongs to at
least one pathP and each node vi 2 V consists of at most D incoming and D outgoing edges.

Here, D denotes the number of different paths, say, diseases. A single sketch follows from
this definition by setting D = 1 and thus consists of a sketch summarizing interesting time
points of one particular diseased plant.

Single Sketches: To create a single sketch we are looking for a segmentation of ordered ob-
jects in B equally weighted bins which preserves the original ordering of the objects. Given a

matrixX 2 R
K�N where the columns denote the hyperspectral signatures representing differ-

ent stages of diseases progression, we can achieve a segmentation into B bins as follows: First,
we compute the distances of consecutive spectra (columns) using their Euclidean distance and
compute the average bin size as

d ¼ 1

B

XN�1

i¼1
diðiþ1ÞðXÞ where dijðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k¼1
xki � xkj

� �2
r

ð5Þ

Then, we fill the B − 1 bins successively with the objects according to the bin size δ. The last bin
is filled with the remaining objects. Drawing a single sketch is now simple. Each node denotes
the begin (resp. end) of a period, and the length of the edge eb between two consecutive nodes
vb and vb+1 is set relatively to the length of the period covered by the objects in bin b. Thus, the
shorter a part, the higher the impact of the corresponding period. This is illustrated in Fig. 5
for several diseased plants. Each sketch highlights the interesting periods of a disease, where a
small edge denotes a period of high impact (change in hyperspectral signature).

The limitation of a single sketch, however, is that it only represents the progression of a sin-
gle diseased plant. In order to uncover (dis-)similarities in progression and behavior of several
diseased plants, we thus consider multiple sketches.

Multiple Sketches via Metro Maps of Diseased Plants: As an addition to the above
sketches, we provide an abstract map showing spectral dynamics and changes during the path-
ogenesis. Here, we first embed hyperspectral images of plants, represented by means archetypal
signatures, in a low dimensional Euclidean space. classical approaches for doing so are
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multidimensional scaling (MDS) [52] and IsoMap [53]. IsoMap first creates a graph by con-
necting each object to l of its neighbors and then considers path lengths in the graph for
embedding using multidimensional scaling. Nevertheless, when analyzing such embeddings, it
is easy to focus on a narrow aspect such as how close two plants are at a specific point in time
and to lose track of the big picture. As small difference in distances are not of great importance
overall, we abstract the embedding further into a multiple sketch, which is motivated by the
idea of metro maps, the schematic diagrams of public transport networks. To draw a metro
map of diseased plants, we used the approach described by Nöllenburg and Wolff [26] which
takes as input the two dimensional embedding computed by, e.g. by MDS or IsoMap, and
turns into into a metro map by solving a linear program. We refer to [26] for more details.

A modified version of IsoMap that makes use of temporal information was already used for
the creation of simplex traces [14]. Unlike in classical MDS (which is employed by IsoMap), we
here seek a solution for the minimization problem using any gradient-based optimization
method, e.g. via quasi Newton methods [54] or via the SMACOF algorithm for Stress functions
[52] which is based on iterative majorization. In particular, we seek a configuration of points
representing the plants such that the distances between these points matches their similarity as
close as possible

srðXÞ ¼
X

i;j
aijðdijðXÞ � dijÞ2; ð6Þ

where δij denotes the dissimilarity between plant i and j, X denotes a point configuration, the
weights in aij indicate if the value δij is missing (aij = 0, imposing no restrictions on the configu-
ration in X) or are known (aij = 1), and dij(X) is the Euclidean distance used in Eq. (5). Thus,
matrix A can indicate whether two matrices belong to the same time slice or plant/sequence
but at consecutive days. Additionally, we may fix some of the points to predefined coordinates.
That is—(i) since all plants were healthy on the first day, we fix the coordinates of the first
measurements, and (ii) since we have observations over time, the x-coordinates are set to 1, 2,
3, . . ., t— we find an embedding by adjusting only the unknown points x̂ 2 X such that the
Stress function is minimized.

To see that this two-step approach is able to sketch dynamics in general, consider the two
moving Gaussians shown in Fig. 8 (left). Both Gaussians start in the upper left corner, then, the
green one moves in L-shape to the bottom right corner, and the red one moves first to the bot-
tom right corner and then to the bottom left corner. Each Gaussian was evaluated at 16 posi-
tions sampling 100 data points. To obtain an embedding, we took the mean coordinates of each

Figure 8. Example for multiple sketches on a synthetic data set. The data set was generated by two moving Gaussians (green and red) where the
brightness encodes time (the darker, the later) (left). The corresponding embedding using MDS (middle), the black dots were fixed on both dimensions
whereas for the green and red dots only the x-axis coordinates were fixed (xi = ti, where t is the temporal information) and y-coordinates were unknown
(learned by MDS). (right) The connection graph defining the weight matrixW between different states of N sequences over time, e.g. the moving Gaussians:
wij = 1 if the two elements i and j belong to the same time slice (column) or to the same entity (raw or the same color), say moving Gaussian, but at
consecutive time points.

doi:10.1371/journal.pone.0116902.g008
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Gaussian. The matrix A was defined as described above by preserving the temporal information
(see e.g. Fig. 8 right). The resulting embedding is shown in Fig. 8 (middle), where the black dots
were fixed on both dimensions whereas for the remaining green and red dots only the x-axis co-
ordinates were fixed (xi = ti, where t is the temporal information) and y-coordinates were un-
known (learned by MDS). This way, the behavior of both Gaussians is captured while respecting
their similarities. To compute a sketch of this embedding, we first connect two elements i and j
if dij(X)< ε, for a small threshold ε> 0. The resulting metro map is illustrated in Fig. 2 (Step 5)
and provides an abstract summary describing the behavior of two moving Gaussians.

Conclusions
In this paper, we present the first fast and reliable data-driven method for sketching complex
hyperspectral dynamics in plant science and for plant phenotyping. Disease archetypal signa-
tures as well as the sketches of hyperspectral dynamics conform to plant physiological knowl-
edge, providing interpretable summaries of disease progression via single sketches and metro
maps of diseased plants.

Our work provides several interesting avenues for future work. Clearly, other plant patho-
gen systems and different genotypes under abiotic or biotic stress should be investigated. An-
other interesting direction is to develop part based sketches, for instance, by applying
regularized latent Dirichlet allocation [13]. Additionally the benefits of using disease archetypal
signatures in early detection or classification tasks may be further investigated.

Supporting Information
S1 File. Basis vectors determined by Simplex Volume Maximization. The basis vectors cor-
respond to the most extreme signatures for the VNIR and SWIR ranges. Each row corresponds
to a wavelength and column to a basis vector. The entries contain the reflectance information
at different spectral bands.
(ZIP)

S2 File. Dirichlet parameter predicted by Gaussian process. Each file contains the informa-
tion for a specific disease or control plants for the VNIR and SWIR ranges. The Dirichlet pa-
rameter were used to compute mean archetypal signatures which are the basis for creating the
metro maps of diseased plants.
(ZIP)

S1 Fig. Single sketches of diseased plants over time for VNIR range.
(TIFF)

S2 Fig. Single sketches of diseased plants over time for SWIR range.
(TIFF)
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