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Abstract

Massively parallel collaboration and emergent knowledge generation is described

through a large scale survey for archaeological anomalies within ultra-high

resolution earth-sensing satellite imagery. Over 10K online volunteers contributed

30K hours (3.4 years), examined 6,000 km2, and generated 2.3 million feature

categorizations. Motivated by the search for Genghis Khan’s tomb, participants

were tasked with finding an archaeological enigma that lacks any historical

description of its potential visual appearance. Without a pre-existing reference for

validation we turn towards consensus, defined by kernel density estimation, to pool

human perception for ‘‘out of the ordinary’’ features across a vast landscape. This

consensus served as the training mechanism within a self-evolving feedback loop

between a participant and the crowd, essential driving a collective reasoning engine

for anomaly detection. The resulting map led a National Geographic expedition to

confirm 55 archaeological sites across a vast landscape. A increased ground-

truthed accuracy was observed in those participants exposed to the peer feedback

loop over those whom worked in isolation, suggesting collective reasoning can

emerge within networked groups to outperform the aggregate independent ability of

individuals to define the unknown.

Introduction

Ultra-high resolution satellite imaging enables a new paradigm in global

exploration. This study surveys sub-meter resolution satellite imagery of the

Mongolian steppe to identify largely undocumented cultural heritage sites across a

sparsely populated and undeveloped landscape. With continued advances in
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sensor technologies, the capabilities and limitations of remote sensing is being

determined less by data resolution and more by the methods that analyze the

increasingly massive datasets. Overwhelming data volumes have often led to

automated analytical approaches. However, in visual analytics automated

approaches lack the flexibility and sensitivity of human perception when seeking

singular, undefined anomalies.

This study therefore utilizes scalable, loosely guided, online volunteer

participation to generate human identifications of unknown anomalies within

massive volumes of geospatial remote sensing data. The emergence of statistical

trends from a large sample of independent inputs highlights the collective human

perception of the images’ content. Similar to volunteer geographic information

networks such as OpenStreetMaps [1], inputs from multiple contributors generate

a collective map of local knowledge [2], only in this case the term ‘‘local’’

represents the global base of human visual perception.

Turning to the crowd as the ‘‘partner of choice’’ for scalable problem solving is

becoming increasingly attractive across broad domains both in science and

industry [3, 4]. While many crowdsourcing approaches rely upon gameplay

dynamics [5, 6], monetary incentives (e.g., Amazon’s Mechanical Turk [7, 8] or

[9]) to motivate participation in individual tasks, others utilize the social

recognition of charismatic challenges such as space exploration [10] to encourage

participation. It has been shown in several of these cases that complex problems, if

strategically structured, can be solved by pools of volunteer participants with little

to no pre-existing domain knowledge of their analytical challenge [11]. Here we

leverage the charismatic challenge of directing a field expedition in search for the

tomb of Genghis Khan (Chinggis Khaan) to engage tens of thousands of public

volunteers and generate millions of micro-contributions towards an archae-

ological satellite imagery survey. These contributions aggregate into a collective

geospatial map of analytical cross-verifications. In this particular case, since there

exists no historical or archaeological record describing the physical appearance of

this tomb, we turn towards the crowd not only to tackle the data size challenge of

large scale satellite remote sensing, but more importantly to pool human

perception and intuition when sifting through the data for anything that looks

‘‘out of the ordinary’’.

This loosely defined search criterium presents a challenge, where a participant’s

desire for validation or guidance cannot be met with an administrative answer.

Thus, we introduce a framework to enable a crowd directed evolution of feature

search criteria that mimics crowd reasoning processes in nature. The collective

behavior of flocking animals, for example, is enabled through simple decision

making and feedback criteria adhered to by the independent agents of that

collective [12]. Similar to the vector and spatial referencing data required by

individual birds within a flock, our study constructs multi-directional channels of

visual reasoning feedback between the individual participant and the crowd. We

hope that in this scheme, the collective will guide itself towards an agreement

regarding what to look for, essentially facilitating a ‘‘collective intelligence’’
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beyond that of individuals whom comprise the collective [13, 14]. We explore this

in the case of perceptual reasoning.

Methodology

The System

Ultra-high resolution satellite imagery (0.5 meters/pixel), covering approximately

6,000 km2 of landscape was tiled into 84,183 small, semi-overlapping image tiles

(12366630 pixels) and presented to the public via a National Geographic website.

There, participants are asked to examine the image tiles in randomized order and

identify features from five categories: ‘‘roads’’, ‘‘rivers’’, ‘‘modern structure’’,

‘‘ancient structure’’, and ‘‘other’’ (Fig. 1a) by marking up to five ‘‘tags’’ on the

image. The random order of the image tasking and the five tag limit per

participant for a given image tile were designed to create an equal distribution of

influence across all participants, an approach that has been shown to optimize the

quality of collective voting [14]. We note that this survey applied multiple satellite

images for any given location introducing varying characteristics of time/season-

of-collection, color correction, and nadir. This variability may significantly

influence on what is visually salient. All images originated from the GeoEye-1

sensor (provided courtesy of the GeoEye Foundation) and underwent pan-

sharpening and ortho-rectification, before being presented at native scale.

After completing a maximum of five tags for a given image tile, and before

proceeding to the next randomly selected image tile, participants are shown all

tags for that geospatial location previously generated by preceding participants.

This provides incremental points of reference to evaluate one’s own assessment

against that of other peer participants (Fig. 1b). The timing of the anonymous

feedback cues was chosen carefully, being presented only after one’s tags were

committed. This was to avoid the unstable nature of social influence observed in

other online markets [15], while still taking advantage of what Krumme et al. [16]

recently observed as the informational role cues can play in influencing ones

behavior. Furthermore, the participant’s completed inputs will contribute as

feedback for all future participants. No other form of centralized training is

provided, allowing the system to rely upon the emergence of collective consensus

or agreement not only to find anomalies but also to generate a constantly evolving

search criterion for a target of unknown visual characteristics, the tomb of

Genghis Khan. Regions of high agreement among the crowd were ultimately

ground-truthed (Fig. 2).

A sub-pool of randomly selected participants were removed from this feedback

loop. Upon the completion of a image tile assessment, they would immediately

proceed to the next randomly selected image tile. Returning to the flocking

analogy, this would be equivalent to ‘‘blinders’’ that would limit sensory data to

reference one’s movements to neighboring agents. In both cases we depend upon

consensus to detect true anomalies on the ground, however from the two pools we
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can compare collective vs. independent perceptual reasoning in the determination

of the unknown search target.

Extracting Insight from Noisy Data: Kernel Density Estimation

How can we extract usable insight from tens of thousands of independent voices?

Human generated data is inherently noisy. Additionally, we must also consider the

possibility of random or erroneous contributions. Many factors could motivate or

deter sabotage in such open systems [17]. Fortunately, the large volume of parallel

independent contribution provides the statistical basis upon which we assess the

validity of individual contributions. Essentially, repeated independent labeling [18]

can provide a mechanism for error correction.

Fig. 1. Tagging Interface: (a) Example of tags being made. Tags are color coded with roads (red), rivers (blue), ancient (yellow), modern (grey), and other
(green) structures; (b) Example of peer feedback after a participant completes their annotation task. Results of all previous observers of that image tile are
shown. Satellite imagery provided courtesy of the GeoEye Foundation.

doi:10.1371/journal.pone.0114046.g001
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Specifically, we assume that agreement among independent participants is only

likely to emerge around observable features and, therefore, that agreement can be

used as a metric for validity. In particular, the probability of tag agreement

emerging from random choice is statistically low, and the system’s constraint of

random image tile distribution reduces the possibility of collusion between

multiple participants. While this structure facilitates resilience against malicious

data manipulation (cooperation), it is noted that the dependency on independent

agreement and the even distribution of impact between participants sacrifices the

ability to capture value that may come from non-malicious outlier data.

We evaluate crowd consensus as a function of the density of tags. This is

characterized through kernel density estimation (KDE) [19, 20], where each tag xi

contributes a localized, 2-dimensional Gaussian profile (‘‘kernel’’), centered at the

location of the tag. The bandwidth of this Gaussian kernel K reflects that tag

locations may not be precise and ground features extend over multiple pixels.

Aggregating these contributions over all tags provided by participants, results in a

kernel density function, expressed as:

f (x)~
1

nh

Xn

i~1

K(
x{xi

h
): ð1Þ

This function is normalized by n, the total number of tags and h the kernel

bandwidth. h is determined by Scotts Rules [21] and corresponds to 20 meters on

the ground, aligned with the approximate size of expected archaeological features

found in this region (20 meter radius). This kernel density estimate, f (x), can then

Fig. 2. Overall System: Left - Participants are provided sub-sectioned imagery tiles in random order to label features such as roads, rivers, and ancient
structures through an online interface, we have shown three semi-overlapping tile croppings. Center - A geospatial map of observed ground features is
generated though the combined input of tens of thousands of independent inputs. Overlapping regions in image tile croppings facilitate a global KDE for a
universal comparison of saliency across the entire data set. Regions of highest KDE likelihood (based on user inputs) are highlighted. Right - Aerial
photography and ground exploration of the location identified by crowd reveals a circular ‘‘khirigsuur’’ burial mound with Bronze Age [24, 25] characteristics.
Satellite imagery provided courtesy of the GeoEye Foundation.

doi:10.1371/journal.pone.0114046.g002
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be used to assess the likelihood of finding a feature of interest (e.g., a tomb) at

every point x, in our survey area through f (xi). We sampled f (x) in 2:5|2:5 meter

cells or 565 pixels for computational efficiency.

Calibrating for Local Effects of Partitioning to Create a Global Data

Set

The UI/UX through which participation occurs will significantly impact what

insight is collectively extracted from the imagery. To partition and structure our

problem, tags were collected through observations on sub-sectioned image tiles,

presented in random order and covering only a fraction of the overall survey area.

While segmenting the imagery is necessary for the parallel participation

framework we devise, we must ultimately account for the local effects of

sectioning when combining the tags contributed for each image tile.

Specifically, the random order of image tile distribution to participants results

in varying numbers of views from one tile to the next, affecting the density of

potential tags and the subsequent probability of emergent agreement. Also, as

image tiles are segmented into semi-overlapping rectangles, an object/feature may

be presented with variant saliency in more than one image tile based on its

position and/or context (with other features) between croppings (Fig. 2).

Interestingly, we can take advantage of these overlapping regions to calibrate

multiple tiles around shared features.

We begin by determining fi(x), the KDE for each individual image tile i using

Equation 1. We then minimize the variance between these tile-specific estimates in

overlapping regions (50% overlap was produced by the initial tiling of the large

satellite image) using least-squares optimization (Equation 2) across all

overlapping pairs of tiles:

minimize
X

a,b

err(fa(x),fb(x))2: ð2Þ

By defining a function err(fa(x),fb(x)) (Equation 3) to represent the discrepancy

in density estimates between a pair of overlapping image tiles (a,b), the least-

squares approach will attempt to find the set of weights wi:::wn that minimizes the

variance in each respective overlapping region:

err(fa(x),fb(x))~(
wana

ua
{

wbnb

ub
): ð3Þ

We determine discrepancy between overlapping tiles pairs through measurable

parameters, including ni, the number of tags collected for tile i, and ui, the number

of participants who viewed tile i. The weighting wi for tile i, is an introduced

variable for calibration; in particular, they scale the KDE values of each respective

tile to minimize the computed variance (Equation 3) between overlapping
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regions. The weights are determined by least-squares such that Equation 2 is

minimized across all overlapping pairs of tiles (wiw0 V i). Applying this

across the entire data set provides a global KDE g(x) (Equation 4) that ranks

individual features based on a universal comparison of saliency. This ranking,

discussed bellow, is critical to determine the highest convergence points across the

entire crowdsourced dataset, the necessary final step in converting millions of

individual inputs into a collective insight.

g(x)~ max
t

wt|ft(x): ð4Þ

Seeing Consensus: Creating Actionable Information

We identify possible ground features from ‘‘agreement regions’’ of high likelihood

in the KDE space (described above). Fig. 3 shows (a) crowd generated tags upon a

rectangular anomaly and (b) the subsequent kernel density estimation as

calculated from Equation 1 represented through a color gradient in which red

represents the highest value and blue the lowest value.

When comparing regions of high density across our dataset we wanted to

preserve contextual clues in the underlying satellite images while also representing

those regions in a highly salient way. We annotated global KDE maxima with

semitransparent circles with dimensions depending on the global density estimate

as follows:

r~ log (104g(x)) ð5Þ

The function was chosen to slowly increase the radius, r, of the circle as the

global KDE value, g(x), at some coordinate increased. This is shown in Fig. 3 for

the same sample archaeological anomaly presented in Fig. 1, where the radius of

the circle is scaled with the kernel density estimate at that location with a

maximum threshold so that the circles do not overwhelm other locations.

Ground-truth Validation

The global KDE map provided our field expedition to Northern Mongolia with a

ranked list of anomaly identifications to be surveyed on foot and horseback for

archaeological validation. Ranking is determined by the global kernel density

estimate, from highest to lowest density. Higher ranking locations were ground-

truthed, with some exceptions due to extreme physical inaccessibility. This survey

combined multi-spectral unmanned aerial remote sensing along with magnetic,

electromagnetic, and radar based geophysical scans [22]. This data was

subsequently combined within a 3D virtual reality environment [23].

Crowdsourcing the Unknown: The Satellite Search for Genghis Khan

PLOS ONE | DOI:10.1371/journal.pone.0114046 December 30, 2014 7 / 17



Fig. 3. Tag Clustering: (a) Crowd generated tags (grey) within a 2 dimensional space (white) on a 565 grid;
(b) Kernel density visualized through a color gradient where high density is represented as red and low
density as blue; (c)Tag clusters are annotated with semitransparent circles of variable radii, determined as a
dependent function of the normalized kernel density estimate of a cluster’s center. Large radius circles
represent a location of high agreement across the all participants. Satellite imagery provided courtesy of the
GeoEye Foundation.

doi:10.1371/journal.pone.0114046.g003
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Results

The ‘‘virtual exploration’’ system was launched on June 10, 2010 and after 90 days,

5,838 participants had contributed over 1.2 million inputs. After 6 months over

10K participants had generated over 2.3 million inputs (tags), creating a geospatial

map that highlighted regions of crowd consensus among the inherently noisy

data. Driven by the charismatic opportunity to search for the tomb of Genghis

Khan, volunteer participants donated a combined total of 30,000 hours (3.4 years)

of human visual analytics (calculated from user interaction time logs). Fig. 4

provides a subsample of the overall crowd generated data (approximately 20% of

the total survey area).

Networks of roads (represented in red), and rivers (represented in blue)

become clearly outlined by the linear progression of hundreds of thousands of

individual and independent tags (Fig. 4). The collective tags provide a remarkably

complete map, outlining features with high sensitivity. The region is largely

undeveloped and lacks paved roads, thus the red tracks represent the delineation

of small, nonuniform and non continuous dirt pathways. Similar detection

sensitivity is observed for river delineations.

Regions of high density for both the ancient structure (represented in yellow)

and modern structure (represented in grey) categories emerge around localized

point features. Interestingly, there exists a high variability in the percentage of tag

agreement between categories. Based upon high density regions discovered using

kernel density estimation, we observe that 83% of the modern structure tags are

part of a high density region (defined as having a non-negligible global KDE value

of 1|10{5, the density estimate of two tags in the same pixel) in comparison to

36.2% of ancient structure tags, 73.6% of river tags, 49.9% of road tags, and 39.9%

of ‘‘other’’ tags. As high density regions are a representation of crowd consensus,

the results indicate that out of the five available tag categories, participants were

least likely to converge upon an agreement when it came to the identification of

ancient structures. This was to be expected as we deliberately provide little

archaeological context for the definition of an ancient structure, due to the lack of

reference knowledge surrounding the tomb’s visual appearance. However, where

independent agreement did emerge we can observe the collective perception of the

crowd, that an ‘‘out of the ordinary’’ feature with potentially ancient origins

exists. As stated earlier, we employ the crowd not only to tackle the overwhelming

scale of analytics required from our large data set, but to utilize a global human

perceptive knowledge base in defining the unexpected.

Guided by the crowdsourced map, the field team explored and documented one

hundred of the highly ranked locations across this extensive landscape. Highly

ranked locations that were physically inaccessible due to the rugged nature of the

terrain were left un-surveyed. Of the surveyed locations, fifty five archaeologically

and culturally significant sites were positively identified including Bronze Age

‘‘khirigsuur’’ burial mounds, ‘‘deer stone’’ megaliths, ancient city fortifications,

Tengriist Ovoos and Mongol period burials [24–26]. In total, a wide variety of

archaeological material was identified from the crowd based analytics, ranging
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from 10 meter diameter rock piles to 200 meter wall structures. While the specific

archaeological nature of these identifications will be discussed in detail elsewhere,

five examples of positive identifications are labeled a-e in Fig. 4 and shown in

detail in Fig. 5.

False positive identifications, (Fig. 6 a-b), in the tag category of ancient

structure occasionally occurred, often due to categorical misinterpretations of

other features, i.e remains of modern nomadic settlements or geological

formations. While these errors did occur, they were centered around existing

observable features and did not represent erroneous random cluster generation.

Here we believe the repeated independent and parallel labeling schema for any

given image tile, and the random order of image tile distribution over tens of

thousands of participants played an important factor in restraining coordination/

sabotage.

Collective vs. Independent Reasoning

This effort seeks ‘‘a needle in a haystack’’, but in a scenario where the appearance

of the needle is undefined. Specifically, not a single burial of the Mongolian

imperial family has been identified, and thus we cannot predefine a visual search

criterium. We have turned towards the crowd to not only tackle the data size

Fig. 4. Data Collection Results: Hundreds of thousands of tags overlaid on a subsection of the search area
to generate maps of roads (red) and rivers (blue), and to locate ancient (yellow), modern (grey) and other
(green) structures. Locations of high agreement (global KDE) in the ‘‘ancient structures’’ category are
represented with increased radius. Five example positive identifications are highlighted with labels Fig. 5a- 5e.
To construct this figure, we computed the global KDE and applied our visualization function on density peaks
across the region. Satellite imagery provided courtesy of the GeoEye Foundation.

doi:10.1371/journal.pone.0114046.g004
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challenge associated with ultra-high resolution satellite imagery, but more

importantly to leverage the power of human perception in a search for the

unexpected. We have constructed a system of incremental collaborative peer

feedback to facilitate a self-evolving collective understanding of what to look for,

as explained in previous sections. However, a control group of randomly selected

individuals did not participate in the feedback loop, working on the same imagery

but in complete isolation. The results from both populations depend upon the

Fig. 5. Example Positive Identification (reference Fig. 4): (a) circular ‘‘khirigsuur’’ burial mounds gKDE
value: 1.826104); (b) circular ‘‘khirigsuur’’ burial mounds (gKDE value: 0.296104); (c) ‘‘deer stones’’ (gKDE
value: 0.256104); (d) rectangular burial mounds (gKDE value: 0.736104); (e) rectangular burial mound
(gKDE value: 0.586104). Shown archaeological features have early to late Bronze Age origins [24, 25].
Global KDE visualizations for each location were scaled down to fit within the tile. Satellite imagery provided
courtesy of the GeoEye Foundation.

doi:10.1371/journal.pone.0114046.g005
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emergence of multi-user agreement to locate features, however the two

populations experience a fundamental difference in how participants evolve a

perceptual understanding of the search target’s potential appearance. Here we

observe the variance of accuracy between collective (feedback) and independent (no

feedback) populations within data containing ancient sites that have since been

validated (ground-truthed). We suggest this can provide some insight into

collective reasoning as it is experienced in distributed systems.

Participant Accuracy

Assuming that each participant’s accuracy is independent and normally

distributed for both the collective and independent populations, we can compute

a mean and standard deviation for both populations and observe any statistically

significant differences between them.

A group of analysts that had physically ground-truthed locations in Mongolia

annotated each image tile that pertained to confirmed archaeological sites by

drawing discrete bounding polygons around anything ‘‘ancient’’. This ‘‘true’’ data

set provides the benchmark from which we can determine participant accuracy.

Tags within the bounds of an ancient site are considered ‘‘accurate tags’’. The

accuracy for a given tile can be calculated as the number of observed accurate tags

normalized by the total number tags for a given population. We calculate this

separately for the tags generated from the two populations (collective &

independent) for 100 tiles that contained one or more confirmed archaeological

sites, the results of which are plotted in Fig. 7.

Applying a simple statistical significance test, we observe a distinct separation

between the two data sets. The median percent accuracy of the collective

population vs. independent population is 23.6% compared to 16.6%, respectively.

Fig. 6. Example False Positives Identification: (a) military tank training trench; (b) nomadic herder’s coral.
Satellite imagery provided courtesy of the GeoEye Foundation.

doi:10.1371/journal.pone.0114046.g006
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This is an observed 42% increase in overall accuracy from those who were

subjected to the incremental peer feedback loop (collective reasoning) over those

who worked in isolation (independent reasoning). Furthermore, of the 100 tiles,

70 tiles show higher accuracies for collective populations over independent

populations.

This suggests that observation based social learning occurs, where a feedback

from one’s peers could impart knowledge that would translate into the next set of

decisions one makes, within a cycle of decisions and feedback, ultimately effecting

the ability of the group. However, Rahwan et al. has recently described a

unreflected copying bias which considers analytical reasoning and one’s tendency to

copy a positive peer outcome rather than the analytical process required to arrive

at that outcome [27]. Even if this is the case, we are depending on the peer

feedback loop to facilitate the emergence of the perceived search criteria,

articulated through points of independent convergence. The ability to predictably

align one’s next input with this convergence is, in our case, what defines a positive

outcome for that individual. Thus, here ‘‘collective reasoning’’ manifests through

the participant’s tracking/contribution of a constantly evolving, peer generated,

search criteria defined by points of convergence.

Fig. 7. Collective vs. Independent Accuracy: Results from crowdsourced surveys of 100 image tiles
containing one or more confirmed archaeological sites are shown as a scatterplot of data points from 0 to 70
(the observed bounds of accuracy) where accuracy is plotted along an individual axis for collective (green)
and independent (red) populations. To highlight the discrepancy between the two populations, we have
indicated the median accuracy for both the collective (23.6%) and the independent (16.7%) populations.

doi:10.1371/journal.pone.0114046.g007
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The variability in the two subgroups (collective vs. independent) indicates that

this is in fact occurring. Furthermore, the reasoning which emerges is statistically

more accurate than the results of individuals who were not shown any form of

feedback. In essence, the pool of global knowledge can be curated at an individual

level through peer based filters that allow us to reason more effectively as a

collective.

Discussion

We have described a crowd based solution to a satellite imagery remote sensing

challenge of both data volume and search target ambiguity. Specifically, we

charged an online crowd of volunteer participants with the challenge of finding

the tomb of Genghis Khan, an archaeological enigma of unknown characteristics

widely believed to be hidden somewhere within the range of our satellite imagery.

This is a needle in a haystack problem where the appearance of the needle is

unknown. To address this constraint we designed a system where participants

actively evolve the collective training base of user feedback with their own inputs.

Furthermore, the framework of the system created a resilient and self-validating

data source through massively paralleled and constrained user inputs. Thus, we

rely upon the emergence of agreement regions from independent tags to guide

both the online volunteer community as well as the field archaeological expedition

that surveyed anomalies on the ground. The entire data set is distributed in

randomly chosen image tile subsets to participants, thus a ‘‘global’’ kernel density

estimation approach is introduced to normalize saliency across all image tiles and

to create an overall agreement region ranking. This concept could be applied as a

distributed voting framework, where overlapping subsets allow for large data sets

to be subdivided and parsed among many voters and then recombined into a

single collective vote.

Of the top 100 accessible locations identified by the crowd, 55 potential

archaeological anomalies were verified by the field team, ranging from bronze age

to Mongol period in origin.

Yet, the question remains: could these results have been obtained just as

effectively or more effectively without crowdsourcing? Or more specifically, could

a small team of trained archaeologist have found the anomalies quickly by visually

scanning the images on their own? After all we did expend 30K hours (3.4 years)

of collective human survey effort.

Looking first at the data size challenge, we have surveyed a historically

significant area of roughly 6,000 km2. This is twice the size of Yosemite National

Park, with equally diverse geologies and significantly greater in-accessibility. A

ground survey of this detail for the entire range would have been prohibitive. Yet,

at 0.5 meter/pixel resolution, a satellite imagery survey of the same area is in itself

exhausting. A single archaeologist would have had to scroll through nearly 20,000

screens (assuming 128061024 screen resolution) before covering the whole area.

Crowdsourcing the Unknown: The Satellite Search for Genghis Khan
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But putting the data size challenge aside for a moment, we can observe the

crowd’s ability to be sensitive yet flexible. We continue to emphasize that very

little is known about the likely visual appearance of the search target. Thus, we

cannot limit our search criteria to what is traditionally ‘‘expected’’ from the

known literature. Here is where the authors believe the power of crowdsourcing

lies not only in harnessing parallel networks for scalable analytics, but in forming

the collaborative frameworks necessary to cultivate collective reasoning. We

depend on the crowd to process and identify the unexpected.

Within our framework we observed that when participants were not provided

the incremental peer based feedback loop they were statistically less likely to

positively identify these anomalies, suggesting a form of collective reasoning has

emerged within our participant pool that is variant and potentially more effective

than the accumulated independent reasoning of individuals within that pool.

Furthermore, while we acknowledge that there may be anomalies that remain

undetected, this statistical variance suggests that largely parallel analytics

(crowdsourcing) can provide better outcomes than an individual survey.

While this study focused on an archaeological survey, there exists a broad range

of challenges where scalable human perception networks could be effectively

applied. These concepts have been further explored in applications ranging from

humanitarian response to search & rescue [28–30]. The activities have not only

tapped into our connectivity to scale human analytics, but also for the social

mobilization of human attention [31, 32]. A recent direct derivative of the effort

described here can be seen in Digital Globe Inc.’s ‘‘Tomnod’’ (Mongolian word

meaning ‘‘big eye’’) survey for the missing Malaysia Airlines flight MH370, where

over 8 million participants surveyed over 1 million km2 of ultra-high resolution

satellite imagery for anomalies. The shear mass of participation in this example

provides a glimpse of the potential of our networked society.

These crowdsourcing activities help us dive into the unknown and extract the

unexpected. However, beyond that they present a fundamentally new construct

for how we, as a digitally connected society, interact with information. The ability

to focus and route networks of human attention at such massive scales, coupled

with the functional ability for meaningful micro-contributions at individual

scales, presents yet another evolutionary step in our collective ability to reason.
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