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Abstract

Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and
subsequently associating those individuals with the populations from which they arose. Analytical methods that assign
individuals to their putative population of origin have utility in both basic and applied research, providing information
about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic
ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the
ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to
a population of origin and study properties of the trait among individuals within population strata as if they constituted
independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait
inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population
mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual
assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual
assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the
individual assignment method provided a less complex analytical technique whose performance may be adequate for some
common trait inference problems. Our results provide specific guidance for method selection under various genetic
relationships among populations with different trait distributions.
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Introduction

The widespread implementation of highly polymorphic genetic

markers has opened important new avenues in ecological genetic

studies. For example, it is now possible using genetic stock

identification (GSI) to accurately allocate a mixture of unknown

individuals to probable source populations, either as individuals or

as modeled proportions by using a baseline data set of genetic

information from individuals of known origin [1,2]. The power of

these methods is remarkable and is generally only limited by the

discriminatory power of the reference baseline to which unknown

individuals are compared.

There is much current interest in assignment of individuals to

population of origin [3], and this new suite of powerful genetic

tools has gained widespread ecological utility in the research and

management of Pacific salmon (Oncorhynchus spp.). These studies

are possible because of the availability of powerful, range-wide,

genetic baseline data. Numerous genetic baselines have been

developed to support mixed fishery applications for harvest

management. For example, a large interagency collaboration,

the Genetic Analysis of Pacific Salmonids (GAPS) consortium,

recently produced a shared, standardized, microsatellite baseline,

data set for Chinook salmon (O. tshawytscha) that nearly covers the

species range [4].

The availability of these genetic baseline data sets has sparked

considerable interest among ecologists and oceanographers who

recognize that genetic information from mixed fishery samples can

be used to infer population-specific ecological traits among

sources. Most applications of individual assignment (IA) relate to

study of genetic structure, connectivity and estimation of

population genetic metrics and parameters [5]. However, more

novel ecological applications include investigation of body burden

of ecotoxic compounds [6], parasite loads [7,8], ELISA or qFAT

values [9], and habitat use [10]. These methods have even found

use in killer whale (Orcinus orca) trophic studies of predation on

specific Chinook salmon populations [11]. Hereafter we refer to

‘‘ecological or phenotypic trait’’ or simply ‘‘trait’’ to identify the

specific characters we studied (Chinook salmon fecundity and

disease prevalence). A diverse array of possible character traits are

amenable to our approach. Our goal was not to relate genotype to

phenotype. Rather, we used genetic information to infer popula-

tion of origin and then estimated the distribution of the phenotypic
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Table 1. Populations and reporting groups used as baseline for Puget Sound Chinook salmon individual assignment and mixture
modeling for inferring group-specific BKD infection rates.

No. Population Reporting group Group No.

1 Birkenhead Fraser and Thompson 1

2 Maria Slough Fraser and Thompson 1

3 Chilliwack Fraser and Thompson 1

4 Nicola Fraser and Thompson 1

5 Spius Fraser and Thompson 1

6 Chilko Fraser and Thompson 1

7 Nechako Fraser and Thompson 1

8 Quesnel Fraser and Thompson 1

9 Stuart Fraser and Thompson 1

10 Chilcotin Fraser and Thompson 1

11 Clearwater Fraser and Thompson 1

12 Deadman Fraser and Thompson 1

13 Louis Fraser and Thompson 1

14 Raft Fraser and Thompson 1

15 Lower Adams Fraser and Thompson 1

16 Lower Thompson Fraser and Thompson 1

17 Middle Shuswap Fraser and Thompson 1

18 Morkill Fraser and Thompson 1

19 Salmon Fraser Fraser and Thompson 1

20 Swift Fraser and Thompson 1

21 Torpy Fraser and Thompson 1

22 Nooksack Nooksack 2

23 Lower Sauk Whidbey Basin 3

24 Marblemount Spring Whidbey Basin 3

25 Marblemount Summer Whidbey Basin 3

26 NF Stilliguamish Whidbey Basin 3

27 Upper Skagit Summer Whidbey Basin 3

28 Skykomish Whidbey Basin 3

29 Silliguamish Whidbey Basin 3

30 Suiattle Whidbey Basin 3

31 Cascade Whidbey Basin 3

32 Upper Sauk Whidbey Basin 3

33 Skykomish H Summer Whidbey Basin 3

34 Lower Skagit Fall Whidbey Basin 3

35 Skykomish R Summer Whidbey Basin 3

36 Upper Sauk R Spring/Summer Whidbey Basin 3

37 Samish South Sound Fall 4

38 Snoqualmie South Sound Fall 4

39 Clear Cr South Sound Fall 4

40 S Prairie Cr South Sound Fall 4

41 Soos Cr South Sound Fall 4

42 Voights Cr South Sound Fall 4

43 Bear Cr Summer/Fall South Sound Fall 4

44 Cedar R Summer/Fall South Sound Fall 4

45 Grovers Cr H South Sound Fall 4

46 Issaquah Cr Summer/Fall South Sound Fall 4

47 Nisqually R Summer/Fall South Sound Fall 4

48 UW H Summer/Fall South Sound Fall 4

49 George Adams Hood Canal 5
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trait (genetic or non-genetic) in the reporting groups of interest

(where a ‘‘reporting group’’ is an aggregate of genetically similar

biological populations [4], see Materials and Methods).

The current general approach of trait inference studies is to

sample individual animals in mixed-population aggregates, use

genetic information to assign individuals to source populations (for

which their posterior probability is maximal), and then treat their

ecological traits as a representative sample of those traits in in the

reporting groups contributing to the mixture, e.g., [12]. Some

ecological or phenotypic traits, such as fecundity, can be directly

studied by sampling individual populations; however, time and

resources can be saved by inferring the traits from mixture samples

already collected and genotyped as part of routine harvest and

bycatch management. There is also sometimes the goal to study

traits in life stages where animals are in mixed population

aggregates (e.g., during dispersal or migration). Given the

increased use of genetic data for this purpose, investigation is

warranted into the utility of more powerful analytical alternatives

that use more of the available information and more realistically

incorporate uncertainty, e.g., [13].

Despite the significant power provided by many contemporary

genetic baseline data sets, (e.g., the GAPS-Chinook, microsatellite

baseline [4]) uncertainty in IA remains a thorny issue for studies of

this kind. In most studies, individual animals have excellent data

quality (typed for all or nearly all loci, i.e., little missing data) and

assign with high probability to their putative population of origin.

However, some fraction of individuals may have missing data for

some loci, low assignment probabilities, or both, and there is

always some assignment error, even among highly distinct

populations. In these cases, investigators sometimes omit individ-

ual fish with these ‘problems’ by, for example, removing fish typed

for fewer than some number of loci, or whose highest assignment

probability to reporting group is below 0.8 [9,12] or some other

predetermined value. The logic is that individuals with uncertain

origin – for whatever reason – will reduce estimation accuracy and

precision. Moreover, individuals that fail to produce reliable

genotypes for most loci probably reflect poor tissue quality

resulting in degraded DNA and less confidence in the few

genotypes that are produced. This filtering should still produce

unbiased mixture proportion estimates if omitted individuals are

randomly distributed among potential source populations. That

assumption is probably valid for individuals with poor data quality

in mixture studies, i.e., animals that fail to genotype are not likely

to come predominantly from a single population. Instead

genotyping failure is generally due to degraded, low-molecular-

weight DNA, PCR inhibitors, etc. and is more likely related to

collection of the mixture sample, rather than the source

populations that contribute to the mixture. Even so, discarding

data reduces sample size and potentially estimation precision.

Moreover, it would seem desirable to retain samples that have

high assignment probability despite being typed for few loci, as

long as those few genotypes are confidently scored.

The omission of individuals with uncertain assignment can bias

estimates of mixture composition and potentially trait estimates as

well. The relative probabilities of assignment are in part a function

of how reporting groups are defined. The reporting groups are

higher-level aggregates of populations. IA or fractional allocation

(see below) is first made at the level of populations, and then those

assignment probabilities are combined to the higher-level report-

ing groups (e.g., ‘‘stocks’’ in fisheries, ‘‘management units’’ in

wildlife, etc.). Bias will be minimized when the reporting groups

closely reflect the patterns of genetic relatedness among popula-

tions. However, research hypotheses or management questions

may require genetically similar stocks to be placed in different

reporting groups. Reporting groups that are not clearly distin-

guished genetically result in lower probabilities of assignment to

true reporting group of origin because assignment probability may

be split between genetically similar reporting groups. Those split

probabilities can result in omission of that individual fish if no

single assignment value exceeds the minimum probability thresh-

old, e.g., 0.8. Even if the reporting groups were genetically distinct,

the distribution of assignment probabilities will differ among stock

groups, and omission of individuals on that basis could bias stock

composition estimates. This bias may or may not extend to

estimation of population-specific phenotypic and ecological traits

depending on reporting group structure and trait distribution.

Researchers generally assume the trait of interest varies indepen-

dently from assignment probability, minimizing any bias in trait

estimation, even in the presence of mixture composition bias. The

current study explores potential violations of that independence

when using different analytical models and under different

distributions of the trait value and genetic similarity.

Early applications of genetic markers used allozyme loci, whose

low diversity largely precluded accurate IA. For that reason,

research focused on the development of models that allowed direct

estimation of the parameters of primary interest at the time, which

was mixture composition in fisheries that included multiple source

populations and regions [2,14–16]. The primary advantages of

mixture models over IA are twofold. First, mixture models

facilitate direct estimation of stock composition proportions,

without the need to first estimate population membership through

individual assignment (with an unknown degree of estimation

error) and then condition on those estimates as if they were real

observations in source populations, made without error. Second,

all information contained in a mixture sample is utilized by the

mixture model, including the true uncertainty in estimation. The

resurgent interest in IA was largely fueled by increased power of

highly polymorphic microsatellite loci and more recently single

nucleotide polymorphisms (SNPs). As genetic baselines continue to

improve with the addition of more potential source populations

and implementation of more genetic markers, one can expect

Table 1. Cont.

No. Population Reporting group Group No.

50 Hamma Hamma Hood Canal 5

51 NF Skokomish Hood Canal 5

52 SF Skokomish Hood Canal 5

53 Hupp Sp South Sound Spring 6

54 White R H South Sound Spring 6

doi:10.1371/journal.pone.0098470.t001
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differences to diminish between mixture model estimates and

estimates that condition on preliminary IA. Even so, mixture

modeling will continue to enjoy the strongest theoretical founda-

tion and some degree of superior statistical performance as long as

uncertainty exists in IA [3,17].

In this study, we seek the same statistical robustness for

ecological and phenotypic trait inference that has been demon-

strated for mixture modeling as compared to IA. We extend the

Bayesian genetic mixture model to incorporate parameters

associated with phenotypic traits. The conditional maximum

likelihood (CML) model of Bromaghin et al. [13] is incorporated

into a Bayesian framework. Again, the conceptual advantage of

this approach is the utilization of all available information in a

mixture sample, along with its uncertainty, and minimizing

potential biases stemming from conditioning on prior estimates

of population membership. The performance of the Bayesian

mixture model (BMM) is assessed through comparison with that of

IA using the maximum a posteriori (MAP) rule [17]. Under the

MAP rule, we assign the individual to the group of source

populations for which the posterior source probability is maximal,

with application of various minimum probability thresholds.

To achieve the overarching goals above, we consider two

diverse example applications, reanalyzing recently published data

in light of simulation results. Finally, we make recommendations

for specific methods based on their performance under various

distributions of the ecological/phenotypic trait and genetic

distance among populations. Although we draw heavily on Pacific

salmon research, we emphasize the general applicability of our

analyses and especially the diversity of genetic and non-genetic

traits that can be examined. Our analysis is relevant to all marker

classes (allozymes, microsatellite, SNPs, etc.). Applications are

limited only by available baseline data for known-origin individ-

uals. We expect increasing interest in our methods as those data

become available for more taxa.

Materials and Methods

We explored two methods of using genetic data to estimate

descriptive parameters of phenotypic traits among populations

inferred from a genetic mixture. One method, IA, assigned

individuals to putative population of origin, using a MAP rule with

various probability threshold values to exclude individuals whose

origins were less certain. Parameters of interest were then

estimated by conditioning on the individual assignments and

treating each partitioned subset as an independent sample from

the contributing population. The second method utilized a

Bayesian mixture model (BMM) to estimate directly the distribu-

tion of a phenotypic trait, irrespective of IA. Our study had two

elements, first was a test of concept, an analysis of simulated data

to inform and direct the re-analysis of two published data sets in

the second element of our study. The reanalyzed data sets included

fecundity in Yukon River adult Chinook salmon (Oncorhynchus

tshawytscha) [13], and bacterial kidney disease (BKD) infection

prevalence in Puget Sound juvenile Chinook salmon [9].

Originally, a third method was used but was abandoned due to

poor performance. We used the posterior source probabilities from

the computer package BAYES [2] to weight the trait values

observed in individuals (data not shown). We also computed mean

trait values of assigned individuals using the MCMC realizations

of individual assignment to effectively do the same thing. Either

way, we found performance to be inferior to the IA and BMM

methods that are the focus of the current study. This was especially

true in the case of negative correlation between trait value and

genetic similarity (see below).
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Creation of simulated negative and positive correlations
between phenotypic trait value and genetic similarity of
source populations

To evaluate the performance of the trait inference methods

under known experimental conditions, we first applied both

methods to simulated data where we could manipulate genetic

similarity and trait distribution. To parameterize our model, we

used the BKD data set [9] and a portion of the GAPS-Chinook

microsatellite baseline [4], but we controlled the level of BKD

prevalence among reporting groups. We also manipulated the

reporting groups slightly to present a more demanding analytical

problem relative to [9]. To do this, we split the Hood Canal and

South Sound fall-run reporting group of [9] into two genetically

similar reporting groups. The other four reporting groups

remained as described in [9], resulting in six reporting groups

for our simulations: 1) Fraser and Thompson, 2) Nooksack, 3)

Whidbey Basin, 4) South Puget Sound Fall Run, 5) Hood Canal,

and 6) South Puget Sound Spring Run (Table 1). The two new

Figure 1. Boxplots of the estimated BKD prevalence rates for the 25 simulations of the positive case in Groups (A) 1, (B) 2, (C) 3, (D)
4, (E) 5, and (F) 6, using the individual assignment method and minimum assignment probability thresholds from 0.5 to 0.9. BMM
represents the Bayesian mixture model, X marks the mean estimate. The solid line indicates the true BKD prevalence rate. Note the scale of the y axes
vary among panels.
doi:10.1371/journal.pone.0098470.g001
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reporting groups (4 and 5) are genetically similar and were

expected to have a higher degree of misclassification between

them, allowing more rigorous evaluation of the IA and BMM

methods. We constructed two sets of known BKD infections rates

among the six reporting groups, one in which the infection rates

were positively correlated with genetic similarity among reporting

groups, and a second set which was negatively correlated (i.e.,

genetically similar populations had dissimilar infection rates). In

the positive case, we hypothesized that both methods would

perform equally well, as any errors in assignment would be

between reporting groups with similar infection rates. In the

negative case, however, assignment errors would most likely occur

between reporting groups with dissimilar infection rates, which

would bias their estimation.

A measure of genetic differentiation was computed for each pair

of reporting groups. Genetic differentiation between population

pairs, FST, was calculated with GENEPOP, version 4.1.0 [18].

The average FST among all unique pairs of populations in each

Figure 2. Boxplots of the estimated BKD prevalence rates for the 25 simulations of the negative case in Groups (A) 1, (B) 2, (C) 3, (D)
4, (E) 5, and (F) 6, using the individual assignment method and minimum assignment probability thresholds from 0.5 to 0.9. BMM
represents the Bayesian mixture model, and the X marks the mean estimate. The solid line indicates the true BKD prevalence rate. Note the scales of
the y axes vary.
doi:10.1371/journal.pone.0098470.g002
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pair of reporting groups was computed as a measure of

differentiation (Table 2). For the positive case, the two groups

with the greatest genetic differentiation (FST = 0.08 between

Group 1 and 6) were assigned dissimilar infection rates (0.05 and

0.95, respectively). The rates for the other four population groups

were selected to maximize the correlation between the average FST

and the difference between reporting group BKD infection rates

(e.g., groups 4 and 5 [Table 2]). The opposite process was used to

establish infection rates for the negative case. The two most

genetically similar reporting groups (4 and 5) were assigned the

most dissimilar infection rates (0.05 and 0.95, respectively), and the

infection rates for the other four reporting groups were selected to

minimize the correlation between the average FST and the

difference between reporting group BKD infection rates (Table 2).

BKD infection (presence or absence) for a mixture individual

was randomly determined by sampling from a Bernoulli distribu-

tion with mean infection rate established under either the positive

or negative case. We simulated mixtures of 300 individuals with

equal proportions (,16.7%) from each of the six reporting groups,

each population within a group contributing equally. We

generated 25 replicate datasets for each of the negative and

positive cases and analyzed each dataset with IA [1] and BMM

[2]. The only condition that differed between the two cases was the

correlation (positive and negative) between the genetic and

phenotypic trait information. To simulate genetic data for the

mixtures, we created single-locus genotypes for each individual by

randomly sampling two alleles from the actual baseline, without

replacement. Both alleles were then replaced before drawing

alleles for the next individual. The sampling wass repeated

independently for the 13 loci in the baseline. Data were simulated

from 54 baseline populations (Table 1), a subset of the GAPS-

Chinook baseline [4].

Inference of the phenotypic trait from simulated and
empirical data

Method 1: Individual assignment (IA) with MAP of 0.80 or

greater. Method 1 was implemented by genetic mixture

analysis software ONCOR [19,20], which uses conditional

maximum likelihood (CML) to assign mixture individuals to the

most likely population of origin, based on their genotypes.

Probabilities p(sDXj) that an individual came from baseline

populations are calculated from the relative frequency gs(Xj)of a

fish’s genotype Xj in population s and the estimated proportion of

population s in the mixture sample hs :

p(sDXj)~
hsgs(Xj)
Pc
i~1

higi(Xj)

,

where c is the number of populations. ONCOR [19,20] uses

Rannala and Mountain’s [1] method to estimate relative genotypic

frequencies gs(Xj) and CML to estimate mixture proportions of

contributing populations hs. We calculated probabilities of

assignment to reporting groups by simply summing individual

population probabilities.

The distributions of the phenotypic character among reporting

groups were estimated from the mixture individuals assigned to the

reporting groups and their measurements of the trait. A mixture

individual was assigned to the reporting group for which its

probability of assignment was maximal, so long as that probability

exceeded a given threshold. Assignments to population of origin

were considered uncertain when the probability of assignment fell

below the threshold, and those individuals were excluded from

further analysis. Origins of assigned fish were assumed without

error, and their measurements of the phenotypic character were

treated as a representative sample from each reporting group.

To investigate the tradeoff between MAP threshold and

potential assignment error, we examined the effect of using values

Figure 3. At higher levels of confidence in individual assignment (high posterior probability of group membership), more
simulated individuals were correctly classified, but fewer of them met the threshold for inclusion in the analysis, and sample size
for trait estimation declined.
doi:10.1371/journal.pone.0098470.g003
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for MAP-rule probability threshold ranging from 0.5 to 0.9. For

the analysis of empirical data (see below), we utilized a probability

threshold of 0.80. The expectation was that a higher probability

threshold would result in more accurate individual assignments

but at the cost of reduced sample size because a larger number of

fish would have assignment probabilities below the threshold and

would be excluded from analysis.

Method 2: Bayesian mixture modeling. The BMM was

implemented by modifying the BAYES software program [2] to

incorporate a novel model for the phenotypic trait in the likelihood

of the mixture model [13]. The distributions of the phenotypic

character in reporting groups were estimated directly, along with

mixture proportions, in a Bayesian framework. As in the likelihood

model of Fournier et al [14], we used the phenotypic trait as

another character, in addition to the genetic data, to identify the

origin of the individual (see below). The BMM analysis involved

running multiple independent chains of Markov Chain Monte

Carlo (MCMC) samples, simulated draws from the posterior

distribution of the unknown parameters, started from diverse parts

of the sample space. The first half of each chain was discarded as

burn-in, removing dependence on starting values. The Gelman-

Rubin shrink factor [21], computed from the second half of each

chain, was used to determine convergence of samples to the

posterior distribution. A shrink factor near 1.0 and less than 1.2

was taken as evidence of adequate mixing and convergence. Once

convergence was achieved, samples from the second half of each

chain were pooled and treated as draws from the desired posterior

distributions. We used the standard uninformative prior distribu-

tion for a normal regression, according to Gelman et al. [21]

because we had no prior, independent information regarding the

distribution of the unknown regression parameters relating

fecundity to fish length. An informative prior could be used if

prior, independent information regarding the distribution of the

unknowns were available.

Reanalysis of empirical data – Yukon River adult Chinook
salmon fecundity

Bromaghin et al. [13] obtained matched fecundity, length, and

microsatellite data (13 GAPS loci) from 403 adult female Chinook

salmon collected near the mouth of the Yukon River in Alaska.

The study investigated whether Chinook salmon fecundity is in

real decline or simply exhibiting temporal variability. Bromaghin

et al. [13] extended the CML mixture model by incorporating

fecundity parameters for specific population groups. The joint

estimation of fecundity and population composition (the popula-

tion composition was not of interest, per se) avoided potential

biases caused by IA errors. Length-adjusted fecundity parameters

were estimated for three reporting groups – the Lower, Middle,

and Upper Yukon River – composed of 34 individual populations.

Their study did not show evidence of a decline in fecundity but

rather high interannual variability. Further, length-adjusted

fecundity was shown to decrease with increased migration distance

to the spawning grounds.

Bromaghin et al. [13] modeled mean fecundity as a normal

variate, linearly related to length, and they jointly estimated

fecundity parameters and population composition of the mixture.

Populations were grouped according to similar fecundity traits

rather than genetic similarity. Here we adapted the same model to

a Bayesian framework and analyzed the same data for comparison

with the CML model of [13]. We replaced the likelihood function

for the mixture sample (Equation 6 of [2]) with Equation 5 of [13]

so that the probabilities of a mixture individual coming from

populations include the probability of fecundity. The BAYES

program [2] was modified to accommodate the extended
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likelihood model, including draws of the unknown regression

parameters from the posterior distribution.

Following [13], fecundity of fish m (Fm) with mid-eye to tail fork

length (Lm) from population group j was modeled as a normal

variate with mean equal to b0jzb1jLm and standard deviation sj .

The density was defined as

g(FmDLm, j)~
1

sj

ffiffiffiffiffiffi
2p
p e

{ 1

2s2
j

½Fm{(b0jzb1jLm)�2

:

The likelihood model, with notation slightly modified from [13],

was:

L~P
M

m~1

Xns

j~1

g(FmDLm, j)
Xns0(j)

k~1

pk(j)f (XmDQk(j))

2
4

3
5

8<
:

9=
;, ð1Þ

where

M = number of mixture individuals,

ns = number of reporting groups,

ns0(j) = number of populations in reporting group j,

pk(j) = population proportion k of reporting group j,

Figure 4. Estimated linear regression models of mean Yukon River Chinook salmon fecundity versus fish length for three reporting
groups, (A) Upper, (B) Middle, and (C) Lower, based on the Bayesian mixture model (solid line) and individual assignments (dashed
line).
doi:10.1371/journal.pone.0098470.g004

Trait Inference in Genetic Mixtures

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e98470



f (XmDQk(j))~ relative frequency of genotype in population k of

reporting group j given baseline allele frequencies Qk(j), and

g(FmDLm, j) is defined above.

In addition to the Dirichlet priors for p and Q in [2], we used

the standard uninformative prior distribution for a normal

regression [21; Section 14.2]: uniform on (bj , log sj) or equiva-

lently, g(bj ,s
2
j DLj)!s{2

j , where bj~(b0j , b1j) and sj are the

regression parameters, and Lj are the lengths for population group

j. Following [2], p and Q were drawn from Dirichlet posterior

distributions. Specifying the uniform prior distribution on

(bj , log sj) provides that the conditional posterior distribution of

bj given s2
j is a normal distribution and that the marginal posterior

distribution of s2
j has the form of a scaled inverse- x2 distribution

[21; Section 14.2].

Reanalysis of empirical data – Puget Sound juvenile
Chinook salmon BKD

Rhodes et al. [9] examined BKD in juvenile Chinook salmon

collected at multiple times and locations in Puget Sound, in the

Pacific Northwest of North America. Their study investigated

several potential ecological and environmental links with preva-

lence of this very serious disease. One such link examined was fish

origin, determined by coded-wire tags and genetics (13 GAPS

microsatellite loci). The authors found that capture location was a

better predictor of infection than population origin. Here we

Table 4. Estimated fecundity parameters of intercept (b0), slope (b1), and standard deviation (s) for three reporting groups of
Yukon River Chinook salmon obtained using individual assignment (IA) and Bayesian mixture modeling (BMM), with standard
errors (SE) and either 95% confidence or probability intervals (CI or PI).

Reporting group parameter IA BMM

Estimate SE 95% CI Estimate SE 95% PI

Lower

b0 5529 1223 (3055, 8004) 8335 1354 (5614, 10978)

b1 15.42 4.65 (6.02, 24.82) 5.70 5.32 (24.71, 16.44)

s 1481 2047 214 (1676, 2518)

Middle

b0 6125 701 (4739, 7512) 5836 663 (4567, 7149)

b1 10.28 2.58 (5.18, 15.39) 11.14 2.45 (6.23, 15.83)

s 1443 1319 99 (1146, 1528)

Upper

b0 5156 404 (4359, 5954) 4413 436 (3546, 5277)

b1 9.33 1.55 (6.27, 12.39) 11.99 1.65 (8.71, 15.25)

s 1110 994 56 (892, 1111)

doi:10.1371/journal.pone.0098470.t004

Figure 5. Similar stock-specific estimates of BKD prevalence were obtained using individual assignment (0.8 probability threshold)
and Bayesian mixture modeling for reanalysis of Puget Sound Chinook salmon juvenile mixtures. Brackets are shown for confidence
and probability intervals (95%).
doi:10.1371/journal.pone.0098470.g005

Trait Inference in Genetic Mixtures

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e98470



examined just the genetic and BKD data from 393 individuals and

jointly modeled fish origin and BKD prevalence among popula-

tions. Specifically, we estimated infection prevalence rates among

the five Puget Sound reporting groups in [9]. The baseline

included 54 populations representing the following reporting

groups: 1) Fraser and Thompson, 2) Nooksack, 3) Whidbey Basin,

4) South Sound Fall and Hood Canal, and 5) South Sound Spring

(Table 1). Note that these are the five originally published

reporting groups that differed slightly from the six reporting

groups we used in our simulations.

The BKD infection of fish m was modeled as a Bernoulli

random variable (dm) with probability hj of infection for population

group j. The density is defined as

g(dm)~hdm
j (1{hj)

1{dm , ð2Þ

where dm = 1 if a fish was infected and 0 otherwise. We replaced

the normal model of the fecundity-length relationship in Equation

5, with the Bernoulli model above (Equation 6). We used uniform

(0,1) prior distributions for the infection rates, resulting in Beta

posterior densities for hj [21]; Section 2.1. The BAYES program

[2] was again modified to accommodate the binomial modeling of

BKD infection rates.

Results

Simulation results: trait inference from IA and BMM
In the positive case, where genetically different Groups 1 and 6

had different BKD prevalence, and genetically similar Groups 4

and 5 had similar BKD rates, the BMM performed similarly to IA.

IA estimates for Group 1, with a low BKD value, showed a slight

negative bias at all probability thresholds, whereas the BMM

slightly over estimated BKD prevalence (Fig. 1A). The opposite

was true for Group 6, with a large BKD value. In general,

variance was smaller for BMM estimates, but not dramatically so.

Differences were greatest between methods for the negative

case, where genetically similar groups 4 and 5 had quite different

BKD infection prevalence (0.05 and 0.95, respectively). Both

methods over estimated the low BKD prevalence in Group 4 and

under estimated the high BKD prevalence in Group 5 (Figs. 2D

and 2E). Bias was greatest for IA at MAP probability thresholds

below 0.6. Bias improved at higher thresholds, but variance

increased in most cases, as more individuals were excluded, and

sample size decreased. In general, the BMM gave a favorable

balance of accuracy and precision. IA with a high probability

threshold (0.9) sometimes gave better accuracy than the BMM but

at the cost of decreased sample size (Table 3, Fig. 3) and increased

variance.

Reanalysis of empirical data – Yukon River adult Chinook
salmon fecundity

Of 403 mixture individuals, 355 were assigned to one of three

reporting groups (Lower, Middle, and Upper Yukon) using a MAP

probability threshold of 0.80 or greater, whereas 48 individuals

(12%) fell below that probability threshold and were excluded

from further analysis. Fecundity estimates were based on the

remaining 41, 125, and 189 fish assigned to the Lower, Middle,

and Upper Yukon River reporting groups, respectively. For

reporting, we fit linear regression models [22] separately for the

Lower, Middle, and Upper reporting groups, regressing fecundity

on length and assuming normal errors. Estimated slopes,

intercepts, standard errors, and 95% confidence intervals are

reported in Table 4, and the fitted linear models are plotted in

Figure 4.

Eight chains of 20,000 MCMC samples thinned by 10 were

generated using the modified BAYES program. Convergence of

the second halves of chains to the posterior distribution was

confirmed, and simulated draws from the posterior distributions of

the fecundity regression parameters were summarized with a mean

and standard deviation for each reporting group (Table 4). Note

that Bromaghin et al. [13] imposed additional constraints on the

parameters that we did not replicate exactly.

Reanalysis of empirical data – Puget Sound juvenile
Chinook salmon BKD

Of the 373 mixture individuals with BKD data, 73 (20%) did

not meet the 0.8 MAP probability threshold and were removed

from further analysis. The BKD infection prevalence estimates

were based on the remaining 23 fish assigned to the Fraser and

Thompson group, 27 to the Nooksack, 142 to Whidbey Basin, 92

to the South Puget Sound fall-run and Hood Canal group, and 16

to South Puget Sound Spring. Infection prevalence rates were

calculated as the fraction of fish with BKD assigned to each group

(Table 5, Fig. 5). Variances in the rate estimates were calculated

from the binomial distribution. Five chains of 20,000 MCMC

samples were generated by the modified BAYES program.

Convergence of the chains to the posterior distribution was

confirmed, and simulated draws from the posterior distributions of

infection rates for population reporting groups were summarized

with means and standard deviations.

Table 5. Estimates of stock-specific BKD prevalence in Puget Sound Chinook salmon population groups from two different
methods, with standard errors (SE), and either 95% confidence or probability intervals (CI or PI).

Reporting group IA1 BMM

Estimate (%) SE (%) 95% CI Estimate (%) SE (%) 95% PI

Fraser and Thompson 26.1 9.2 (8.1, 44.0) 31.9 9.6 (14.7, 51.8)

Nooksack 51.9 9.6 (33.0, 70.7) 49.0 8.5 (32.5, 65.7)

Whidbey Basin 23.9 3.6 (16.9, 31.0) 25.8 4.0 (18.3, 33.8)

South Sound Fall and Hood Canal 40.2 5.1 (30.2, 50.2) 39.2 4.9 (29.8, 49.0)

South Sound Spring 37.5 12.1 (13.8, 61.2) 37.2 10.4 (18.2, 58.7)

1300 of 373 individuals satisfied the 0.8 MAP threshold and were included in the trait inference analysis (20% discarded).
doi:10.1371/journal.pone.0098470.t005
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Discussion

In both example applications that re-analyzed published

Chinook salmon data, we obtained similar estimates for the

group-specific phenotypic traits from both IA and BMM. Our

estimates were also comparable to those previously reported

[9,13]. The greatest difference between the two sets of estimates in

both examples involved the fecundity parameters for the Lower

Yukon River reporting group (Table 4). Although the IA and

BMM confidence/probability intervals for the three Lower

reporting group parameters also overlap, the magnitude of the

differences between the point estimates appears biologically

meaningful. Bromaghin et al. [13] hypothesized that the similar

differences they observed were caused by assignment error

between genetically similar populations having dissimilar fecundity

traits, which is analogous to the conditions we established in the

negative-case simulations where BMM outperformed IA. The

similarity between the IA and BMM estimates in the BKD

example is likely attributable to the power of the GAPS-Chinook

baseline to assign individuals to source populations with high

accuracy, especially when a MAP probability threshold is

employed (Table 3).

Our analysis of simulated data suggested that for simple mixture

problems, such as a large mixture sample including only a few

genetically distinct source populations, both IA and BMM perform

similarly. This was especially true if the trait was positively

correlated with genetic similarity among reporting groups. BMM

provided slightly better accuracy and precision when the trait was

negatively correlated with genetic similarity. In general, however,

IA with a 0.8 MAP threshold performed better than expected. We

suspect the favorable performance of IA observed here is

attributable to a combination of the 0.8 MAP threshold

maintaining adequate sample sizes and accuracy of IA based on

the GAPS-Chinook microsatellite baseline.

IA for trait inference does not necessarily suffer the same bias as

IA for population mixture composition estimates [17]. In

estimating mixture compositions where a MAP rule is employed

with a threshold for IA, individuals from reporting groups that are

not genetically distinct will more likely be removed from the

analysis because they fractionate their posterior probability among

multiple potential source populations, and their maximum

assignment probability is more likely to fall below the threshold.

Thus, the contributions of reporting groups that are less distinct

can be under estimated in the mixture. Whether this bias affects

estimates of population-specific traits depends on whether the trait

is negatively or positively correlated with genetic similarity among

reporting groups. In the positive case, trait estimates from IA are

expected to be unbiased. Even though we might underestimate the

true number of fish from genetically similar reporting groups, we

are unlikely to end up with a biased set of individuals relative to

the traits they express. Precision might suffer from diminished

sample size, but trait estimates should not be biased in the same

way that population mixture composition can be [17].

Although bias was not necessarily expected in comparing IA

and BMM (at least not where the trait is positively correlated with

genetics), our results serve to underscore a classical problem in

biological sampling – the need to balance accuracy of IA with

sample size and therefore statistical power. On one hand, IA with

a high MAP-rule threshold will better assure that individuals

included in the analysis are accurately classified. On the other

hand, if mixture samples are small to begin with, as they often are

in ecological studies, then the number of individuals with

assignment probabilities above the MAP threshold can be quite

small. If one lowers the threshold to include more individuals,

assignment error and therefore trait estimation bias can increase.

This is not such a problem if the trait distribution is correlated with

the genetic structure of reporting groups (genetically similar groups

have similar mean trait values), but if genetically similar reporting

groups have very different trait values, then clearly misassignments

will bias estimates of population-specific traits. We saw signs of

such bias in our simulation studies where we created trait

distributions having both positive and negative correlation with

genetic distance. The genetic data we used were based on a

regional subset of the GAPS-Chinook microsatellite baseline. The

13 GAPS loci are highly variable, with nearly 500 alleles coast

wide and highly significant allele frequency differences among

populations and among regions [4]. This diversity provided

significant power to accurately assign individual Chinook salmon

to their putative population of origin. The difference in

performance between IA and BMM would be greater in

applications with less powerful baselines, which could be caused

by fewer, less variable loci, low differentiation among populations,

or because mixture samples are degraded and provide quality

genotypes for only a subset of loci. In many ecological genetic

studies of the type we consider here, power is often limited by

small mixture samples. Genetic reporting groups that have small

contributions to a mixture may provide very few individuals from

which to estimate trait parameters. In our simulations, a MAP

threshold of 0.8 seemed a good compromise between assignment

accuracy and sample size, which contribute to precision and

accuracy in trait estimation (see also [10]).

Potential applications of our method are extremely broad, as

has been noted previously [13]. Almost any population-specific

phenotypic or ecological trait can be inferred using the methods

we describe. Many ecological, management, and conservation

problems involve consideration of individual populations, geo-

graphic regions or groups of populations. Habitat restoration

efforts often have monitoring and evaluation elements that seek to

document the use of restored habitats by populations targeted for

recovery [23]. Ecotoxicology studies need to determine if different

populations with different migratory routes have different body

burdens of toxic compounds [6]. Our results show that the

relatively simple IA approach with a MAP probability threshold

can often provide adequate estimates for many ecological

applications. In more demanding trait inference problems, use of

a BMM would be prudent, where, for example, mixtures are small

or reporting groups are genetically similar. BMM should always

work as well or better than IA on average and does not require an

arbitrary decision to discard some portion of the data (MAP

probability threshold). We showed that BMM is expected to be

most useful when the composition of reporting groups and the

distribution of the trait do not closely align with the genetic

structure among populations.

In practical application of mixture analysis, decisions must be

made regarding the structure of the reporting groups. Mixture

allocations are made to individual populations and those

allocations (or individual assignments) with their associated trait

values are combined to estimate the trait values for the reporting

groups. Two considerations are important to this application, 1)

different levels of genetic similarity among populations within

reporting groups, and 2) potential variation in the trait of interest

among populations within reporting groups. These considerations

reflect a fundamental challenge of natural resource management

and especially of fisheries. Rarely do management units fully align

with population genetic structure. Genetically similar units

sometimes have different trait values and must be managed

separately. BMM tends to be more robust to these complications

than IA [13,17].
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Conclusions

We compare the performance of two available methods,

individual assignment and Bayesian mixture models, for investi-

gating the distribution of phenotypic traits among populations by

using a single mixture sample and population-specific genetic

baseline data. The most attractive feature of IA is its ease of

implementation using available software (e.g., ONCOR, Gene-

Class, etc.). Moreover, despite theoretical shortcomings, it

performs well under a range of conditions in which the number

of individuals assigned to each group is adequate and assignment

errors are relatively rare between reporting groups. As a

precaution, we recommend careful assessment of the power of a

baseline to accurately assign individuals to reporting groups that

are of research or management interest. While the performance of

BMM equals or exceeds that of IA, the former is more difficult to

implement, and software is not available that is capable of

handling the diverse array of traits that may be of interest.

However, if a preliminary IA analysis indicates that the trait of

interest appears negatively correlated with genetic similarity

among populations, then the BMM approach is probably essential

to provide minimally biased group-specific trait inference. If these

situations are common, then additional effort may be warranted to

develop custom software solutions.
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