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Abstract

Evaluation of blood supply of different organs relies on labeling blood with a suitable tracer. The tracer kinetics is linear:
Tracer concentration at an observation site is a linear response to an input somewhere upstream the arterial flow. The
corresponding impulse response functions are currently treated empirically without incorporating the relation to the
vascular morphology of an organ. In this work we address this relation for the first time. We demonstrate that the form of
the response function in the entire arterial tree is reduced to that of individual vessel segments under approximation of
good blood mixing at vessel bifurcations. The resulting expression simplifies significantly when the geometric scaling of the
vascular tree is taken into account. This suggests a new way to access the vascular morphology in vivo using experimentally
determined response functions. However, it is an ill-posed inverse problem as demonstrated by an example using measured
arterial spin labeling in large brain arteries. We further analyze transport in individual vessel segments and demonstrate that
experimentally accessible tracer concentration in vessel segments depends on the measurement principle. Explicit
expressions for the response functions are obtained for the major middle part of the arterial tree in which the blood flow in
individual vessel segments can be treated as laminar. When applied to the analysis of regional cerebral blood flow
measurements for which the necessary arterial input is evaluated in the carotid arteries, present theory predicts about 20%
underestimation, which is in agreement with recent experimental data.

Citation: Kellner E, Gall P, Günther M, Reisert M, Mader I, et al. (2014) Blood Tracer Kinetics in the Arterial Tree. PLoS ONE 9(10): e109230. doi:10.1371/journal.
pone.0109230

Editor: Timothy W. Secomb, University of Arizona, United States of America

Received April 23, 2014; Accepted August 16, 2014; Published October 9, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. Data is available from Dryad under
doi:10.5061/dryad.2b5f7.

Funding: RF was supported in part by National Institutes of Health (NIH) grant 2P01AG003949-26A2. Collaboration between two German groups (VGK and MG)
was partially supported by COST Action BM1103 on ASL in Dementia (AID). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: PG is affiliated with Siemens AG, Healthcare Sector, Erlangen, Germany. This does not alter the authors’ adherence to PLOS ONE policies
on sharing data and materials.

* Email: elias.kellner@uniklinik-freiburg.de

Introduction

Blood flow is a process of fundamental physiological impor-

tance. Today, several imaging modalities of positron emission

tomography (PET), magnetic resonance imaging (MRI) and

computer assisted tomography (CT) are available for its assessment

using different kinds of tracers. Modeling the tracer kinetics in the

vasculature is a pivotal component of these methods. The time-

dependent tracer concentration in blood is described by the

indicator dilution theory introduced by Stewart in his pioneering

work in 1893 [1]. The theory has been validated and refined, in

particular in Refs [2–4] and states the general linear dependence

of the local tracer concentration on its input somewhere upstream.

In observable terms, the tracer transport manifests itself as delay

and dispersion of tracer concentration in the blood stream, which

is described by the impulse response function h(t). In the present

context, we refer to h(t) as the transport function.

Determining the shape of h(t) is the technical focus of

measurement techniques aimed at regional flow estimation [5].

Relation of this shape to the morphology of the vascular system

remains however elusive. As mentioned by Zierler in 2000 [6],

after enough time has been spent ‘‘in a fruitless search for a

mechanism… of delay and distribution’’ the pioneers decided to

treat the vascular system as a black box with only input and output

accessible to observations.

The aim of this work is to shed light on the black box by

analyzing theoretically the form of the transport function, h(t), for

the entire arterial system of an organ. It is known that dispersion of

blood flow occurs already in individual vessel segments due to

dispersion of flow velocities of blood particles. In particular,

treating vessel segments as straight cylindrical tubes with laminar

(Poiseuille) flow results in a simple expression for the transport

function in each segment [7,8]. However, even this simplest case is

controversial; in particular, the results of two cited papers

contradict each other. We resolve this contradiction by demon-

strating that the observed transport function actually depends on

the measurement principle.

We further analyze the entire arterial system with the topology

of a tree. It is obvious that bifurcations disturb the blood flow. We

show that approximating their effect by good mixing of blood

simplifies the problem enormously: The transport function

between two locations in the arterial tree is then expressible as a

convolution of transport functions in individual vessel segments
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connecting these locations. Rationale and limitations of this

approach are discussed in detail.

According to this result, calculation of the total transport

function of the entire tree — from a stem vessel to thin branches

— requires knowledge of flow patterns in all vessel segments,

which is impractical. We show that the amount of required

information can be drastically reduced by using scaling laws that

describe the morphology of the arterial system in statistical terms.

In particular, we analyze the self-similarity model [9] and

Murray’s law of branching [10] of the arterial tree with Poiseuille

flow in its segments. In such a system, the flow velocities

everywhere in the ramifying arterial tree are described by a single

parameter — the flow velocity in the stem vessel — allowing

explicit expression for the total transport of the tree to be obtained.

The established relation between the flow and the morphology

of the arterial tree suggests probing statistical characteristics of

arterial system in vivo using experimentally determined transport

functions. However, it is an ill-posed inverse problem. We

demonstrate this nature of the problem by an exemplary

measurement using MRI for magnetic labeling of water proton

spins in large brain arteries.

We apply the developed theory to MRI measurements of

cerebral blood flow in which the tissue response to the injected

tracer bolus should be normalized to the tracer inflow in the

feeding artery. Due to technical limitations, the latter is commonly

measured in a large artery, which is distal to the tissue of interest.

We show that such measurements underestimate the blood flow by

about 20% in agreement with recent experimental comparison

between MRI and PET.

These results are presented next, followed by Discussion and

Conclusion. The Methods section presents the necessary deriva-

tions and details of the experiment.

Results

Results are formulated in terms of the transport function, h(t),
establishing the linear relation of the tracer concentration time

course, cb(t), at a location b somewhere in the vasculature to the

concentration ca(t) at an upstream location a:

cb(t)~

ð
h(t{t0)ca(t0)dt0:h6ca , ð1Þ

where fl is used as a short notation for the time convolution in

what follows. Figure 1 illustrates the model of the arterial tree used

in this work. The generation number n = 1 is assigned to the stem

vessel, n = 2 to the daughter vessels etc. The arterial tree ends at

capillaries that form a mesh network rather than a tree and are

outside the scope of the present model.

The function h(t) can be understood as the distribution of transit

times of infinitely small blood volumes between the sites a and b.

As any distribution, it is normalized to unity for non-decaying

tracers. Reduction of this norm accounts for tracer decay if any.

Transport in the entire arterial tree
Central approximation of the present model is good mixing of

blood at bifurcations, at least in the statistical sense in large

vascular networks. Good mixing at bifurcations implies statistical

independence between the transit times in two successive vessel

segments. Accordingly, the two-segments transit time distribution

takes the form of the time convolution of the corresponding single-

vessel distributions. Applying this rule iteratively, we obtain the

distribution of transit times for a system of N segments (Fig. 1) as a

convolution chain of distributions for each segment:

h1?N (t)~h1(t)6h2(t)6 . . . hN (t) : ð2Þ

where h1?N denotes the transport function from the beginning of

the first to the end of the Nth segment and hn are the individual

one-segment functions.

Equation 2 is general enough to accommodate any model of the

arterial tree, the only assumption here is good mixing of blood at

the bifurcations. The transport functions for the individual

segments depend on their dimensions and flow velocity. Such

information may be available for large arteries, but the number of

required characteristics rapidly becomes unavailable and intrac-

table when analysis is extended to numerous small arteries. This

suggests utilizing a statistical approach that is based on the

averaged characteristics of small blood vessels. In this spirit, the

arterial tree is often described by scaling laws that characterize

how vessel dimensions and flow change from large to small

arteries. Such relations radically reduce the number of indepen-

dent parameters in the convolution chain in Eq. 2.

We now illustrate this reduction using the Murray’s law [10]

combined with the simplest self-similar model of the arterial tree

[9]. The Murray’s law derives physiological properties of the

arterial system from the principle of minimal work. According to

this law, the blood flow in a vessel is proportional to the cube of its

radius, r. The self-similarity implies that all linear dimensions of

vessels reduce by the same factor with increasing generation

number. In particular, the length of vessel segments, l, scales in

proportion to their radius. A scaling law for the blood velocity, v0,

follows from this scaling and the flow conservation resulting in

proportionality to the vessel radius, v0*r, [10]. The transit time

through vessel segments, t, scales as t*l=v, which is independent

of the vessel radii and thus of vessel generation. We demonstrate

below for the case of laminar flow that this time constant is the

only parameter defining the shape of the transport function.

Under this condition, the convolution chain in Eq. 2 simplifies to a

power in the sense of convolution, h1?N (t)~½h1(t)6�N . This

corresponds to the algebraic power in the Fourier representation

~hh1?N (v)~~hh1(v)N , ð3Þ

where tilde denotes the Fourier transformed functions.

This result represents an enormous simplification: Tracer

transport in large parts of arterial tree in which the flow is

laminar is expressed via transport in a single vessel segment

described below. We proceed now with a demonstration that the

Figure 1. Vascular tree model: The individual segments are
considered as straight cylindrical tubes with rigid walls. The
bifurcations are treated symmetric on average as discussed in the text.
Within this approximation, the present Weibel’s generation numbers
[48], are equivalent to the Horton – Strahler’s order numbers [49,50] up
to the reversed order. Tracer transport from the location a in the stem
segment to a location b is described by Eq. 2 with N = 4 in this example.
doi:10.1371/journal.pone.0109230.g001
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explicit form of the transport function depends on the measure-

ment technique.

Dependence on the measurement principle
Consider two basic ways of measuring the tracer concentration

in a given vessel segment with laminar flow (Fig. 2). The first

measurement class comprises snapshot-type measurements in

which the tracer concentration is assessed instantly in a given

volume of a vessel. Such a measurement can be performed for

instance using properly collimated X-rays to sense the presence of

a radiation-absorbing tracer. The second class encompasses flow-

type measurements which can be imagined by cutting a vessel,

collecting a series of blood samples and measuring the tracer

concentration therein. The concentrations ascertained using these

approaches differ because particles with high flow velocity receive

more weight in flow- compared to snapshot-type. The transport

functions in the convolution chain in Eq. 2 belong to the flow type

because a physical blood mixing at bifurcations is implied.

Transport in a single vessel segment
Tracer inflow in the stem segment defines the initial and

boundary conditions, which are necessary to predict the tracer

flow in the entire arterial tree. Such conditions are straightforward

to obtain in terms of an auxiliary function that describes

propagation of an infinite bolus with a unit tracer concentration.

This initial condition corresponds to labeling blood to the left from

position x = 0 in Fig. 2 at the initial time moment t = 0. As

demonstrated in the Methods section, the observed tracer

concentration at a position x along the segment at time t after

entering the segment takes the following form for the laminar flow

and the snapshot-type measurements:

Hs(t,x)~ 1{
t

t

� �
h t{tð Þ , ð4Þ

where h(:) is the step function, which is zero for negative and unity

for positive arguments and t is the arrival time of the first tracer

particles, t~x=v0, where v0 is the flow velocity in the fastest

central streamline. For the flow type measurements

Hf (t,x)~ 1{
t2

t2

� �
h(t{t) : ð5Þ

Equation 4 and Eq. 5 are obtained for idealized boundary and

initial conditions described above. Realistic blood labeling can be

taken into account using the linearity of the tracer propagation by

adding to the above results the propagation of fictitious auxiliary

volumes with initial concentration c~{1 in the regions with no

labeling. For example, for obtaining the propagation of an initial

labeling at the location x~0 during a time interval Dt, it is

sufficient to subtract from Eq. 4 and Eq. 5 the same functions with

the substitution t?t{Dt. An explicit example of such calculation

for our experiment is given in Methods section.

The tracer concentration for arbitrary rather than rectangular

labeling is similarly obtained by first considering temporal labeling

when a vessel originates from a well-mixed reservoir with a time-

dependent tracer concentration, c0(t). Taking infinitesimal Dt?0
in the above example and using the linearity of tracer concentra-

tion, we obtain

c(t,x)~

ð
h(t{t0,x)c0(t0)dt0:h6c0 , ð6Þ

where

h(t,x)~
L
Lt

H(t,x) : ð7Þ

This is applicable to both Hs and Hf . The transport function h
takes the following explicit form for the radially parabolic

Poiseuille flow:

hs(t,x)~
t

t2
h(t{t) ð8Þ

hf (t,x)~
2t2

t3
h(t{t) ð9Þ

The tracer can also be produced by instantaneous labeling with

arbitrary spatially variable labeling intensity c0(x) along a vessel

segment. This gives the concentration

c(t,x)~

ð
h(t,x{x0)c0(x0)dx0 , ð10Þ

where

h(t,x)~{
L
Lx

H(t,x) ð11Þ

for both Hs and Hf . Note that this h-function is the distribution of

distances travelled in time t rather than the travel time

distribution.

Illustrative experiment
We present here an experiment in which blood transport was

monitored in large brain arteries in a healthy volunteer using

magnetic resonance imaging. The technique of arterial spin

labeling (ASL) is described in Methods section. Such an

Figure 2. There are two different measures for the tracer
concentration in a laminar flow: a) Either by determining the
fraction of the labeled volume (black) in the infinitesimal
measurement volume near x = xm at one time instant (snap-
shot-type) or b) by determining the amount of labeled (black)
and non-labeled fluid which has passed a cross section in an
infinitesimal time interval [t1,t2] and is mixed afterwards (flow-
type). In the first case, all laminae contribute with equal weights,
whereas in the latter they are weighted with their corresponding
velocities, such that the two measurement types lead to different
results.
doi:10.1371/journal.pone.0109230.g002
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observation falls outside the scaling approach described above, but

it illustrates the present theory in application to vessel segments

with known morphology. The results further illustrate the ill-posed

nature of the problem of model selection using indirect measure-

ments such as those typically available with in vivo imaging.

We monitored arterial blood that was labeled in the cervical

arteries 1cm below the skull base. We selected two paths beginning

at the C1 parts of the internal carotid arteries and going

downstream of the left and right middle cerebral arteries with

nearly symmetric bifurcations, Fig. 3.

According to the above principles, the form of the transport

function was predicted along each arterial path in terms of a single

parameter that was the maximum flow velocity in the correspond-

ing stem segment. We used morphological information available

from MRI instead of scaling approach. The so obtained model

included one more additional scaling parameter for the image

brightness in each volume element (voxel) of three-dimensional

image.

For the sake of comparison, we also present results obtained

using two alternative mathematical models of the bolus shape. In

the first, the total transport function h1?N (t) was obtained by

replacing all transport functions in the convolution chain in Eq. 2

with the snapshot-type functions, hs. In the second model,

theoretical prediction for observations was set to Gamma-variate

curve

hC~a(t{t0)n{1e{(t{t0)=bh(t{t0) , ð12Þ

which is widely used to describe any kind of intravascular bolus

passage because this function has a reasonable shape including the

exact zero before the arrival time. We fitted this model to our data

to obtain benchmark for the fitting quality since this extremely

flexible model has four adjustable parameters per voxel including

the normalization factor, a, as explained in Methods.

Figure 4 shows fitting results in different voxels selected as the

worst and the best ones according to the x2 values for each

generation of both paths. The difference between the best and the

worst results is moderate while the overall fitting quality is good

given the visible noise level.

Another test of our model is presented in Fig. 5 in which the

first moment of the bolus time course, StT is shown as a function of

the path length along the arterial for all voxels. The first moment

of the ASL bolus time course is selected as a joint measure of delay

and dispersion. In this case, the delay equals the bolus arrival time,

ta, and the dispersion is characterized by the bolus first moment

calculated when the origin of the time axis is set to the arrival

moment, St{taT. The first moment equals the sum of the so

defined delay and dispersion.

The theoretical model in this figure is given by Eq. 2 with an

additional convolution representing the transport from the last

bifurcation to the measurement site:

h(t)~h1?N (t)6hlast(t) , ð13Þ

where hlast is of the s-type, Eq. 8, in our experiment. When

marching along the arterial path and passing a bifurcation, the

snapshot-type hlast is replaced with a flow-type function for the last

segment (due to physical blood mixing at the bifurcation),

becoming part of h1?Nz1(t) and additional hlast is added to

describe the new segment just after the bifurcation. This results in

a sawtooth-like structure. However, the present experimental data

cannot provide support for this fine effect owing to a relatively

high noise level.

Quantitative results are collected in Table 1. Fit of the proposed

model yields maximum velocities v0~41cm=s in the left and

v0~44cm=s in the C1 segment of the right and left internal

carotid arteries, respectively. This is in a good agreement with the

reported cardiac-cycle averaged peak flow velocity of

v0~38+9cm=s measured with Doppler ultrasound [11]. Several

groups report the systolic peak flow velocities in the internal

carotid artery which are 77cm=s [12], 73+11cm=s in segment

C1 [13] and 83+12cm=s in segment C5 [14]. Analysis of flow

obtained in a large-scale model of carotid bifurcation [15] suggests

that the cardiac cycle averaged flow is about 50% of the systolic

one. With this correction in mind, our results agree well with all

cited data.

Results of fitting alternative models are also shown in Table 1.

The pure snapshot-type model as described above by using

exclusively hs, Eq. 8, instead of hf , Eq. 9, results in a slightly better

fitting accuracy and a flow velocity in the same physiologically

reasonable range. The Gamma-variate model performed similarly

in spite of a much larger number of voxel-related adjustable

parameters (see also the exemplary model comparison in Fig. 6).

Correction of arterial input functions
Perfusion evaluation with many imaging modalities typically has

to rely on arterial input functions (AIF) measured distant to their

theoretically required position. In PET for example, the arterial

tracer concentration can be measured with high precision using

blood sampling. However, the shape of the estimated AIF is

significantly broadened due to transport in the catheter of the

measurement device. The proposed model can straightforwardly

be applied to that system.

In perfusion MRI, it is known that determining the AIF at a

location remote to the tissue leads to underestimation of cerebral

blood flow due to vascular transport effects [16]. We applied the

present theory to measurements of cerebral blood flow with the

Figure 3. Internal carotid and middle cerebral arteries imaged
with MRI. In both hemispheres a track with symmetric bifurcations was
selected. Segments between bifurcations are shown with different
colors. Model of tracer transport was specified for the left and right
arteries up to unknown velocities in the stem segments (colored in red)
using Eq. 2. The stem velocities were found by fitting the model to
measured time-resolved passage of labeled blood in the arterial paths
shown in colors.
doi:10.1371/journal.pone.0109230.g003
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AIF determination in the carotid arteries. As explained in

Methods, this indicates an underestimation of the blood flow by

approximately 20%, which is in line with the MRI – PET

comparison in the porcine model [17].

Discussion

Summary of the Model
We present here a model of tracer dilution during its transport

through the arterial tree. For the conventional injection of tracer,

the model is formulated in the framework of a transit time

distribution. The kernel distribution function is found explicitly for

the laminar flow in cylindrical vessel segments.

Figure 4. Fitting results for both arterial paths shown in Fig. 3. For each segment (colors from Fig. 3) worst (left columns) and best (right
columns) fits are shown.
doi:10.1371/journal.pone.0109230.g004

Figure 5. First moment of ASL bolus vs arterial track length for the left and right hemisphere (colors from Fig. 3). Note that the
prediction from theory (solid line) is not a fit in this representation but was determined from the optimal v0 for the proposed hf model (Table 1). The
mixing at bifurcations is reflected in the sawtooth structure of the line.
doi:10.1371/journal.pone.0109230.g005
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We draw attention to the dependence of the measured tracer

concentration on the measurement type and discuss two of them:

(i) a snapshot type when the tracer concentration is measured

instantly in a given volume and (ii) a flow-type when the tracer

concentration is evaluated at a given location during a time

interval. The snapshot-type refers to the apparent mean concen-

tration in a vessel lumen containing simultaneously different local

concentrations whereas the flow-type describes a true mixing of

the fluid at a given location.

As a general note, the common interpretation of h(t) in Eq. 1 as

the transit time distribution does not specify this function

unambiguously. The remaining freedom is selection of population

of tracer particles contributing to the distribution. The two

measurement type discussed in this study realize two possible

choices of such a population.

Vessel bifurcations essentially complicate the overall transport

process. We show that the approximation of a good mixing at

bifurcations simplifies the problem enormously so that the overall

transport is reduced to a combination of the transport functions of

individual segments via a convolution chain, Eq. 2. The good

mixing implies that upon averaging over many typical bifurca-

tions, the blood particle velocities before and after the bifurcation

are statistically independent. The combination of this model with a

scaling model of the arterial tree results in an extremely simple

description of transport in such a tree.

Representation of the transport kernel in the form of a

convolution chain, Eq. 2, suggests convenient temporal charac-

teristics of the tracer bolus selected by their mathematical

properties. First, the arrival time t is additive in the convolution

being equal to the sum of arrival times in each individual segment.

So is the mean transit time, StT, which is the first moment of the

distribution h1?N . The difference StT{t characterizes the bolus

dispersion and is obviously additive.

Note that the distribution of transit times for a parabolic velocity

profile has a long tail, which decreases as 1=t2 for hs or 1=t3 for hf

due to the low fluid velocity near the vessel wall. This results in the

non-existence of the mean transit time for the snapshot-type

measurement which is the first moment of this distribution. In

practice, this does not create a problem for the conventional tracer

kinetics, Eq. 1, including the central volume principle because this

framework implies the flow-type measurements.

The snapshot-type transport was confirmed with a high

accuracy in our previously reported experiment [18] in which

the tracer concentration was measured using bolus-tracking MRI

in a hose that was attached to a mixing reservoir with a known

concentration time course.

Limitations and perspectives
The assumption of good blood mixing at vessel bifurcations is

central for the presented description of the entire vascular

network. It should be understood in the statistical sense as the

absence of correlations in the blood particle velocity before and

after the bifurcation after averaging over the entire vasculature.

This is feasible in view of the variability of the precise vessel shape

at bifurcations, but a proper verification involving computational

fluid dynamics remains a subject of future research.

Good mixing only applies for bifurcations with nearly equal

calibers of daughter vessels. Such bifurcations are relevant for the

terminal distribution rather than long-distance delivery part of the

tree when the vessel caliber is related to the length of its crown

formed by all daughter vessels [19]. In contrast, small offsprings of

larger long-distance-delivery arteries receive the slowest blood

flowing close to the vessel wall. A possible way to take such

bifurcations into account is to introduce an effective reduction in

blood flow along vessels involved in the long-distance blood

transport.

The statistical distribution of blood flow in small arteries is

shown to approach log-normal due to cumulative effect of

asymmetric flow splitting at bifurcations [20]. This derivation

ignored other sources of dispersion such as one within vessel

segments which is the focus of the present study. Incorporation of

the uneven flow distribution at bifurcations in the spirit of Ref.

[20] is a straightforward future extension of the present work.

Closed-form expressions for the transport functions are obtained

for the steady laminar flow in cylindrical vessel segments. This

assumption is violated at both ends of the arterial tree. First, blood

Table 1. Fitted maximal velocity, v0, in the internal carotid artery and x2 for different models (arbitrary units on common scale).

Model left right

hf v0 41 cm/s 44 cm/s

x2 300 280

hs v0 52 cm/s 45 cm/s

x2 230 270

Gamma-variate v0 n.a. n.a.

x2 170 252

The Gamma-variate model does not include v0 as a parameter.
doi:10.1371/journal.pone.0109230.t001

Figure 6. Comparison of different models for one voxel.
doi:10.1371/journal.pone.0109230.g006
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flow in the largest stem arteries is pulsatile. The effect of pulsations

on cerebral blood flow measurements has been discussed in [21]

and [8]. Gallichan et al. [8] concluded that averaging over

multiple heart cycles without cardiac gating closely matches the

concentration curves obtained with steady flow.

Second, flow is not laminar in the smallest arteries due to the

presence of red blood cells as is well known in rheology [22,23].

Erythrocytes disturb plasma flow resulting in an effective mixing.

These effects can be neglected in vessels with large radii, R, such

that R&LRBC , where LRBC&7mm is the size of erythrocytes.

Further, the tracer kinetics is affected by diffusion in the direction

transverse to the flow [24]. This effect is maximal when water itself

serves as tracer for which case we perform the following estimate.

Water molecules diffuse over a typical distance
ffiffiffiffiffiffi
Dt
p

, where D is

the diffusion coefficient and t is the time available for diffusion.

The derived transport function can be considered valid as long as

this distance is much shorter than the vessel lumen. Using

D~3mm2=ms and t*t, where t~100ms is the transit time

through a single vessel segment we obtain a limitation for the

vessel radius R&17mm. Note that below this limit, when lateral

motion effects are dominant, the difference between the snapshot-

type and the flow-type measurement disappears.

Summarizing these limitations, the proposed model is applica-

ble to the major middle part of the arterial tree between the largest

cerebral arteries and the smallest arterioles. In particular one can

apply it to describe blood transport from large arteries, which are

still resolvable in MRI, PET or CT images to those with the length

comparable to the voxel size of about a millimeter.

The model for the vasculature derived from the scaling rules is

certainly an oversimplified perspective onto the human brain

vasculature. A more realistic description is available for smallest

vessels [19,25–28] and for broader range of vessel diameter [29].

Deviations from Murray’s law have been addressed in several

studies [19,27,30,31]. Some diversity in reported results should be

understood in view of different species and organs investigated.

The present framework can incorporate scaling models of

microvasculature by systematic parameter change along the

convolution chain in Eq. 2 and Eq. 13. A more challenging

problem is to extend the present model to small vessels with

account for realistic rheology and transverse diffusion.

A challenge of accessing vascular morphology using
tracer kinetics

In spite of the limited applicability to large vessels, our model fits

well the data obtained using arterial spin labeling. With its single

adjustable parameter per voxel and one global per artery, the

model yields reasonable cerebral blood flow velocities in the

middle cerebral artery when the distal part of the internal carotid

artery is used as stem vessel [11–14].

This model described the data only slightly worse than the very

flexible Gamma-variate function with its four parameters per

voxel. This suggests that the fitting accuracy is limited by the noise

present in data: More flexibility in the fitted function does not

result in a substantial reduction in x2 as long as overfitting does not

take place. Beyond the smaller number of parameters, an

advantage of the present model is a clear biophysical meaning of

these parameters, while the parameters of the Gamma-variate

function are not straightforwardly interpretable.

On the other hand, the good fitting quality of the proposed

model cannot be automatically inverted to a conclusion about its

validity. This is demonstrated by replacing the main building block

of our model, hf , with hs, Eq. 8 and Eq. 9, which resulted in a

slight decrease in x2. A good fitting quality of such hs model

without account for vessel bifurcations has been reported also in

Ref. [8].

Such ‘‘fitting tolerance’’ can be understood in view of the fact

that the expected bolus dispersions using hf and hs differ only

slightly after passing through few bifurcations, but the difference

accumulates for large arterial trees all the way to the capillaries.

This suggest that a proper validation may be performed by

measuring blood flow in a larger number of smaller vessels, that is

for higher generations within the arterial tree. Such a verification

still remains a challenge, although the results presented here

encourage to face it. The outcome may be a new approach to in

vivo examination of statistical microvascular morphology.

Correction of arterial input functions
The present model predicts an underestimation of cerebral

blood flow of about 20% due to measuring an arterial input

function at a location distant to the tissue of interest. This agrees

well with our recent comparison between MRI and PET in the

porcine model [17] and other studies on cerebral [32,33] and

myocardial perfusion [34]. A correction for this effect appears

feasible in normal tissue, but problematic in thrombotic or embolic

stroke in which case the disturbance of blood flow depends on the

location of the arterial occlusion, see e.g. Ref. [35] for a discussion.

Conclusions

Two findings are reported here. First, we have shown that

experimentally measured tracer concentration in a vessel segment

depends on the measurement type and we derived an explicit new

form of the transport function for the case of blood collected at an

end of a straight cylindrical vessel. Second, we have shown that the

approximation of good blood mixing at vessel bifurcations results

in a drastically simplified description of the entire arterial tree with

explicit results for the case of its self-similar structure. Arterial spin

labeling measurements in large brain arteries support the

developed model although are not sufficient for an unambiguous

verification. Application of this model to cerebral blood flow

measurements with a distal arterial input function suggests a 20%

underestimation of blood flow, which is in agreement with a recent

comparison of cerebral perfusion evaluations with MRI and PET.

Methods

Transport in a single vessel segment
We present here a derivation of Eq. 4–Eq. 11. The transport

function of a segment between bifurcations is determined by the

distribution of fluid velocities in the vessel cross-section, p(v). This

distribution is uniform for Poiseuille flow p(v)~1=v0 for 0vvvv0,

where v0 is the maximal flow velocity in the central streamline,

and zero otherwise (Fig. 7).

Figure 7. Laminar flow in a cylinder forms a radially parabolic
velocity profile for which the distribution of velocities is
uniform in the interval 0vvvv0. The mean flow velocity is v0=2.
doi:10.1371/journal.pone.0109230.g007
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Snapshot-type measurements take place when the concentration

is measured at time t in a small volume at position xm as in Fig. 2

a). The fluid is not really mixed in this case and the concentration

of the tracer must be understood in the average sense: The amount

of tracer inside the volume element divided by its volume. That is,

the average tracer concentration Hs(t,x) is determined by the

volume fraction of the central part of the paraboloid in Fig. 2 a), in

which the tracer with initial concentration c~1 has already

arrived:

Hs(t,x)~

ð
h v{

x

t

� �
p(v)dv : ð14Þ

The step function h(:) under the integral ensures that only particles

with velocities greater than x=t contribute to the concentration.

The measurement position x enters the result via the ratio

t~x=v0. Substitution of p(v) with the uniform distribution results

in Eq. 4.

Flow-type measurements take place when the fluid is physically

mixed (e.g at a bifurcation). The tracer concentration is given by

the ratio of the amounts of tracer and blood that have crossed a

selected vessel cross-section by the time t as in Fig. 2 b). The

resulting tracer concentration, Hf ,

Hf (t,x)~

Ð
h v{x=tð Þvp(v)dvÐ

vp(v)dv
: ð15Þ

Substitution of p(v) with the uniform distribution results in Eq. 5.

Consider a vessel originating from a well-mixed reservoir with a

time-dependent tracer concentration, c0(t). First, let c0(t) be a

rectangular pulse with a unit height and a duration from t~0 to

t~Dt. The trailing edge of the label is introduced by propagating

fictitious volume with label concentration set to c~{1 at the

labeling site after t~Dt:

c(t,x)~H(t,x){H(t{Dt,x) : ð16Þ

Taking the limit Dt?0 and summing over all time moments

weighted with the corresponding c0 results in Eq. 6 and Eq. 7.

The labeling can also be performed spatially by instant labeling

of blood. Consider first labeling applied on an interval

{Dxvxv0. The absence of labeling at xv{Dx is described

by propagating a fictitious volume with label concentration set to

c~{1 for all xv{Dx. This gives the concentration

c(t,x)~H(t,x){H(t,xzDx) ð17Þ

for both Hs and Hf . Locating initial labeling near a point x0

instead of x~0 results in replacing x with x{x0 in the above

expression. The tracer concentration for an arbitrary initial profile

c0(x) results now from considering infinitesimally small Dx?0,

and summing the resulting concentrations for different locations,

x0, of so obtained thin slices weighted with the initial spatial

concentration profile. This results in Eq. 10 and Eq. 11.

Note that injection of a contrast agent, as well as the mixing

process in a reservoir correspond to a temporal labeling. With

ASL, the tracer is blood itself, in which magnetization of water

protons is manipulated using radio frequency pulses. With this

technique, the labeling can be performed both temporally

(continuous ASL) and spatially (pulsed ASL). In this context, the

explicit form of Eq. 17 has previously been reported for the case of

the snapshot-type measurement [8].

ASL Measurement and data processing
We performed a measurement in a healthy volunteer in

accordance with the Helsinki Declaration of 1975. The study

was approved by the local ethical board of Fraunhofer Institute for

Medical Image Computing MEVIS and the volunteer gave

written consent. Magnetic resonance was used to label arterial

blood in the cervical arteries and to image it in the brain volume

with 60 time steps starting at TI~100ms with an increment of

50ms with a nominal spatial resolution 2:5|2:5|4mm3.

Morphological information was obtained using MRI time-of-flight

angiography (3D-TOF-MRA) with a nominal spatial resolution

0:26|0:26|0:62mm3.

Modeling the blood flow begins with a description of the excited

ASL bolus. In our implementation, excitation of the initial slab

(crf. Eq. 17) is followed by a cut-off pulse after 500ms (crf. Eq. 16).

The ASL bolus is described by linear combinations of functions

given in Eq. 17 and Eq. 16 according to the initial and boundary

conditions (explicit analytical description is given below). The

present measurement of blood magnetization belongs to the

snapshot type, which implies the use of Hs functions, Eq. 4. After

the first bifurcation, the functions Hs, are replaced with Hf , Eq. 5

to account for the mixing at the bifurcation. The transport

function in the second vessel segment is obtained via a convolution

with hs according to Eq. 13. The factor hs turns in hf , Eq. 2

immediately after the next bifurcation. Continuing this procedure,

we build a model for the selected part of the arterial tree.

To reduce the number of model parameters, we relate the flow

velocity in the daughter segments at each bifurcation to the

velocity in the parent segment using the flow conservation, the

measured segment cross-sectional areas and assuming the

Poiseuille flow with equal flow splitting at symmetric bifurcations.

Hence, the flow velocities in all segments are recursively

determined by the velocity in the stem segment. With the known

segment dimensions, the flow velocities are related to the time

constants tk that actually define the shape of the transport

functions in Eq. 2. Thus the maximal flow velocity in the stem

vessel is the only parameter to be determined from experimental

data. Finally, relaxation of the water protons spins is accounted for

by a factor e{t=T1 with T1~1500ms, the longitudinal relaxation

constant of blood at 3T [36–38]. The resulted transport functions

are shown in Fig. 8.

The maximum velocity in each stem artery was determined by

minimizing x2:

x2~
X

a

ð
(aa(t){gaca(t,v0))2dt , ð18Þ

where a counts voxels within the selected arterial path, aa(t) is the

measured signal time course, ca(t,v0) is the theoretical curve and

ga is a scaling parameter. The latter is in principle global for the

whole data set reflecting its arbitrary brightness scale, but the

presence of partial volume effect, some cross-talk between image

voxels and other imaging artifacts suggest treating it as a local

parameter. Minimization with respect to ga was performed

analytically. Our model, thus, includes ga as a single parameter

per voxel in addition to one global parameter v0 per arterial path.

Model for ASL Measurement. We describe here a model

for our ASL experiment. The evolution of a pulsed arterial spin

labeling (PASL) bolus can be described by Eq. 17 in the main text.

However, the bolus excitation included an additional saturation

pulse applied to the labeling region in order to define a certain

bolus duration. The saturation reduces the magnetization of

already labeled blood with an efficiency of a~80{90%, but does
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not affect non-labeled blood. The most straightforward way to

describe the initial bolus is to decompose the necessary initial

conditions in a sum of instant labeling in a half-infinite interval to

different time moments. This gives the corresponding combination

of H-functions for the ASL bolus, b(t,t) as illustrated in Fig. 9:

b(t,t)~H(t,x){H(t,xzL)

{a H(t{tc,x){H(t,xzL)½ �
ð19Þ

where L is the length of the initially excited bolus and tc is the

bolus duration. This equation is applicable to both the snapshot

and the flow-type measurements.

For the snapshot type measurement Eq. 19 takes the explicit

form

bs(t,t)~

0 tvt

1{
t

t
tcztwt§t

1{
t

t
{a 1{

t

t{tc

� �
tbztwt§tczt

1{
t

t
{a 1{

t

t{tc

� �

{ 1{að Þ 1{
tztb

t

� �
t§tbzt ,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð20Þ

where tb~L=v0. This expression has been first obtained in [8] for

the case a~1. As discussed in the main text, the function Hs, Eq.

4, in Eq. 19 and Eq. 20 are to be replaced with Hf , Eq. 5 after the

first bifurcation. Explicitly, this implies replacing t=t in Eq. 20 with

t2=t2 and making analogous substitutions for other entries of time.

The recursive determination of the transport functions in

successive segments relies on the expression Fk~Akvk=2 for the

flow in the k’th segment with a parabolic velocity profile. Here Ak

is the segment cross-sectional area and vk is the central streamline

velocity. The travel time in this streamline is the time constant

tk~lk=vk, where lk is the segment length. The conservation of

flow relates the tk of each child segment to its parent:

tk~2lkAk=(Ak{1vk{1) for symmetric bifurcations. The only

undetermined parameter is the time constant t0 (or the

corresponding velocity v0) in the stem segment.

Data processing. All data processing was performed using

MATLAB (Mathworks, Natick, USA). To segment the vascular

tree, the TOF images were thresholded and a flood-fill algorithm

was applied with the internal carotid artery as a seed point. There

are numerous strategies for automatic tracking of vessels [39].

However, because we want to test the model under controllable

conditions, the bifurcation detection and vessel tracking was

performed semi-automatically. First, symmetric bifurcations were

identified downstream of internal carotid arteries in each

hemisphere. The path between the selected bifurcations was then

found automatically by following the center of mass of the

segments. The track length and the volume of each segment were

calculated by counting the number of contained voxels. The cross

sectional area was computed by dividing this volume by the length

of the segment. With this morphological information tk for each

segment was calculated as described above. The voxels of the

segmentation were mapped to the ASL measurement with coarser

resolution and the measured time series of the ASL signals were

used for further data processing.

Evaluation of transport effect on arterial input functions
Assume that an arterial input function is measured in common

carotid arteries for evaluation of cerebral perfusion. The effect of

such a distal measurement is a replacement of the tissue residue

function, R(t), with a convolution with a transport function, h(t),
describing the blood transport from the measurement site to the

tissue, R(t)?h(t)6R(t). According to theory, the quantity defined

from measurements is the product FR(t), where F is the blood

flow. Using the theoretical property R(0)~1, one finds F . In

practice, the residue function is smoothed and one uses its

maximum as an estimate for the magnitude at the initial time

moment. Our numerical simulations indicate an about 20%

Figure 8. ASL Model (without T1 relaxtion correction): Concen-
tration time curves at 4 different positions in the vascular tree.
The evolution of the ASL bolus from the labeling region A to a
measurement volume V is given with the convolution chain
b(t)6hf (t,l1)6hf (t,l2)6hf (t,l3)6hs(t,xlast), where b(t) is the ASL bolus
(1), the lk are the vessel segment lengths and x is the distance from the
bifurcation in the last segment (4). The shape of hf (t,lk) (2,3) is actually
defined by the time constants tk .
doi:10.1371/journal.pone.0109230.g008

Figure 9. Formation of the ASL bolus: The bolus is initially
created with a defined spatial length (a) and evolving (b). After
time tc , an additional saturation is applied to create a bolus with a
defined temporal duration, where only previously inverted magnetiza-
tion is affected. As the saturation efficiency is only a~80{90%, there is
still a contribution from the initial excitation, now with the weight 1{a
(c). Thus, the labeling process creates two different compartments
which are evolving further (d).
doi:10.1371/journal.pone.0109230.g009
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reduction in the height of R(t) due to the transport effect, which

becomes the underestimate of blood flow in the standard data

processing.

The effect magnitude can be understood in simple terms using

the following estimate. First, note that the convolution with the

transport function does not change the time integral of R(t); some

broadening of the function’s shape is compensated by a reduction

in its height. The observed blood flow is thus inversely

proportional to the width of R(t). The latter can be estimated as

the first moment
Ð

tR(t)dt, which equals the second moment of the

underlying transit time distribution within the capillary bed of

investigated tissue, St2
tissueT. Applying this to the genuine R(t) and

to h(t)6R(t) and using the fact that first moments are additive in

convolutions, we obtain

Fapp

Ftrue
*

St2
tissueT

St2
tissueTzSttissueTStvascT

*
SttissueT

SttissueTzStvascT
, ð21Þ

where Ftrue and Fapp are the genuine and the apparent blood flow,

respectively, SttissueT is the width of R(t) (the tissue mean transit

time) and StvascT is the width of h(t) defined as its first moment.

The replacement of the second moment of transit time in tissue

with its first moment squared is exact for exponential residue

functions. For other shapes, it is understood as an order-of-

magnitude estimate.

We do not possess data for these times, but they can be

estimated using the scaling model of the arterial system. We

assume a reduction in the arterial diameter from 5mm to 10mm
for the carotid arteries and the smallest arterioles, respectively.

This results in 27 vessel generations when each generation gets the

factor 21=3 smaller than the previous one according to the

Murray’s law. So does the vessel segment length. The true arterial

input can be defined as the tracer concentration in arteries that are

as long as the imaging voxel, for example 2mm for MRI perfusion

measurements. Assuming the length 10cm for the largest cerebral

arteries in which the arterial input is measurable, we obtain 17

generations between them and the true arterial input.

For an estimate of the time constants of the segments we need

the flow velocity. An estimate is obtainable from our results for the

selected arterial paths although the scaling is hardly applicable to

the large arteries. The fitting results shown in Fig. 4 give 560ms
for 5 generations and 400ms for 4 generations for the left and

right paths, respectively. The mean is 106ms per generation. This

gives 1:8s and 2:9s for the arrival time to the location of the true

arterial input and to the vascular bed, respectively. Note that

although very approximate, this estimate gives a reasonable blood

velocity in the capillaries, which can be estimated using the

velocity of red blood cells 0:5 { 1:8mm=s in rats [40] and

2:1+0:8mm=s in cats [41]. Using v1~42cm=s as the mean for

both arterial paths, we obtain v27~0:8mm=s after 27 vessel

generations.

Using the above estimates, we obtain StvascT~1:8s for 17

generations. This is 23% of the average mean transit time of about

8 sec, which we recently measured in the porcine model [17]. This

indicates an underestimation of the blood flow by approximately

20%, which is in line with the MRI – PET comparison of the same

study. In humans, reported values for the mean transit time are

generally lower, between 3 and 6 s [42–45]. In this case, the

underestimation is greater, accounting for about 35% of the true

flow. This is in the same range as the values usually reported in

other simulation studies [46,47].
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