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Abstract

Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by
distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however,
the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that
many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of
this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in
breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray
enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique
regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-
coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified
non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in
antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or
enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025
significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of
differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest
differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone
deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs)
were predominantly downregulated in breast tumor samples, including CARs located in the protein-coding genes for
CALD1, FTX, and HNRNPH1. In conclusion, a number of differentially expressed lncRNAs have been identified with relation
to cancer-related protein-coding genes.
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Introduction

Breast cancer is a highly heterogeneous disease with the highest

cancer incidence rate and the second highest mortality rate of

cancer diseases among women [1]. Tumors of breast cancer

patients exhibit substantial variations in treatment response,

relapse, and survival rate. Distinct mRNA expression signatures

discriminate breast cancer subtypes with different clinical impli-
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cations [2–4]. This characterization of the intrinsic molecular

subtypes is solely based on protein-coding genes. However, only

1.5–2% of mammalian genomic sequences codes for proteins and

it has been shown that mammalian genomes are pervasively

transcribed comprising large numbers of non-coding RNAs

(ncRNAs) [5–7]. Already 50 years ago Jacob and Monod proposed

a system of double genetic control of protein synthesis in bacteria,

based on structural (protein-coding) and regulatory (non-protein-

coding) genes [8]. Lately, this historic view of gene regulation has

achieved new attraction by the observation that many of the

ncRNAs are specifically expressed depending on cell type, tissue,

and developmental timing. NcRNAs are rather arbitrarily

classified into two major groups, represented by short RNAs (less

than 200 bp in length, including the miRNAs) and by long non-

coding RNAs (lncRNAs, represented with sequence lengths of

200 bp and above). It becomes increasingly apparent that

lncRNAs play an important role in central cellular processes,

ranging from transcriptional and post-transcriptional regulation to

the control of cellular structure integrity, subcellular localization,

and epigenetic modifications [9–12]. LncRNAs influence tran-

scription in either an enhancer-like fashion by rearranging

chromatin via chromosomal looping [13,14], by guiding tran-

scription factors to their target genes [15], or by preventing the

binding of transcription factors [16]. LncRNAs also affect post-

transcriptional regulation by acting as miRNA sponges [17,18] or

by controlling pre-mRNA splicing, as reported for the highly

abundant lncRNA MALAT1/NEAT2 [19,20]. Further, epigenet-

ic regulation of the cell is mediated by lncRNAs recruiting

chromatin modifying complexes to specific genomic regions

located either at distant or at proximal sites. The recently detected

class of large intergenic non-coding RNAs (lincRNAs) comprises

instances of lncRNAs modulating chromatin status in trans [21–

25], whereas examples of natural antisense transcripts (NATs) and

of intergenic chromatin-associated lncRNAs regulate chromatin

status in cis [26,27].

Several studies (e.g. [28,29]) have illustrated that miRNAs are

involved in the development and progression of breast cancer;

however, detailed characterization of the impact of lncRNAs on

the transition of normal to breast cancer tissue remains unknown.

The emerging number of lncRNAs associated with processes that

are critical for survival suggests a possible role of lncRNAs in

oncogenic and tumor suppressor pathways [19,30–33]. In breast

cancer, several individual lncRNAs have been presented with

direct influence on the cancer developmental process [34–37].

HOTAIR represents one of the most prominent examples of trans-
regulatory lncRNAs in cancer, identified as a powerful predictor of

eventual metastasis and survival [25]. Further examples of

lncRNAs involved in breast cancer are the chemoresistance-

related CCAT2 [38], the oncogenic H19 [39], and the tumor

suppressor GAS5 [40].

Beyond individual examples of lncRNAs associated with breast

cancer, the transformation of normal to tumor tissue involves

dramatic changes in the genome and the transcriptome involving

the deregulation of numerous lncRNAs [31,36]. A recent

transcriptome study depicted an altered distribution of sense-

and antisense transcription between normal and neoplastic breast

tissues [41]. Deep sequencing of lobular in-situ carcinoma further

revealed that a substantial fraction of non-coding regions is

transcribed in primary breast cancer [42]. LncRNAs located in the

HOX locus display significant expression variation between

normal breast epithelia versus primary and metastatic breast

cancers [25]. However, none of the mentioned studies explored

lncRNA differential expression variation in samples with defined

molecular subtypes in comparison to the expression levels in

normal breast tissue.

Here, we investigated the expression patterns of lncRNAs and

mRNAs of 26 breast tumors – distributed equally between the five

molecular subtypes Luminal A, Luminal B, ERBB2, Basal-like,

and Normal-like – and 5 normal breast tissue samples. We applied

a custom expression microarray interrogating previously identified

lncRNAs regulated in tumor-relevant pathways [43], lncRNAs

from public databases, and mRNAs. The focus of this study was to

investigate in breast cancer the molecular characteristics and

further the potential regulatory relations of lncRNAs on protein-

coding genes to receive a more profound understanding of the

multifaceted appearance of the disturbed processes in tumor

development and progression.

Results

Investigating transcriptional characteristics of breast
tumor patient samples and normal tissue

A custom expression microarray (GEO accession number

GPL13648) was used to analyze the expression patterns of

protein-coding and non-coding transcripts in total RNA from 26

well characterized breast tumor samples [44] and 5 normal breast

tissue samples from breast reduction operations (Table S1). Tumor

tissue samples were selected to distribute equally between the five

well-established mRNA subtypes – Luminal A, Luminal B,

ERBB2, Basal-like, and Normal-like - based on the PAM50

molecular classifier [2,45]. We are aware that the samples used for

our analysis include samples with heterogeneous tissue composi-

tion. Nonetheless, we observed a widespread downregulation of

tumor suppressors in breast cancer tissue samples versus normal

samples and an upregulation of oncogenic RNAs in tumor, both at

the coding and non-coding level (Tables S2 and S3). Moreover, we

did not detect any enrichment for adipocyte-specific pathways

(KEGG pathway identifiers 00061, 00062, 00071, 00532, 00533,

00534, 01040, 04975) suggesting that differential expression of

novel or functionally unannotated non-coding transcripts relates

mainly to the transition to tumor. We used Fisher’s exact test to

assess whether the observed overlap of significantly regulated

transcripts with genomic annotation would have been detected by

using randomly chosen probes from the array. Odds ratios were

computed between the relative overlap of significantly differen-

tially expressed probes (DE-probes) and the annotations over the

relative overlap of the annotations and all probes contained on the

microarray. We report the observed odds ratios, their 95%

confidence intervals and p-values, accordingly.

Differentially expressed transcripts that mapped to intergenic or

intronic space were considered as bona fide non-coding (subse-

quently referred as non-coding), if they did not exhibit any

evidence for encoding functional open reading frames, as

predicted by RNAcode (pv0:05) [46], nor any amino-acid

sequence similarity to known proteins as annotated in the RefSeq

database from March 7, 2012 (e-valuev0:05) [47]. Additionally,

we obtained a separate set of non-coding transcripts antisense to

exons of known protein-coding genes; however, without any

bioinformatic evidence for a functional open reading frame on the

reading strand of the probe.

Non-coding transcription changed drastically between
normal and tumor samples, independent of copy
number changes

Our analysis revealed 20,605 probes corresponding to 19,245

unique loci (hg19) significantly differentially expressed (DE)

between normal and tumor samples (FDRv0:01), reflecting
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major differences in the transcriptional landscape of breast cancer

in contrast to normal tissue (Figure 1A, Figure S4). Of these

regulated genomic loci mapped 7075 (36%) to exons of known

protein-coding genes (Gencode v12), 3882 (20%) were located in

intergenic space, and 6047 (31%) in introns of protein-coding

genes.

DE-probes downregulated in tumor were highest enriched,

according to Fisher’s exact test, in exons of protein-coding genes

(Figure 2A, and Table S4), many of these are known to act as

tumor suppressors [48] (odds ratio 5.2 fold, p~10{32, data not

shown). DE-probes upregulated in tumor appeared to represent

primarily novel transcripts (Figure 1A), which was also reflected by

a comparably lower enrichment in exons of protein-coding genes

(Figure 2A, Table S4). Many tumor-upregulated DE-probes were

found antisense to exons of protein-coding genes (Figure 1A,

Figure 2A), suggesting that an abundant repertoire of antisense

transcripts is active in breast cancer tissue but not in normal breast

tissue.

An impressive number of 8591 (82.9%) DE-probes that mapped

to 8282 unique genomic loci in intergenic or intronic space were

non-coding, i.e. without any bioinformatic evidence for functional

open reading frames or sequence similarity to known proteins.

Non-coding DE-probes located antisense to exons of known

protein-coding genes mapped to 1365 unique genomic loci.

It ought to be expected that at least some of the observed

expression changes of non-coding loci might be driven by

alterations at the DNA level, since it has been shown that 12%

of the total variation of mRNA expression in breast cancer may be

explained by copy number variation [49,50]. Consequently, we

evaluated the influence of DNA copy number variation on in-cis
lncRNA expression changes. Correlation analysis of the 26 tumor

samples utilizing data from 109k Illumina SNP array did not

detect any in-cis correlation between copy number and lncRNA

expression (absolute Spearman’s correlation coefficients ƒ0:03)

(Figure S1B). Following Pollack et al. 2002, we applied a linear

regression model to estimate that the expression variation of 6% of

the non-coding probes was explained by copy number variation

[50]. These results indicate that the contribution of copy number

changes to the observed variation in the lncRNA expression is

marginal and that the differential expression of lncRNAs in breast

cancer has more complex reasons than a trivial consequence of

genomic aberrations.

Non-coding transcription was altered within tumor
samples

To investigate the biological variation of lncRNAs within tumor

samples independent of known mRNA subtypes, we applied

unsupervised hierarchical clustering. Uncertainty of derived

clusters was assessed by random sampling with replacement

(bootstrapping with 10,000 iterations). Hierarchical clustering

based on probes mapping to protein-coding exons largely

reproduced the known mRNA subtypes and reflected TP53

status, while hierarchical clustering based on non-coding probes

revealed a different pattern (Figure S3). However, due to the small

number of patient samples and the associated limited discrimina-

tive power of unsupervised clustering methods, this discrepancy

should be interpreted with caution.

An F-test was employed to assess, if the mean expression of a

probe is equal for all five mRNA-based subtypes in our sample set.

We identified 3175 probes that were significantly differentially

expressed between any subtype (FDRv0:05). We chose a less

stringent false discovery rate to account for smaller sample sizes in

each group, 382 of these probes mapped to non-coding regions of

the human genome with a distinct expression pattern for the Basal-

like tumors (Figure S2).

In breast cancer, the most extreme diverging mRNA subgroups

are Luminal A and B versus the Basal-like subtype, different in

hormon status, prognosis, and survival rate. Our analysis focused

on the comparison of these outermost subgroups and we identified

3025 unique genomic regions significantly differentially expressed

(FDRv0:05), of which 682 were non-coding. The majority (60%)

of unique loci that were upregulated in Basal-like tumors

corresponded to exons of protein-coding genes (Figure 1B). Of

the remaining, 324 (15%) loci were identified in antisense direction

of known exons (275 to exons of known protein-coding genes), 134

(6%) corresponded to known lncRNAs or predicted lncRNAs with

conserved secondary structures, and 156 (7%) loci were novel. In

contrast, only 45% (416) of the unique genomic loci upregulated in

the Luminal A and B tumors mapped to coding genes but

approximately one third (249) mapped to novel loci. Differential

expression of antisense transcripts was higher than expected from

the composition of the custom microarray (Figure 3A).

Figure 1. Differential expression analysis. The expression patterns of mRNA-probes and non-coding probes of 26 breast tumors and 5 normal
breast tissues were investigated using the custom microarray. (A.) Fraction of unique genomic loci significantly differentially expressed (FDRv0:01)
between normal and tumor samples located completely in exons of protein-coding genes (Gencode v12), in exons of known lncRNAs (lincRNAs,
Gencode v12 lncRNAs, lncRNAs as annotated in lncRNAdb [51], and lncRNAs contained in chromatin [27]), in exons of transcripts of uncertain coding
potential (TUCPs [23]), in exons of short RNAs (UCSC sno/miRNA track), in genomic loci with conserved secondary structure motifs (Evofold [59], RNAz
[58,97] and SISSIz [53]), in antisense-direction to known exons (Gencode v12), or in novel genomic regions. (B.) Fraction of unique genomic loci
significantly differentially expressed (FDRv0:05) between Basal-like and Luminal tumors and located in genomic annotations as described for panel
A. Numbers beside bars denote absolute number of unique DE-loci.
doi:10.1371/journal.pone.0106076.g001
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Differentially expressed non-coding transcripts were
mostly novel

We observed that up to 80% of non-coding DE-loci, either with

significant expression changes between normal and tumor or

Basal-like and Luminal A and B samples, were novel. They were

neither antisense to known exons, nor located in known or

predicted short or long ncRNAs (Figures 2E and 3E). Some of

these novel regions corresponded to non-coding transcripts,

previously identified to be regulated by cancer-related pathways,

like mitotic cell cycle and TP53 mediated apoptosis [43]. We

observed an overrepresentation of those within the set of non-

coding transcripts downregulated in breast cancer tissue (Fig-

ure 2C) or upregulated in Basal-like tumor samples (Figure 3C).

Apart from transcriptional changes in novel sites, we found also

significant regulation of known lncRNAs. Considering all non-

coding DE-probes downregulated in tumor samples, we detected

an enrichment for lincRNAs [23], lncRNAs as annotated in

Gencode v12, chromatin-associated lncRNAs (CARs [27]),

manually curated lncRNAs (lncRNAdb [51]), transcripts originat-

ing from introns of protein-coding genes [52], transcripts of

uncertain coding potential (TUCPs [23]), and small RNAs

(Figure 2B, Table S4). Non-coding DE-probes upregulated in

tumor displayed significant enrichments for lncRNAs as annotated

in Gencode v12, for small RNAs, and for loci of conserved

secondary structures (SISSIz [53]).

Within the tumor samples, DE-probes upregulated in Basal-like

tumors showed significant enrichment for known lncRNAs

(Gencode v12, lncRNAdb [51]), for non-coding RNAs transcribed

from introns [52], and for small RNAs (Figure 3B and Table S4).

Chromatin-associated lncRNAs were mostly
downregulated in tumor samples

One of the highest scored enrichments of non-coding DE-

probes, which were significantly differentially expressed between

normal and tumor tissue, was observed for lncRNAs previously

detected to be contained in chromatin of human fibroblast cells

[27]. A total of 88 chromatin-associated lncRNAs (CARs) were

represented by at least one probe on the custom microarray, of

which 64 showed significant changes in expression between

normal and tumor samples (FDRv0:01). 43 CARs displayed

consistent downregulation in breast cancer, while only 17 were

found to be upregulated in tumor, and 4 CARs contained probes

Figure 2. DE-probe overlap with genomic annotation (Normal versus Tumor). A.–D.: Number of DE-probes significantly differentially
expressed between normal and tumor samples (FDRv0:01) and mapping to different genomic annotations. Log2 transformed odds ratios and their
95% confidence interval for the respective annotation dataset are shown. Odds ratios of observed versus expected probe overlaps were calculated
and tested by Fisher’s exact test for significant enrichment or depletion, with *** indicating pv0:001, ** pv0:01, and * pv0:05, respectively. Results
are shown (A.) for DE-probes located in annotated protein coding genes versus intergenic space based on Gencode release v12, (B.–D.) for
intergenic or intronic non-coding DE-probes either located in several classes of known and predicted ncRNAs (B.), in non-coding transcripts regulated
during cell cycle (CC), upon TP53 or Stat3 induction [43] (C.), or in regulatory sites (D.). (E.) Fraction of unique non-coding DE-loci in exons of known
short and long ncRNAs, in genomic sites with conserved secondary structures, in antisense-direction to known non-coding exons (Gencode v12), or in
novel sites. Numbers denote absolute number of DE-loci located in novel sites. For detailed output of Fisher’s exact tests see Table S4, and Table S7
for detailed description of annotation datasets.
doi:10.1371/journal.pone.0106076.g002
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with inconsistent expression changes (Table S5). A total of 9 CARs

overlapped with annotated lncRNAs, of which NEAT1, MA-

LAT1, and MEG3 are known to be regulated by cancer pathways

[19,42,54,55]. Further, 9 CARs were found in introns of protein-

coding genes (e.g. in introns of ARID5B, CALD1, EXT1), and 39

spanned introns and exons of a protein-coding gene (e.g. FOS,

HNRNPH1). Expression levels of CARs appeared to be constant

among Basal-like versus Luminal A and B tumor samples

(Figure 3B and Table S4). Hence, CARs might be regulated by

pathways being responsible for the onset and progression of

primary tumors; however, not by pathways controlling the genesis

of a particular subtype. The expression changes detected by the

custom microarray of three randomly selected CARs were

successfully validated by RT-qPCR (Figure S5).

Differentially expressed non-coding transcripts showed
low sequence conservation, but partly secondary
structure conservation

Previous studies have indicated that the primary sequence

conservation of lncRNAs is in general lower than for protein-

coding genes [22,23,56]; however, a substantial fraction displays

evidence for purifying selection on RNA structures in mammals

[57]. Hence, we investigated, if non-coding DE-probes regulated

in breast cancer are conserved on sequence and/or on secondary

structure level.

Non-coding DE-probes showed less conserved sequence com-

position than DE-probes that mapped to protein-coding genes;

however, they were more conserved than neutrally evolving

sequences (Figure S6A). DE-probes significantly differentially

expressed in the comparison of Basal-like versus Luminal A and

B tumor samples displayed less sequence conservation than DE-

probes significantly differentially expressed between normal and

tumor tissue samples.

Assessing the structural conservation of non-coding DE-probes,

we found these enriched for genomic loci with conserved structure

motifs as predicted by SISSIz [53]; however, not for motifs

predicted by RNAz [58] and Evofold [59] (Figures 2B, 3B, and

Table S4). The three computational methods require different

degrees of sequence conservation in the alignment, which may

explain the observed imbalance. SISSIz predicts secondary

structure motifs at loci with primarily low sequence conservation,

while RNAz and Evofold reach optimal classification rates only for

Figure 3. DE-probe overlap with genomic annotation (Basal-like versus Luminal A and B tumors). A.–D.: Number of DE-probes
significantly differentially expressed between Basal-like and Luminal A and B tumors (FDRv0:05) and mapping to different genomic annotations.
Log2 transformed odds ratios and their 95% confidence interval for the respective annotation dataset are shown. Odds ratios of observed versus
expected probe overlaps were calculated and tested by Fisher’s exact test for significant enrichment or depletion, with *** indicating pv0:001, **
pv0:01, and * pv0:05, respectively. Missing error bars denote no DE-probes overlapped with according annotation. Results are shown (A.) for DE-
probes located in annotated protein coding genes versus intergenic space based on Gencode release v12, (B.–D.) for intergenic or intronic non-
coding DE-probes either located in several classes of known and predicted ncRNAs (B.), in non-coding transcripts regulated during cell cycle (CC),
upon TP53 or Stat3 induction [43] (C.), or in regulatory sites (D.). (E.) Fraction of unique non-coding DE-loci in exons of known short and long ncRNAs,
in genomic sites with conserved secondary structures, in antisense-direction to known non-coding exons (Gencode v12), or in novel sites. Numbers
denote absolute number of DE-loci located in novel sites. For detailed output of Fisher’s exact tests see Table S4, and Table S7 for detailed description
of annotation datasets.
doi:10.1371/journal.pone.0106076.g003
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alignments with moderate or high sequence conservation,

respectively [57,60]. This result suggests an involvement of

ncRNAs with structural motifs in breast carcinogenesis; however,

only for those molecules with comparable low sequence conser-

vation. Further, our studies revealed that DE-probes were in

general less conserved in their sequence than probes with

detectable secondary structure motifs (Figure S6B). Hence, many

DE-probes corresponded to genomic loci for which reliable

classification, whether the locus contains a secondary structure

motif or not, is not possible due to low sequence conservation.

Also, the detection of structured differentially expressed ncRNAs

by microarrays is hampered by a lower affinity of those to array

probes. This was reflected by lower signal intensities of probes,

located in genomic loci with conserved secondary structure motifs

compared to the remaining probes (Figure S6C).

Differentially expressed non-coding transcripts were
enriched in regulatory sites

The genomic location and frequency of non-coding DE-probes

was assessed investigating promoters, enhancer regions, transcrip-

tion factor binding sites, or transcriptionally active or in-active

regions (see Table S7 for detailed information about annotations).

Non-coding DE-probes, regulated between normal and tumor

tissue samples, were enriched in promoter sites as defined by CpG

islands and/or H3K4 trimethylation sites, in chromatin marks that

are characteristic for enhancers (H3K4 monomethylation and

H3K27 acetylation), and in genomic regions actively transcribed

(Pol II binding sites, H3K36 trimethylation sites) (Figure 2D,

Table S4).

The discrepancy between high (low) odds ratios for DE-probes

upregulated (downregulated) in tumor samples and transcription-

ally active sites (H3K36 trimethylated) - as opposed to DE-probes

downregulated (upregulated) in tumor samples and transcription-

ally inactive sites (H3K27 trimethylated) - might be a consequence

of the unequal composition of ENCODE ChIP-Seq data, which is

mainly derived from normal cell lines (Figure 2D, Table S4).

A less pronounced, but significant, enrichment was observed for

transcription factor binding sites [7]. DNase-I hypersensitivity

sites, characterized by regions where the chromatin is open in such

a way that transcription factor binding is in general possible, were

significantly enriched (Figure 2D).

Within tumor samples, non-coding DE-probes, which were

upregulated in Basal-like tumors compared to Luminal A and B

tumor samples, were significantly enriched in promoters (H3K4

monomethylation), enhancers (H3K27 acetylation), and in regions

known to be actively transcribed (Pol II binding sites, H3K36

trimethylation, Figure 3D). Non-coding DE-probes downregulat-

ed in Basal-like tumor samples were significantly enriched in

promoters (CpG islands and H3K4 trimethylation), enhancers

(H3K27 acetylation), transcription factor binding sites, Pol II

binding sites, and in DNase-I hypersensitivity sites.

In summary, we observed enrichment of differentially expressed

lncRNAs in regulatory and epigenetically modified sites, which

might interfere with expression of adjacent protein coding RNAs.

Differentially expressed non-coding transcripts were
located in close proximity to protein-coding genes

Cabili et al. 2011 has suggested that intergenic lncRNAs are

preferentially located in proximal regions of protein-coding genes

[23]. To validate this result for lncRNAs regulated in cancer, we

assessed the distance of all non-coding intergenic probes to their

nearest protein-coding gene, independent of reading strand. In a

comparative analysis of normal versus tumor tissue samples we

found more intergenic non-coding DE-probes in close genomic

proximity to protein-coding genes than expected from randomly

selected intergenic regions preserving probe length of 60 bp

(Figure S7A, Kolmogorov-Smirnov test p-valuev10{32).

For intergenic non-coding DE-probes significantly differentially

expressed between Basal-like versus Luminal A and B tumor

samples a similar distance distribution to neighboured transcrip-

tion start sites of protein-coding genes was observed (Kolmogorov-

Smirnov test p-valuev7:4|10{5); however, with a larger shift to

proximal regions of protein-coding genes for DE-probes upregu-

lated in Basal-like tumor samples (Figure S7B).

Differentially expressed non-coding transcripts and
nearest protein-coding genes displayed non-
synonymous expression changes

Our results of significantly regulated non-coding loci (abun-

dantly located in proximal regions of protein-coding genes, and

enriched in regulatory sites) together with reports of previous

studies about frequent cis-regulatory mechanisms of lncRNAs

[14,26,27,61,62] encouraged us to analyze the expression varia-

tion for all non-coding DE-transcripts in comparison to their

nearest protein-coding gene (Gencode v12). Exclusion criteria for

potentially non-annotated distant exons of protein coding genes

were: (1) If the non-coding DE-probe and the protein-coding gene

were located on the same reading strand, only those lncRNA-

mRNA pairs were accepted that exhibited significant expression

changes in opposite directions. (2) If the non-coding DE-probe and

the protein-coding gene were located on different reading strands,

all lncRNA-mRNA pairs with significant expression changes were

accepted.

We detected 416 protein-coding genes in nearest genomic

proximity of 782 intergenic non-coding DE-probes, where both

displayed significant differential expression variation between

normal and breast tumor tissue (intergenic lncRNA-mRNA pairs,

FDRv0:01, Figure 4A). The majority (75%) of those protein-

coding genes showed non-synonymous expression changes with at

least one intergenic non-coding DE-probe: 279 (32) protein-coding

genes were found upregulated (downregulated) in tumor in

relation to their nearby downregulated (upregulated) intergenic

non-coding DE-probes in contrast to 137 protein-coding genes

with synonymous expression variations (Figure 4A).

Further, a total of 1276 actively transcribed and putatively

regulatory non-coding transcripts in introns of 655 regulated

protein-coding genes were identified (intronic lncRNA-mRNA

pairs, Figure 4B). Again, the majority of those protein-coding

genes displayed non-synonymous expression changes with at least

one intronic non-coding DE-probe. We found 441 (72) protein-

coding genes upregulated (downregulated) in tumor while at least

one intronic DE-probe was downregulated (upregulated).

For non-coding DE-probes antisense to protein-coding genes,

we observed a total of 865 lncRNA-mRNA pairs comprising 565

unique protein-coding genes (Figure 4C). Here, we identified a

balanced fraction of pairs with synonymous or non-synonymous

expression changes with the exception of a small number of

protein-coding genes (29) that were upregulated in tumor and with

an antisense lncRNA downregulated. An example of a protein-

coding gene downregulated in breast cancer with a non-coding

antisense transcript significantly upregulated in breast cancer

versus normal tissue is HDAC3 (histone deacetylase 3) on chr5

(Figure 5). HDAC3 belongs to the class I of histone deacetylase

family of proteins, which regulates gene expression by histone

deacetylation at promoter sites thus transforming the chromatin
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into a more ‘‘packed’’ state (heterochromatin) leading to

transcriptional repression of genes.

A KEGG pathway enrichment analysis for all protein-coding

genes, which were significantly differentially expressed between

normal and tumor tissue and which were a member of the above

described lncRNA-mRNA pairs revealed many different cancer-

related pathways among the significant KEGG terms (pv0:05,

Table S6).

We observed a less pronounced number of lncRNA-mRNA

pairs for the comparison of Basal-like versus the Luminal A and B

tumor samples (FDRv0:05). Only 15 protein-coding genes with

nearby non-coding DE-probes in intergenic space were detected,

17 with non-coding DE-probes in their introns, and 117 with non-

coding DE-probes in antisense direction.

In summary, these findings directly support the hypothesis that

expression of protein-coding genes associated to cancer relevant

pathways might be affected by lncRNAs located in close genomic

proximity.

Discussion

The landscape of non-coding transcription shows
dramatic changes in breast cancer

Breast cancer is a highly heterogeneous disease with distinct

molecular subtypes characterized by patterns of protein-coding

gene expression [2,3] and genomic DNA alterations [50,63]. The

genomic changes may contribute to alterations at the expression

levels; tumors of the same mRNA expression subtype often share

similar copy number variations, with the most prevalent genomic

alterations observed for the Basal-like and ERBB2 subtypes [63–

65]. Further, it has been demonstrated that 12% to 40% of the

expression variation of the protein-coding genes may be explained

by genomic alterations [50,66]. We investigated whether the

observed differential expression of lncRNAs is merely a conse-

quence of genomic aberrations. We found that the observed

correlation between copy number variations and lncRNA

expression was very low, only 6% of the observed expression

Figure 4. Proximal lncRNA – mRNA pairs. For non-coding DE- probes significantly differentially expressed between normal and tumor samples
(FDRv0:01) the protein-coding gene (Gencode release v12) with closest genome coordinates was identified, and the pair retained if the protein-
coding gene was differentially expressed at the same FDR cutoff. Log2 fold change of the non-coding probe (x-axis) and the maximal log2 fold
change of probes located in exons of the protein-coding gene (y-axis) is depicted as a bivariate histogram using hexagonal binning (R package
hexbin). Pairs with converse fold changes are shown in the left upper and right lower quadrant. Pairs with consistent fold changes but opposite
reading direction are shown in the left lower and right upper quadrant (see also panel describing direction of expression changes for each quadrant).
Numbers in quadrant correspond to number of unique genes depicted. (A.) Proximal pairs, where the non-coding probe is intergenic. (B.) Pairs
where the non-coding probes is in an intron of the protein-coding gene. (C.) Pairs where the non-coding probe and the protein-coding gene are on
opposite strands and overlap at least partially.
doi:10.1371/journal.pone.0106076.g004
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changes may be explained by copy number variation. Thus, and in

opposite to previous findings for protein-coding genes [49,50], we

conclude that the majority of the observed differential expression

of lncRNAs is influenced by other factors than underlaying DNA

aberrations.

Overall, 9647 unique non-coding loci were significantly

differentially expressed between 26 breast tumor and 5 normal

tissue samples. These non-coding transcripts were located in the

intergenic space (3194) and in introns of protein-coding genes

(5088), further in antisense or bidirectional genomic location

relative to protein-coding genes (1365). Several of the detected

differentially expressed lncRNAs were well described members of

cancer-related pathways, including tumor suppressors and onco-

genes (e.g. MEG3 [55], Xist [67,68], MALAT1 [19,42], H19

[39,69], GAS5 [40], and HOTAIR [25,70]). However, the

majority of differentially expressed lncRNAs corresponded to

novel transcripts of unknown function. Differentially expressed

mRNAs were enriched in cancer- but not in adipocyte-specific

KEGG pathways, suggesting that the observed differences

between normal and tumor tissue samples are not histological

artefacts. We therefore conclude that the observed differential

expression of lncRNAs is mainly reflecting the difference between

normal and tumorous epithelial cells and is thus associated with

breast cancer.

LncRNA differential expression between tumor subtypes was on

a much lower scale than between normal and tumor tissue. This

Figure 5. HDAC3 (histone deacetylase 3) mRNA and its putative regulatory antisense lncRNA. (A.) Genomic locus of HDAC3 on
chromosome 5 and the antisense transcript downstream of HDAC3 with genomic positions of strand-specific RT-qPCR primers/products. Annotation
track DE-TAR corresponds to genomic loci significantly downregulated upon TP53 induction [43]. Both transcripts appear to be significantly
differentially expressed on the custom microarray (FDRv0:01), exhibiting a non-synonymous expression pattern (B.). The transcription start site of
the annotated antisense RNA overlaps with the transcription start site of DIAPH1. Genome-wide predictions of functional open reading frames
(RNAcode, p-valuev0:05) correspond mainly to exons of HDAC3 mRNA, while some short putative open reading frames overlap the antisense
transcript. (C.) Strand-specific RT-qPCR validations relative to normal sample ‘‘RP38’’ for both, the HDAC3 mRNA and the antisense transcript.
doi:10.1371/journal.pone.0106076.g005
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may be a consequence of smaller effect sizes and larger within

group heterogeneity combined with comparably smaller sample

sizes. However, it might also reflect a bias of the custom array.

Apart from database derived lncRNAs it contained in house

identified lncRNAs from cell cycle, oncogenic, and tumor

suppressor pathways. Alterations in these processes are common

to many tumors, but transcripts associated with breast cancer

subtypes, like estrogen- or progesterone receptor controlled

lncRNAs, are likely underrepresented on the array.

Investigating evolutionary conservation of tumor-related non-

coding RNAs we observed that selective pressure on primary

sequence is small compared to protein-coding exons, which is in

line with reports by others [22,23,56]. In addition, we detected

conservation of secondary structure motifs in mammals for about

10% of non-coding DE-regions regulated between normal and

breast tumor tissue (9.8%) and between Basal-like versus Luminal

A and B tumor samples (11.5%). This fraction was only marginally

explained by the observed number of regulated short ncRNAs

usually folding into distinct secondary structures. Given that the

majority of DE-probes were less conserved in primary sequence

than it is required for optimal signal-to-noise ratios in RNA

secondary structure motif detection tasks, a notable number of

conserved structure motifs may still be hidden among our set of

novel non-coding tumor-related non-coding RNAs. Further, we

noticed on average less sequence conservation for lncRNAs

differentially expressed within tumor tissue (Basal-like versus

Luminal A and B tumor samples) than for lncRNAs differentially

expressed between normal and tumor tissue.

Non-coding RNAs may regulate transcription of protein-
coding genes in cis

Several lncRNAs have been found to regulate gene expression

in cis [14,26,27,61] or in enhancer regions [71]. We hypothesize

that cis acting lncRNAs regulate expression of tumor suppressors

and (to a lesser extent) oncogenes in a direct or indirect way, and

thus contribute to tumorigenesis. Overall, we found a significantly

smaller distance of differentially expressed non-coding regions to

the proximal protein coding gene than expected by randomly

drawing from the transcripts represented on the custom array. We

detected a massive deregulation of non-coding transcription from

regulatory DNA sites upstream of protein coding sequences. These

may partly correspond to short RNAs (50bp to 200 bp length) that

are transcribed upstream of coding genes, which are known to be a

target of polycomb proteins and can induce repression of coding

genes in cis [72].

Further, we identified 311 protein-coding genes with proximal

long non-coding RNAs in intergenic space and non-synonymous

expression changes, suggesting that these lncRNAs may interfere

with mRNA expression. Synonymous pairs were only assessed for

RNAs on opposite strands to avoid counting of unknown mRNA

exons and these synonymous pairs were significantly fewer than

non-synonymous pairs. For the majority of non-synonymous pairs

the protein-coding gene was found down- and the intergenic

lncRNA was identified being upregulated in tumors samples. We

noticed an enrichment of tumor suppressor protein-coding genes

for mRNAs downregulated in tumor. Together with the fact that

the majority of mRNAs were down- and the majority of non-

coding transcripts were upregulated in tumors one may speculate

whether the upregulation of lncRNAs contributes to the down-

regulation of tumor suppressor genes and thus to the progress of

cancer.

In few cases, non-synonymous expression in opposite reading

direction, exhibiting overexpression of breast cancer-associated

mRNAs along with an antisense lncRNA downregulated in tumor

samples, was detected. Cabili et al. 2011 found that the expression

patterns of lincRNAs and their nearest protein-coding neighbour

are not more correlated than pairs of two neighbouring protein-

coding genes [23]. Thus, synonymous pairs may just reflect that

transcription of a particular genomic locus is accompanied by

transcription of neighboured loci because the surrounding

chromatin is open [73]. However, lncRNAs can positively affect

the transcription of adjacent genes by inducing chromatin looping

between the ncRNA loci and the neighbouring genes [74]. Ørom et
al. 2010 report intergenic non-coding RNAs acting as enhancers

for their nearest protein-coding gene, which results in synonymous

expression changes between non-coding RNAs and mRNAs [14].

In summary, our results suggest that lncRNA s may act in the

regulatory control of adherent cancer-related genes and their

malfunction may present an important factor in the development

and progression of breast cancer.

An example for a strongly anticorrelated, non-synonymous pair

with a tumor-downregulated mRNA is HDAC3 and its antisense

lncRNA transcript. We found HDAC3 expression in normal

samples and strongly downregulated but detectable in tumor tissue

samples. Class I histone deacetylases, like HDAC3, are repressing

the transcription machinery for various genes in cancer [75]. On

the other hand, studies reported that HDAC3 is an inhibitor of

migration of metastatic breast cancer cells [76].

Chromatin-associated lncRNAs may contribute to
epigenetic changes during carcinogenesis

In the breast cancer samples used for our investigations, we

observed a massive downregulation of lncRNAs previously

described to be a component of chromatin [27]. Chromatin-

associated lncRNAs (CARs) have been found to regulate

transcription in cis by mediating chromatin modifications in close

genomic proximity. We identified downregulated CARs in vicinity

or overlapping the oncogenes IGF1R, MYLK [77], the breast

cancer drug target OGT (O-GlcNAc transferase) [78], and the

breast cancer-related cyclin CCNL1 [79]. CARs also overlap with

lincRNAs that were found to bind to PRC2 (polycomb repressive

complex 2) or RCOR1 (REST corepressor 1) and regulate

transcription in trans through establishing repressive chromatin

marks at distant sites [27]. We found 5 of these CARs/lincRNAs

(MALAT1, MEG3, NEAT1, NBPF1, and AC058791.1) signifi-

cantly downregulated in primary tumor samples compared to

normal tissue. The observed downregulation of CARs in tumor

may thus be responsible for a reprogrammed chromatin state in

breast cancer leading to the activation of oncogenes or repression

of tumor suppressors in cis or trans.
In summary, the observed massive deregulation of lncRNAs

may be an important characteristic of breast cancer development

and progression. The frequently observed anticorrelation between

lncRNAs and adjacent breast cancer relevant onco- and tumor

suppressor genes may give rise to novel drug targets at the non-

coding RNA level. Finally, the perturbation of chromatin-

associated lncRNAs encourages for a more detailed investigation

of the role of lncRNAs in epigenetic reprogramming in breast

cancer etiopathology.

Materials and Methods

Ethics Statement
All studies are approved by the Norwegian Regional Committee

(REC) for Medical and Health Research Ethics (REC South East,

reference numbers S97103 and 429-04148). All patients are

informed and have declared written informed consent that their

samples are used for research.
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Tissue Samples
Fresh frozen tumor biopsies from early breast cancer cases were

collected from 920 patients included in the Oslo Micrometastasis

(MicMa) Study - Oslo I from various hospitals (a collaboration

between Buskerud-, Bærum-, and different sections at the Oslo

University Hospital, Norway) between 1995 and 1998 [28,44,80].

A total of 26 breast carcinomas have been selected for lncRNA

expression study using the nONCOchip microarray. The samples

have been classified into five clinically relevant tumor subclasses

based on their mRNA expression levels [44,81]. In addition, 5

breast tissue samples from breast reduction operations were

provided from the Colosseum Clinic, Oslo in co-operation with

Akershus University Hospital, Lørenskog and are herein defined as

being normal breast tissue.

Custom expression microarray design - nONCOchip
We used the nONCOchip, a custom-designed Agilent micro-

array containing 203,527 probes covering protein-coding and

non-coding genomic loci (GEO accession number GPL13648).

The nONCOchip interrogates probes for lncRNAs regulated by

three tumor-relevant pathways (mitotic cell cycle, anti-proliferative

and pro-apoptotic p53, and pro-proliferative and anti-apoptotic

Stat3), known lncRNAs, as well as mRNAs [43].

In detail, probes of 60bp length have been designed following

Agilent’s standard design protocol for expression exon microarrays

as available from eArray (https://earray.chem.agilent.com/

earray/). eArray design was performed according to the base

composition methodology where probes are equally distributed

across the target sequence, and uniqueness of probes have been

checked against all known RefSeq (m)RNAs. Target sequences

were grouped into three length categories defining the required

number of probes. Target sequences of length 60ƒlv300 are

represented by exactly one probe, while target sequences of length

300ƒlv1000 are represented by up to five probes. Target

sequences longer than 1000bp were split into intervals of 1000bp

and number of probes selected according to length of subsequence.

For target sequences of unknown reading strand, i.e. sequences

originating from the transcriptome-wide study of cancer-related

pathways [43] or from ncRNA predictions [57,59], probes for the

plus and minus strand have been designed. It should be noted that

probes of 60bp length exclude the detection of the majority of

smaller ncRNAs, like mature miRNAs.

Custom expression microarray processing
All samples assembled for expression analysis with the

nONCOchip custom microarray were prepared for microarray

performance using the Agilent Quick Amp Labeling Kit for single

color following manufacturer’s instructions. RNA quality was

checked using Agilent’s 2100 Bioanalyzer; only samples with a

RINw5:0 entered the processing. Instead of the Oligo-dT/T7-

primer delivered with the Quick Amp Labeling Kit, we used 120

pmol of a random N6/T7 primer synthesized by Metabion. 1 mg

RNA was used as input for the labeling procedure. cRNA quantity

was checked using a NanoDrop ND-1000 UV-VIS Spectropho-

tometer, as enlisted in the manufacturers instructions. 1.5 mg of

labeled cRNA was used for hybridization with the 244k custom

microarray following manufacturers instructions. After hybridiza-

tion the arrays were washed according to the manual and scanned

using the Axon GenePix 4200 Scanner and GenePix Pro 6.1 Scan

software with the following settings for scanning: 100% laser

power; focus 0; 5 mm pixel size; 2 lines to average; wavelength at

532 nm with standard green filter. Result tables were extracted

after grid placement using GenePix Pro 6.1 Software. Result tables

were used for subsequent data analysis.

Custom expression microarray data analysis
Differentially expressed probes were identified by using R [82]

and the Bioconductor library limma [83]. Quality control of arrays

were performed by checking distribution of ‘‘bright corner’’, ‘‘dark

corner’’ probes, and relative spike-in concentration versus

normalized signal. The controls confirmed high quality of the

results and consequently all microarray data were included in the

downstream analysis. To retrieve a set of probes mapping to

unique genomic positions in hg19 we used BLAT [84] with the

parameter -minIdentity = 93 allowing to detect probes spanning

splice sites. All probes mapping to more than one distinct genomic

region were discarded. Normalization between arrays was done by

using quantile normalization [85]. In order to reduce the number

of t-tests nonspecific filtering was applied as follows: The

expression of a probe must be larger than background expression

in four arrays. Background expression is defined by the mean

intensity plus three times the standard deviation of negative

control spots (Agilent’s 3xSLv spots). In addition, a probe must

exhibit a nonspecific change of expression of at least IQR w0:5.

Finally, a linear model was fitted using the R package limma and

reliable variance estimates were obtained by Empirical Bayes

moderated t-statistics. False discovery rate was controlled by

Benjamini-Hochberg adjustment [86].

Quality control of the custom expression microarray
For quality control of the expression data, we investigated

whether the subtype classification obtained in previous studies for

the same set of tumor samples was reproducible using the

nONCOchip. Gene expression of PAM50 genes was compared to

previous profiling of the same samples using Agilent’s Whole

Human Genome Oligo 44k Microarrays [81]. High concordance

to the original subtype assignments for all tumor samples was

revealed depicting sufficient Pearson’s correlation coefficients

(Figure S1A). The results indicate high molecular reproducibility

for mRNA expression profiles applying the nONCOchip, thereby

suggesting high qualitative performance for lncRNA expression

profiling.

aCGH microarray data analysis
The genotypes aCGH dataset has been published previously

[87]. For each sample, the copy number data were log2-

transformed, segmented, and probe values were replaced by

segment averages, using the Piecewise Constant Fitting (PCF)

algorithm [63,88]. In order to obtain matching copy number and

expression data sets, the following procedure was applied to each

sample and to each of the non-coding transcripts in the dataset to

obtain a corresponding copy number value: A PCF value was

found for each of the expression probe position through

interpolation of the piecewise constant regression function. The

average PCF value over all expression probes associated with a

particular probe is calculated. This average then defines the copy

number value for that probe in the given sample.

Defining a set of non-coding probes
A bona fide set of non-coding probes in intergenic and intronic

regions was constructed from the significantly differentially

expressed probes as follows: (1) All probes overlapping with at

least one nucleotide with protein-coding exons (independent of

reading strand) as annotated in Gencode release v12 [89], UCSC

genes [90], RefSeq [47], or Ensembl genes [91] were discarded. (2)

Probes overlapping with a significant RNAcode [46] segment

(p-valuev0:05) contain de-novo short open reading frames and

were discarded from the set of non-coding probes. In detail,
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genome-wide Multiz alignments [92] for 46 vertebrate genomes

have been downloaded from http://hgdownload.cse.ucsc.edu/

goldenPath/hg19/multiz46way/ and split into shorter alignments

of at most 400bp length to enable parallel processing. Each

multiple alignment was assessed by RNAcode in all six possible

reading frames, and the longest segment in the reference sequence

of maximal score reported. All segments with an RNAcode

p-valuev0:05 define de-novo protein-coding regions. We re-

frained from adjusting p-values for multiple testing, as we are not

interested in a set of highly reliable protein-coding segments (i.e.

reducing the number of false positives), but in reducing the

number of regions falsely interpreted as non-coding (i.e. reducing

the number false negatives). An RNAcode p-value of v0:05
resulted in 84:8% sensitivity (according to known protein-coding

exons annotated in Gencode v12) and 97:2% specificity (according

to 10,000 sampled intergenic intervals preserving length distribu-

tion and repeat content of protein-coding exons). (3) All probes

which have not been classified by RNAcode (due to low sequence

conservation) but overlap with at least one nucleotide genomic

regions of translated sequences patterns similar to amino-acid

sequences of known human proteins may be of coding origin and,

hence, were discarded (tblastn [93] with parameters -word-size 3 -

evalue 0.05 and RefSeq database from March 7, 2012). Applying

these filters results in 53,577 bona fide non-coding probes in

intergenic regions and 71,228 in introns of protein-coding genes.

For simplicity, we termed probes passing these three filters as non-

coding probes.

Probes antisense to a protein-coding exon, but not containing a

significant RNAcode hit (p-valuev0:05) on the same strand

define a separate set of antisense non-coding probes comprising in

total 14,272 probes.

Statistical analysis of annotation overlaps
Overlap with annotation sets was calculated using R [82] and

the Bioconductor library genomeIntervals [94]. We further used

the R library Snow to enable parallel processing [95]. For each

contrast of interest the overlap with a particular annotation set was

computed in terms of (1) absolute number of differentially

expressed probes (DE-probes) overlapping with a particular

annotation and (2) the odds ratio of observed relative overlap

versus relative overlap of a background list consisting of all probes

on the nONCOchip. Observed odds, randomized odds and odds

ratios are defined as follows:

oddsDE{Probe~
ovDE{Probe

nDE{Probe{ovDE{Probe
ð1Þ

oddsBG~
ovBG

nBG{ovBG
ð2Þ

odds ratio~
oddsDE{Probe

oddsBG
: ð3Þ

The observed number of overlapping probes is given as

ovDE{Probe, while ovBG corresponds to the number of overlapping

probes in the background list. The overall number of DE-probes is

denoted as nDE{Probe, and the overall number in the background

list as nBG. Significance of odds ratios was assessed by using

Fisher’s exact test as implemented in R. We also report the 95%

confidence interval of the odds ratio, which is larger than 1 in case

of an enriched number of overlapping nucleotides and less than 1

in case of depletion. A probe was interpreted as an overlapping

probe if it maps to at least 90% to an interval of the according

annotation set.

Annotation categories
A detailed description and listing of annotations sets used is

given in Methods S1 and in Table S7.

KEGG pathway enrichment analysis
KEGG pathway enrichment analysis was performed using the

R library GOstats [96] with pathway annotations as stored in

KEGG.db and org.Hs.eg.db. Significance of enrichment was

assessed by a one-sided hypergeometric test where the universe

contains all genes of the nONCOchip which passed nonspecific

filtering.

Validation of lncRNA expression analysis by RT-qPCR
For quantitative real time PCR 250 ng of total RNA was

reverse transcribed using random primers and the High-Capacity

cDNA Reverse Transcription Kit following the manufacturer’s

recommendations (Applied Biosystems, now Life Technologies).

Transcript expression analysis was performed using Fast SYBR

Green Master Mix according to the manufacturer’s instructions

(Applied Biosystems, now Life Technologies). 5 ml of 1:12.5 diluted

cDNA was used per reaction. Experiments were performed in

triplets and all transcript quantification data were normalized to b-

Actin mRNA. All primers were designed using Primer3 (v0.4.0,

default parameters, Table S8). The UCSC In-Silico PCR option

(http://genome.ucsc.edu/cgi-bin/hgPcr) was used to check for

unspecific primer matches.

Supporting Information

Figure S1 Expression changes recovered mRNA based
subtype classification, and were independent of copy
number changes. (A.) Heatmap of Pearson’s correlation

coefficients of expression levels of the protein-coding genes that

define the five known mRNA subclasses of breast cancer on the

custom microrarray compared to expression levels of these genes

in the same set of tissue samples on Agilent 4644k arrays [28,44].

Correlation was calculated for 44 of the 50 protein-coding genes

defining the mRNA expression breast cancer subclassification.

The remaining 6 genes were not represented on the microarray

due to the requirement, that at least one probe per gene must be

mapped to a unique genomic locus (hg19). PAM50 gene

expression is highly correlated between same tumor samples on

the two different expression arrays. Abbreviations LA, LB, Bl, and

Nl indicate Luminal A, Luminal B, Basal-like, and Normal-like

tumor subtypes, respectively. (B.) Smoothed scatterplot of

expression changes and copy number variations for non-coding

DE-probes regulated between normal and tumor samples

(FDRv0:01). The portion of probes with similar expression

changes and similar copy number variation is reflected by different

blue shades. Black dots mark extreme values, and red lines

correspond to average intensities for positive and negative

expression changes. Spearman’s correlation coefficients of

r~0:004 and r~{0:03, respectively, indicate that the contri-

bution of the copy number changes have only marginal effect on

the expression variation of non-coding regions.

(PDF)

Figure S2 Differential expression of non-coding probes
in breast tumor. Heatmap of non-coding probes with

significant expression variation between molecular tumor subtypes
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(F-test with moderated residual mean squares – limma R library,

FDRv0:05). Clinical data indicate disseminated tumor cell status

(DTC, yes~disseminated tumor cells detected, no = not detected);

age at onset (Age); histological grade 1, 2 or 3 (Grade); TP53

mutational status (TP53, wt~wild-type and mut~mutated);

status of epidermal growth factor receptor 2 (Her2, neg~Her2

negative, pos~Her2 positive); status of progesterone receptor

(PR, neg~PR negative, pos~PR positive); and status of

estrogene receptor (ER, neg~ER negative, pos~ER positive).

(PDF)

Figure S3 Unsupervised clustering of tumor samples.
Hierarchical clustering of probes passing unspecific filtering, i.e.

IQRw0:5 between tumor samples and expression above the

background in at least four arrays. (A.) Hierarchical cluster tree of

probes located in exons of protein-coding genes (N~12061), and

(B.) of non-coding probes (N~7263). Variance within clusters was

minimized by applying Ward’s method on scaled log2 intensities

of probes, and correlation was used as distance function.

Uncertainty of clusters was assessed by bootstrapping with

10,000 iterations (R package pvclust). Red numbers indicate

cluster reliability in percent, here 1{a with a being the

significance level to reject the null hypothesis that the cluster is

not present in the data. Variation explained by array processing

batches was removed prior to clustering (R package limma –

removeBatchEffect) in order to receive a clustering of samples

which is solely based on biological variation. Detailed description

of clinical, pathological and immunohistochemical data of

presented tumor samples is provided in caption of Table S1.

(PDF)

Figure S4 Differential expression of lncRNAs. Heatmap

of lncRNA (Gencode v12) expression changes between normal

and tumor tissue. For each lncRNA and patient sample, the

median expression of all significantly differentially expressed

probes (FDRv0:01) located in exons of the lncRNA is depicted.

Clinical data indicate disseminated tumor cell status (DTC,

yes~disseminated tumor cells detected, no~not detected); age at

onset (Age); histological grade 1, 2 or 3 (Grade); TP53 mutational

status (TP53, wt~wild-type and mut~mutated); status of

epidermal growth factor receptor 2 (Her2, neg~Her2 negative,

pos~Her2 positive); status of progesterone receptor (PR,

neg~PR negative, pos~PR positive); and status of estrogene

receptor (ER, neg~ER negative, pos~ER positive).

(PDF)

Figure S5 RT-qPCR validation of differentially ex-
pressed chromatin-associated lncRNAs. Subsequent anal-

ysis of three chromatin-associated lncRNAs (CARs, Table S5) [27]

chosen for validation. Validation was performed using all original

RNA samples by RT-qPCR. Plots for the chromatin-associated

lncRNAs CAR-CALD1 (spanning intron of CALD1 mRNA),

CAR-HNRNPH1 (spanning introns and exons of HNRNPH1

mRNA) and CAR-FTX (spanning introns and exons of lincRNA

FTX) depict changes in expression (log2 scale). Sample types are

represented by different colours: normal breast tissue (yellow);

Luminal A subtype (dark blue); normal-like samples (green); the

basal-like subtype (red); the ERBB2 samples (purple) and the

Luminal B subtype (light blue). The 2D matrix represents the p-

value after testing for the different hypotheses (p-valuev0.01 = **;

p-valuev0.05 = *).

(PDF)

Figure S6 Sequence conservation and hybridisation
intensities. Empirical cumulative distributions (ECDF) of

average PhastCons scores of DE-probes (Normal vs. Tumor with

FDRv0:01, Basal-like vs. Luminal tumors with FDRv0:05)

either compared to neutral evolving sequences preserving length

distribution of coding exons (A.) or to array probes located in

genomic loci with conserved secondary structures – RNAz [57,58],

SISSIz [53,57], and Evofold [59] (B.). (C.) ECDF of maximal

microarray hybridisation intensities of probes located in loci with

conserved secondary structure motifs compared to all remaining

probes on the custom microarray.

(PDF)

Figure S7 Genomic distance of intergenic non-coding
DE-probes to protein-coding genes. Empirical cumulative

distribution function (ECDF) of genomic distances of intergenic

non-coding probes either significantly differentially expressed

between tumor and normal samples (FDRv0:01, A.) or between

Basal-like and Luminal tumors (FDRv0:05, B.) to their nearest

protein-coding gene (Gencode v12), not taking the reading

direction into account.

(PDF)

Table S1 Clinical, pathological, and immunohisto-
chemical data of presented breast tumor samples.
Column headings indicate sample identifier (Sample ID); Age

at onset (Age, years with one decimal); tumor cell content in

percentage (TCC, 1~100%, n/a if not available); tumor size in

cm (Tumor Size); status of breast tumor (Tumor Status,

0~normal sample, 1~pT1 [tumorƒ2:0cm], 2~pT2
[2:0cmvtumorv5:0cm], 3~pT3 [tumorw5:0cm], 4~pT4
[infiltrating skin or thoracic wall], 5~Tis [Carcinoma in situ],

6~T0 [no detected primary tumor], n=a~not available);

histology (Histology, 1~IDC [invasive ductal carcinoma],

2~ILC [invasive lobular carcinoma],

3~other infiltrating cancers, 4~DCIS [ductal carcinoma in

situ]); histological grade 1, 2 or 3 (Grade); status of estrogene

receptor (ER status, 0~ER negative, 1~ER positive); status of

progesterone (PR status, 0~PR negative, 1~PR positive);

HER2 status – combination of IHC and FISH (HER2
combined, 0~negative [either IHC~0=1z or

IHC~2z=FISH~negative], 1~positive [either IHC~3z or

IHC~2z=FISH~positive], n/a~missing); TP53 mutational

status (TP53 status, 0~wild{type, 1~mutated); disseminated

tumor cell status (DTC status,

1~disseminated tumor cells detected, 0~not detected);

PAM50-based tumor subtype (PAM50 subtype,

1~Luminal A, 2~Luminal B, 3~ERBB2, 4~Basal-like,

5~Normal-like) and 44k mRNA expression-based subtype

(Tumor subtype, 1~Luminal A, 2~Luminal B, 3~ERBB2,

4~Basal-like, 5~Normal-like). Details of DTC detection are

further described in Wiedswang et al. 2003 [80].

(PDF)

Table S2 KEGG pathway enrichment analysis for
protein-coding genes significantly differentially ex-
pressed (Normal versus Tumor). Most enriched KEGG

pathways (p-valuev0:05) of genes significantly differentially

expressed between normal and tumor samples (Gencode release

v12, FDRv0:01). Column headings indicate ID of KEGG

pathway (ID), significance of enrichment (P-value), odds ratios

(Odds ratio), expected number of genes associated with tested

pathway (Exp. count), number of significantly differentially

expressed genes associated with this pathway (Count), number

of genes from the gene universe that are annotated in that pathway

(Size), name of the pathway (Pathway Name), and a list of genes

which are regulated in that pathway and were significantly

differentially expressed. Analysis was done by using the Biocon-

ductor GOstats package. Mapping of genes to Entrez IDs is based
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on the NCBI gene information table (version: July 1, 2012).

Significance of enrichment was assessed by a one-sided hypergeo-

metric test where the universe contains all genes of the custom

microarray which passed unspecific filtering (Materials and

Methods).

(PDF)

Table S3 Known non-coding RNAs differentially ex-
pressed between normal versus tumor samples. Summa-

ry of known non-coding RNAs (Gencode v12) significantly

differentially expressed between normal and tumor patient

samples (FDRv0:01). Column headings indicate official Gencode

gene name (Gene name), Gencode identifier (Gene ID), if

ncRNA transcript is bona fide non-coding (Bona fide non-
coding, for detailed description of filter refer to Methods S1),

Gencode transcript ID (Transcript ID), position of transcript in

human genome version hg19 (Position of transcript), position

of probe in human genome version hg19 (Position of probe),

custom array probe ID (Probe ID), and fold change in log2 scale

(logFC). A fold change of v0 indicates NormalvTumor, and a

fold change of w0 denotes NormalwTumor.

(XLSX)

Table S4 DE-Probes overlap with genomic annotation.
Number of DE-Probes significantly differentially expressed

between normal and tumor samples (FDRv0:01) or Basal-like

and Luminal tumors (FDRv0:05), and overlapping with diverse

sets of genomic annotation. Annotation datasets are described in

Table S7. Overlaps are calculated by using the Bioconductor

genomeIntervals package [94]. The significance of the observed

overlap is assessed by calculating odds ratios of observed (DE-

Probes) versus expected (all probes on microarray) relative

overlaps. Odds ratios are calculated and tested by Fisher’s exact

test for significant enrichment or depletion (see Materials and

Methods). Column heading Annotation indicates annotation

datasets for which overlap is computed, and Survey corresponds

to the direction of expression variation (either NormalwTumor:

overlap for probes downregulated in tumor, NormalvTumor:

overlap for probes upregulated in tumor; or BLwLuminal:
overlap for probes upregulated in Basal-like tumors,

BLvLuminal: overlap for probes downregulated in Basal-like

tumors). Remaining columns indicate the results (Odds ratio, P-
value, and 95% confidence interval for odds ratio 2 95%CI) and

the data (DE-Probes: number of differentially expressed probes

located in annotation, i.e. fraction of overlapping probe nucleo-

tides § 0.9, or non-overlapping with annotation, i.e. fraction of

overlapping probe nucleotides v 0.9; BG: number of array

probes located in annotation, i.e. fraction of overlapping probe

nucleotides § 0.9, or non-overlapping with annotation, i.e.

fraction of overlapping probe nucleotides v 0.9) of Fisher’s exact

test.

(PDF)

Table S5 Chromatin-associated lncRNAs differentially
expressed between normal versus tumor. Summary of

chromatin-associated lncRNAs [27] significantly differentially

expressed between normal and tumor patient samples

(FDRv0:01). Column headings indicate if chromatin-associated

lncRNA (CAR) is bona fide non-coding (Bona fide non-coding,

for detailed description of filter refer to Methods S1), position of

CAR in human genome version hg19 (CAR - Genomic locus),

genes the CAR overlaps with (CAR - overlaps gene, in detail

Gene name;gene type;reading strand), position of probe in human

genome version hg19 which overlap CAR in either reading

direction (Probe - Genomic locus), custom array probe ID

(Probe - ID), fold change in log2 scale (Probe - logFC), and

genes the custom array probes overlap with (Probe - overlaps
gene). A fold change of v0 indicates NormalvTumor, and a

fold change of w0 denotes NormalwTumor. Since reading

strand of CARs is unknown we report all probes overlapping with

a CAR no matter of reading direction. Abbreviations used for

gene and transcript types are as follows: AS (antisense), NC
(lincRNA, miRNA, snRNA, snoRNA, scRNA, non coding,

miscRNA), NMD (nonsense mediated decay), PC (protein

coding), PG (pseudogene), PT (processed transcript), RI (retained

intron), SI (sense intronic), and SO (sense overlapping).

(XLSX)

Table S6 KEGG pathway enrichment analysis for
mRNAs with intergenic, intronic, or antisense non-
coding DE-probes. Most enriched KEGG pathways

(p-valuev0:05) of significantly differentially expressed protein-

coding genes (Gencode release v12, FDRv0:01) with a non-

coding DE-probe (FDRv0:01) either located in intergenic space

and proximal to the protein-coding gene, located in intron of the

protein-coding gene, or antisense to the protein-coding gene.

Column headings indicate ID of KEGG pathway (ID), signifi-

cance of enrichment (P-value), odds ratios (Odds ratio),

expected number of genes associated with tested pathway (Exp.
count), number of significantly differentially expressed genes

associated with this pathway (Count), number of genes from the

gene universe that are annotated in that pathway (Size), name of

the pathway (Pathway Name), and a list of genes which are

regulated in that pathway and significantly differentially expressed.

Analysis was done by using the Bioconductor GOstats package.

Mapping of genes to Entrez IDs is based on the NCBI gene

information table (version: July 1, 2012). Significance of

enrichment was assessed by a one-sided hypergeometric test

where the universe contains all genes of the custom microarray

which passed unspecific filtering (see Materials and Methods).

(PDF)

Table S7 Detailed documentation of used annotation
categories. Column headings Annotation, Abbreviation,

Source/URL, Assembly, Citation, and Comment indicate

the according genomic feature, the abbreviation used in figures

and tables throughout the paper, the online source of the

annotation data set, the human genome assembly for which

annotation was available, references, and comments about

preprocessing of the annotation data, respectively.

(PDF)

Table S8 RT-qPCR primers. LncRNA expression was

validated by RT-qPCR with primers designed using Primer3

(v0.4.0) with default parameters.

(PDF)

Methods S1 Description of genomic annotation catego-
ries. Detailed description of all genomic annotation categories

used to investigate the genomic location of DE-probes.

(PDF)
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