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Sebastian Boltaña1, Steven Roberts3, Giles Goetz4, Frederick W. Goetz4, Simon A. MacKenzie1*
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Abstract

Background: Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have
maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated
erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals
support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively
participate via ligand-induced transcriptional re-programming in the immune response.

Methodology/Principal Findings: Nucleated erythrocytes from both fish and birds express and regulate specific pattern
recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP)
detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA
synthesis of both receptors and response factors including interferon-alpha (IFNa) that exhibit a stimulus-specific polysomal
shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I:C), polyinosinic:polycytidylic acid)-erythrocyte
response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems
including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1
interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response.

Conclusions/Significance: We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant
phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a
previously unrecognized integrative role for the erythrocytes in other physiological systems.
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Introduction

The function of the vertebrate erythrocyte is agreed to be

oxygen-transport by respiratory globin pigments. Across non-

mammalian vertebrates, nucleated erythrocytes are present in the

circulation often with extended longevity throughout the life cycle

of the organism. Intriguingly, the potential contribution of

nucleated erythrocytes as transcriptionally-active cells to non-

respiratory physiological processes has not been systematically

addressed in non-mammalian species. Instead, red blood cell (EC)

functions in non-mammalian vertebrates have tacitly been

assumed to follow a highly conserved role as observed in

mammalian anucleated erythrocytes.

The immune response is understood to have a modular

structure mainly formed by sub-sets of activated leukocytes

responding to different combinations of PAMPs via PRR-

mediated recognition [1]. These cellular interactions are modu-

lated by extrinsic local regulation by soluble factors including

cytokines that form complex networks of cellular communication.

Immune-specific mRNAs including PRRs and cytokines have

been shown to exhibit considerable promiscuity for expression

throughout the diverse cellular phenotypes involved in an immune

response [2]. This in turn suggests that a nucleated cell of

hematopoietic origin in circulation should have the potential to

respond and contribute to the immune response given its ability to

move freely throughout the body.

The origins and definitive descriptions of the evolution of the

erythrocyte lineage in vertebrates is lacking. The ontogeny of

vertebrate erythropoiesis has been well characterised in mammals,

birds, amphibians and bony fish [3–5]. In mammals, nucleated

erythrocytes (mnEC) produce regulatory factors such as cytokines

in response to changes in the bone marrow micro-environment

[6–7]. We hypothesised that the presence of a nucleus and

transcriptional/translation machinery could confer to non-mam-

malian erythrocytes an active, ligand-induced transcriptional re-

programming leading to a functional role that contributes to the
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immune response. Our results show that trout and chicken

erythrocytes are capable of eliciting PAMP-specific responses that

correspond to an active cellular response that likely regulates

leukocyte activity. The observed modulatory role of erythrocytes

in non-mammalian vertebrates, the presence of many transcripts

that interact with other physiological systems, and the vast number

of these cells in the circulation leads us to suggest that a

reorganisation of the current thinking of integrated immunity/

physiology in non-mammalian systems may be required.

Results

Nucleated erythrocytes contain the cellular machinery to
respond to PAMPs

Rainbow trout erythrocytes (tECs) are present in the circulation

at a concentration of approximately 16109 cells/ml and show a

typical oval morphology (Fig. 1a) as in almost all non-mammalian

vertebrates with few exceptions [8–9]. TEM analysis highlighted

major cellular features throughout the erythrocyte population

including nuclear pores, de-condensed chromatin, ribosomes,

golgi bodies and endoplasmic reticulum [10] (Fig. 1b). Consistent

identification of large tracts of intracellular organs in erythrocytes

varied considerably between individuals possibly due to the

erythrocyte maturation status in the circulation [11]. Trout

erythrocytes were purified by density gradient centrifugation and

cell-sorted to ascertain erythrocyte cell culture homogeneity

(.99.9% pure, Fig. S1). Initial RT-PCR of candidate immune

system related genes in erythrocytes from both trout and chicken

(cEC) showed that erythrocytes contain a range of different

mRNAs (Fig. 1c, Fig. S2). Thus nucleated vertebrate ECs

possess an active transcriptional (de-condensed chromatin) cellular

morphology and the cellular machinery for the production of

proteins and contain mRNAs coding for reception, integration and

response to external stimuli.

Regulation of PAMP responsive mRNAs
The presence of several PRR mRNAs in both trout (Toll-like

receptor (TLR) 3 and 9) and chicken (TLR3 and 21) erythrocytes

(Fig. 1c, Fig. S2) suggest that ECs are able to detect and

specifically respond to different PAMPs. PAMPs have been shown

to trigger the activation of an immune response in all metazoans

thus far studied [1]. To explore the triggering of a specific response

in trout and chicken erythrocytes we first tested 3 different PAMPs

(bacterial lipopolysaccharide (LPS), peptidoglycan (PGN) and poly

(I:C)) and a recombinant cytokine, rainbow trout tumor necrosis

factor-alpha (rTNF). Due to poly (I:C)-mediated interference in

quantitative-PCR (Q-PCR) analyses, all data for poly (I:C)

experiments are shown as semi-quantitative RT-PCR and densi-

tometry. De novo synthesis of specific chemokine (CCL4) and IFNa
mRNA transcripts after PAMP and rTNF treatments was observed

in both species and TLR mRNA responses varied between

individuals (Fig. 2a–b, Fig. S3). Increases in specific transcript

synthesis was both time and PAMP-dependent peaking from 6–

24 hours for CCL4 and IFNa transcripts and tumor necrosis factor

Figure 1. Model description of rainbow trout erythrocytes. (a) General micrograph of cultured rainbow trout erythrocytes (650). (b) TEM of
trout erythrocyte cultures. Left panel, nucleus show condensed (arrow) and decondensed (arrowhead) chromatin; middle panel, trout erythrocyte
nucleus with nuclear pores (arrows); right panel, erythrocyte with ribosomes (arrowheads), smooth endoplasmic reticulum (black arrow) and Golgi
apparatus (white arrow). (c) Specific mRNA transcript expression (RT-PCR) in trout and chicken erythrocytes (ENO, enolase; TLR 3, 9 and 21, Toll-like
receptors; Mx, myxovirus resistance 1). Left panel, 1) density gradient isolated cultured trout erythrocytes under control conditions; 2) cell sorted trout
erythrocyte population from density gradients. Right panel, c) specific mRNA transcript expression in density gradient isolated cultured chicken
erythrocytes under control conditions. One representative of four individuals is shown.
doi:10.1371/journal.pone.0026998.g001
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receptor-like (TNFR-like), interferon regulatory factor 1.2 (IRF1.2)

and Galectin-1 (decreasing at 24 hours) transcripts under poly (I:C)

and LPS stimulation respectively (Fig. 2c–d).

As relative mRNA abundance measurements from total cellular

RNA samples do not reflect post-transcriptional processing we

performed polysomal gradient analyses since the association of

Figure 2. Analysis of specific mRNA transcript expression in cultured trout and chicken erythrocytes after PAMP or cytokine
stimulation. (a) Response of trout and (b) chicken erythrocytes after 12 hours exposure to: 50 mg/ml of LPS, 50 mg/ml of poly (I:C), 5 mg/ml of PGN
and 50 ng/ml of rTNF. CCL4, Mx, IFNa, TLR3 and TLR9 (TLR21 in chicken) mRNA abundance was analyzed by RT-PCR and 1.2% agarose gel
electrophoresis. One representative of 3 and 4 individuals is shown for trout and chicken respectively. (c) RT-PCR analysis of the tEC response over
time (6–24 h) to 50 mg/ml of poly (I:C), densitometry data shown as fold changes (mean 6 std.dev., n = 4 individuals) with respect to 18S rRNA. (d)
Absolute Q-PCR analysis of the tEC response over time control (6–24 h) to 50 mg/ml of LPS, fold changes (mean 6 std.dev., n = 4 individuals) in
respect to specific transcript copy number.
doi:10.1371/journal.pone.0026998.g002
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polyA mRNAs with polysomes is a strong indicator of translation

and has been shown to be an important regulatory mechanism in

the immune response [12–13]. A typical vertebrate polysome

profile was obtained from tECs (Fig. S4) and a poly (I:C)-

dependent polysomal shift was observed for allograft inflammatory

factor-1 (AIF-1), TNFR-like and IRF1.1 mRNA transcripts

(Fig. 3). The protein synthesis initiation inhibitor, NSC119889,

inhibited mRNA-polysome formation showing that these mRNAs

depend upon a 59-mediated/cap-dependent initiation of protein

synthesis. Therefore specific mRNAs are induced and differentially

regulated by PAMP-PRR interactions leading to specific tran-

scriptional and post-transcriptional responses in ECs.

Erythrocytes activate PAMP-specific re-modeling of the
transcriptome

To explore the transcriptomic response of the tEC, we

constructed 2 pooled libraries (control and 12 h poly (I:C)

stimulated, n = 8) for RNA-Seq analysis using the ABI SOLiD 3

platform. After quality trimming, a total of 806106 reads (average

44 bp/read), were obtained in approximately a 1:1 ratio for each

Figure 3. Analysis of polysome-bound mRNA regulation in cultured trout erythrocytes after poly (I:C) stimulation. (a) RT-PCR analysis
of polysome-bound mRNAs (AIF-1, TNFR-like, IRF1.1 and IFNa) under control and after poly (I:C) stimulation. M, ribosome free mRNA; D, mono and
disome bound mRNA; and P, polysome bound mRNA obtained after polysome gradient centrifugation. NSC119889 (200 mM) was added to inhibit
polysome formation. (b) Densitometry analysis (n = 3) of % bound or non-polysome specific mRNA in respect to the total specific mRNA abundance.
doi:10.1371/journal.pone.0026998.g003
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library. No sequenced rainbow trout genome is available therefore

RNA-Seq analysis and gene annotations were carried out by

mapping the sequences against the SIGENAE contig database for

rainbow trout (http://www.sigenae.org/). RNA-Seq analysis

resulted in the expression from both libraries of 25940 features

(corresponding to contigs). A direct comparison of both libraries

(unique contig number in each pool) revealed 2378 unique

features that were up-regulated and 1475 unique features were

down-regulated by 2-fold or higher in the poly (I:C) treated library

compared to the control library (Table S1). In general, poly (I:C)

appeared to increase the percentage of transcripts coding for

proteins involved in DNA metabolism and stress and decreased

transcripts for proteins involved in protein metabolism and

developmental processes (Fig. 4). Even though RNA-Seq analysis

revealed thousands of genes to be differentially regulated by 2 fold

or greater between libraries, the expression of only 55 genes were

calculated by DESeq analysis to be statistically different between

control and poly (I:C) stimulated tEC at p#0.1 (Table S2). This

number dropped to 41 genes at p#0.05. However, for sequencing

we used duplicate pools of RNA from the incubations of tEC

obtained from 8 individual tEC cultures. While DESeq analysis

can theoretically be performed on the data from nonreplicated

samples, when used in this fashion it will be very conservative and

will indicate that only a fraction of the differentially regulated

genes are statistically different [14]. This strongly indicates that

sequencing should be replicated if statistical differences with

RNAseq data are being analyzed. Thus a qualitative comparison

of gene ontology categories (GOSlim) represented by transcripts

regulated (FC.2) in RNA-Seq highlights changes in key biological

processes such as DNA metabolism and cellular stress response

however replication will be required to accurately describe over-

represented GO categories (Fig. S4b).

Within all of the transcripts found by RNA-Seq to be regulated

2 fold or greater between the two libraries (Table S1), the

erythrosome contained transcripts for hormone receptors includ-

ing those for estrogen (P) (P = higher in poly (I:C) library than

control; C = higher in control than poly (I:C)), androgen (P),

prostaglandin E (C), leukotriene B4 (C), vitamin D (P), insulin-like

growth factor (C), and luteinizing hormone (P). Pivotal enzymes

involved in both eicosanoid and steroid synthesis and metabolism

Figure 4. Gene Ontology representation of tEC stimulated with or without poly (I:C). Pie charts of the percent of transcripts within
functional categories for genes regulated .2 fold in the control versus poly (I:C) libraries. Genes regulated .2 fold were divided into functional
categories using CateGOrizer (http://www.animalgenome.org/bioinfo/tools/countgo/).
doi:10.1371/journal.pone.0026998.g004
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such as steroidogenic acute regulatory protein (C), aromatase (C),

and cyclooxygenases I & II (C) were observed. Transcripts for

growth factors and other modulatory proteins including myostatin

(P), transforming growth factor B (P), activin B (and receptor) (P),

angiopoietin (C), and angiotensinogen (P) were observed as well as

cytokines including type I interferon (P), interleukin 16 (C), TNF

superfamily members 13 (P) and 14 (C), CCL4 (P), various

cytokine and chemokine receptors and potential pathogen

recognition receptors including toll receptors (P) II, 5, 9, 13 and

20, and scavenger receptors (P) (Table S1). Thus trout

erythrocytes appear to regulate large cohorts of mRNAs in

response to poly (I:C) however a more robust analysis with

increased biological replicates will be necessary to quantify the

exact magnitude and intensity of this response.

Erythrocytes modulate the anti-viral macrophage
response

Multi-directional cellular communication is a key function that

directs the intensity, scale and development of an immune response

by remodelling the transcriptomic landscape. RNA-Seq analysis

revealed a number of mRNAs that code for regulatory soluble

factors induced in tECs in response to poly (I:C) treatment. To

examine a possible functional role for modulating the leukocyte

response, the effect of conditioned medium derived from poly (I:C)-

activated tECs (eCM-24 h incubation) was assayed with differen-

tiated trout macrophages. Mx (myxovirus resistance 1), STAT1a/b
(signal transducer and activator of transcription 1 alpha/beta) and

IFNa mRNAs were chosen as markers for the anti-viral response

and were up-regulated in macrophages stimulated with eCM

supernatants derived from poly (I:C)-stimulated tECs treated with

benzonase to remove excess poly (I:C) (Fig. S4b). This effect could

be blocked with heat treatment of the conditioned mediums

(Fig. 5a–b). Therefore, activation with a double-stranded RNA

mimic, a specific TLR3 ligand in fish, causes tECs to secrete

bioactive, temperature-labile molecules that modulate the macro-

phage anti-viral response indicating a functional role for the

erythrocyte in the anti-viral immune response.

Discussion

The primary function of nucleated erythrocytes in non-

mammalian vertebrates has been tacitly accepted to be O2 and

CO2 transport, and has never been questioned in a systematic

manner. Here we demonstrate that nucleated erythrocytes from

rainbow trout and chicken develop specific PAMP-PRR responses

at the level of the transcriptome and, at least in trout, erythrocytes

stimulated with poly (I:C) secrete thermo labile molecules that can

modulate the anti-viral response in macrophages. Our studies

indicate that nucleated erythrocytes from two vertebrate groups

spanning significant evolutionary time possess the cellular and

molecular machinery to specifically respond to pathogens and

likely contribute to the regulation of an immune response.

Therefore, this ability may well extend to all non-mammalian

vertebrates.

We suggest that the current paradigm of the leukocyte-driven

immune response that is mainly derived from mammals may

require modification for the vast majority of vertebrate species that

have nucleated erythrocytes. The current paradigm for organisa-

tion of the immune response suggests that the cells of the immune

system are organised into PRR-driven networks and multi-cellular

effector modules that act in a coordinated fashion to eliminate

invading pathogens from the organism [1]. Our data, far from

challenging the above shows that nucleated erythrocytes are

capable of PRR-driven responses, produce soluble factors that

modulate leukocyte activity and therefore play an active role in the

non-mammalian immune response. Evidence in support of this

can be gathered from a limited set of observations derived from a

diverse group of organisms, including mammals, where functional

responses in erythrocytes include: haemoglobin-derived anti-

microbial responses [15], glycophorin A-mediated pathogen sink

[16], endothelial nitric oxide synthase (eNOS)-like protein and

activity [17], specific human immunodeficiency virus (HIV)-1

binding [18], IFNa production [19], hormone binding [20] and

cortisol receptor 1 (CR1)-dependent immune complex clearance

[21]. Thus in the erythrocytes a set of biological processes relevant

to immunity and the immune response are present. Furthermore

the dual functionality of haemoglobin, active in the anti-microbial

response [15] and in respiratory gas exchange in both inverte-

brates and vertebrates, provides an interesting evolutionary

backdrop for the evolution of the erythrocytes in vertebrates.

The global transcriptome perspective obtained from RNA-Seq

analysis also points toward a more complex and integrated role for

erythrocytes in regulatory physiology. The presence of mRNAs

relevant to specific receptor-response networks from diverse

physiological systems including endocrine, immune and repro-

ductive uncovers the exciting possibility that ligand regulated

transcription in the abundant erythrocytes may have a funda-

mental and previously unrecognized regulatory function in

homeostatic balance. Extrapolating from mRNA abundance

measurements (absolute transcript number) erythrocytes do not

express exceptionally high levels of mRNA in comparison to

PAMP-activated leukocytes, however given their abundance in the

circulation, several millions of mRNA transcripts/ml of blood

could be expected. Furthermore, transcripts produced in response

to PAMP stimulation were polysome-bound suggesting a rapid

biological response for both cellular and secreted proteins.

Considering the transcript diversity uncovered by RNA-Seq, one

is tempted to speculate that circulating erythrocytes may constitute

a regulatory tissue interface between physiological compartments

in the organism with largely unknown properties.

In conclusion, here we demonstrate that nucleated erythrocytes

in non-mammalian vertebrates likely participate in an active

fashion in the immune response and contain an mRNA repertoire

integrating functions from other physiological systems.

Methods

Animals
Adult rainbow trout (Oncorhynchus mykiss) of approx. 150 g mean

weight were obtained from J. Antrés fish farm (St. Privat, Girona).

Fish were transported to aquarium facilities at the Universitat

Autònoma de Barcelona and held in stock tanks at 15uC under a

standard photoperiod of 12 h light/12 h dark for two weeks before

experimentation. Trout were fed at 0.5% body weight per day.

Experimental protocols for blood sampling, sacrifice and organ

isolation have been reviewed and approved by the Ethics and

Animal Welfare Committee of the Universitat Autònoma de

Barcelona, Spain (AGL2009-10677). Animals were sacrificed with

a lethal concentration of ethyl 3-aminobenzoate methanesulfonate

(MS-222, 0.2 g/l, Sigma, France) for head kidney dissection or

anesthetized with clove oil (40 ppm) for blood sampling.

Erythrocyte cell culture
Trout blood was obtained from the caudal vein and chicken

blood, obtained from the Experimental Unit del Prat (IRTA,

Spain), from the heart using heparinized syringes. Trout (tEC) and

chicken (cEC) erythrocytes were obtained by consecutive density

gradient centrifugations (7206g, Ficoll 1.007; Lymphoprep,

RNA-Seq Reveals an Immune Response in Erythrocytes
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Reactiva, Spain) and washed twice in 16 PBS. tECs were

resuspended in DMEM (PAA, Germany) supplemented with 10%

heat-inactivated FBS (PAA, Germany) and 100 mg/ml Primocin

(Invivogen, France) at a density of 7.56106 erythrocytes/ml in six

well cell culture plates and cultured at 18uC (tEC) or 37uC (cEC)

and 5% CO2. Cells were cultured O/N before experimentation.

tEC were analyzed using a MoFlo cell sorter (Dako Cytomation,

USA). Excitation settings used for the flow cytometer were laser

488 nm, 150 mW. Forward Scatter (FSC) was collected with a

PMT tube in a linear scale and side scatter (SSC) was collected at

90 degrees in a logarithmic scale. Windows for sorting were

defined on FSC, SSC and pulse width in order to exclude

aggregates. For stimulations, lipopolysaccharide from Escherichia

coli 026:B6 (LPS, 50 mg/ml), peptidoglycan from E. coli 0111:B4

(PGN, 5 mg/ml), poly (I:C) (50 mg/ml) and recombinant tumor

necrosis factor alpha from rainbow trout (rTNF, 50 ng/ml) were

added and trout and chicken cultures were incubated for the 24 h.

To produce conditioned mediums (eCM), tECs were stimulated

for 24 h with 50 mg/ml poly (I:C) and culture supernatants

collected. Supernatants containing poly (I:C) were treated with or

without ultrapure Benzonase (Sigma-Aldrich, France) (500 U/ml

tEC supernatant, 18uC O/N) and temperature inactivated at 95uC
for 10 min.

Monocyte/macrophage cell culture
Adherent trout monocyte/macrophages were isolated as

previously described [22]. Before stimulation, differentiated

macrophages were incubated in serum free medium for 3 h. Cells

were incubated either with poly (I:C) (10 mg/ml) as a positive

control or eCMs for 12 hours.

Figure 5. Effects of conditioned medium from poly (I:C) stimulated tECs upon the anti-viral response in adherent trout monocyte/
macrophages. (a) Rainbow trout macrophage Mx mRNA abundance analyzed by RT-PCR after 12 h incubation with tEC supernatants. eCM were
incubated with benzonase to remove poly (I:C) (50 mg/ml) and/or incubated at 95uC for 10 min. (b) Mx, IFNa and STAT1a/b mRNAs abundance after
12 h incubation with tEC supernatants. Data shown as fold change (mean 6 std.dev, n = 3). A, poly (I:C) stimulated erythrocyte supernatants
benzonase-treated vs control supernatant benzonase-treated; B, poly (I:C) stimulated erythrocyte supernatants benzonase- and temperature-treated
vs control supernatant benzonase- and temperature-treated.
doi:10.1371/journal.pone.0026998.g005
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Electron microscopy
tEC were centrifuged at 4006g, 5 min and pellets fixed for 2 h

at 4uC with 2.5% glutaraldehyde, 2% paraformaldehyde in a

sodium phosphate buffer (0.1 M, pH 7.4). Pellets were subse-

quently washed with phosphate buffer. Samples were then

incubated with 1% osmium tetraoxide in sodium phosphate

buffer (0.1 M, pH 7.4) for 2 h at 4uC. Sequential acetone washes

(50% to 100%) were used to dehydrate samples and finally, the

samples were fixed in an Epon resin and visualized with Jeol Jem-

2011 transmission electron microscopy (Jeol LTD., Japan).

Gene expression studies
Total RNA was extracted from tEC and cEC cultures (456106

cells) following manufacturer’s instructions with minor modifica-

tions (TriReagent, Sigma, France). RNA (400 ng) was used to

synthesize cDNA with SuperScript III Transcriptase (Invitrogen,

Spain) and oligo-dT primer (Promega, Spain). Conventional RT-

PCR was carried out to analyze gene expression and polysome

gradient associated mRNAs. 1 ml of cDNA was used as a template

for reactions with specific primers (Table S3) and Amplitaq DNA

polymerase (Biotools). As a control, ribosomal 18S was amplified

from the same cDNA samples. Products were separated on agarose

gels, stained with GelGreen Nucleic Acid Gel Stain (Biotium, USA)

and visualized with AlphaImager 2200. Q-PCR was used to analyze

gene expression in eCM stimulated macrophages. Q-PCR was

carried out with SYBR Green I (Bio-Rad, Spain) using a 1:50

dilution of cDNA, 500 nM of primers and 20 ml final volume. The

ribosomal 18S was used to normalize gene expression using a 1:500

dilution and quantification was done according to Pfaffl method

corrected for efficiency for each primer set [23]. Absolute Q-PCR

was carried out under the same conditions using a 109 to 102 copies/

ml dilution of plasmid DNA (pGEM, Promega, USA). Standard

curves (Ct-Threshold cycle versus log copy number) were

constructed for sample copy number determination. All Q-PCR

was performed using a MyiQ instrument (BioRad, Spain).

Polysome gradients
tECs were stimulated for 24 h with either 50 mg/ml poly (I:C)

or 200 mM NSC119889 plus poly (I:C). Polysomes were obtained

as previously described [12–13] with minor modifications. Briefly,

1.86108 cells were lysed in NP-40 lysis buffer (0.2% NP-40,

40 mM KCl, 3 mM MgCl2, 5% Glycerol, 10 mM Tris-HCl,

5 mM Dithiothreitol, 50 Units RnaseOUT (Life Technologies

S.A., Spain)) and cytoplasmic extracts loaded onto pre-prepared

15–40% sucrose gradients. Gradients were centrifuged at

140,0006g at 4uC for 2 h and 30 minutes (Beckmann, SW55Ti

rotor). Total RNA was purified from resulting fractions (400 ml/

fraction) with Tri-Reagent (Sigma-Aldrich) following the manu-

facturer’s guidelines with minor modifications. From the 8

fractions obtained we pooled to provide 4 final fractions. Fraction

M, ribosome free mRNA; D, mono and disome bound mRNA;

and P, polysome bound mRNA.

RNA-Seq
tEC cultures (n = 8) were stimulated with poly (I:C) 50 mg/ml for

12 h. Samples were prepared with the SOLiD Whole Transcrip-

tome Analysis Kit (Applied Biosystems) according to the manufac-

turer’s protocol. Briefly, mRNA was fragmented using RNase III

and fragmentation was verified with an Agilent Bioanalyzer 2100

using the RNA 6000 Pico Chip Kit. Samples were hybridised

(Adaptor Mix A), ligated, and reverse transcribed. cDNA was

subjected to electrophoresis on a Novex 6% TBE-Urea Gel

(Invitrogen, USA), stained with SYBR Gold (Invitrogen, USA),

and the region corresponding to 100–200 nucleotides was excised

from the gel. In-gel PCR was performed and reactions purified with

the PureLink PCR Micro Kit (Invitrogen, USA) according to the

manufacturer’s protocol and analysed with an Agilent Bioanalyzer

2100 using the DNA 1000 Chip Kit (Agilent). Sequencing was

perform using the SOLiD3 System (Applied Biosystems) according

to the manufacturer’s protocol. A total of four panels were

sequenced corresponding to two panes for each library. All

sequence analysis was performed with CLC Genomics Workbench

(CLC Bio) software. Initially, sequences were trimmed based on

quality scores of 0.05 [24–25] and the number of ambiguous

nucleotides (.2 on ends). Sequences smaller than 30 bp were also

removed. RNA-Seq analysis was performed using sequence

assembly pom7 of Oncorhynchus mykiss from SIGENAE (http://

www.sigenae.org/). All contig sequences and corresponding anno-

tations were downloaded from the Trout EST contig browser (http://

public-contigbrowser.sigenae.org:9090/Oncorhynchus_mykiss/index.

html). Expression values were measured as RPKM (reads per

kilobase of exon model per million mapped reads) [26] with an

unspecific match limit of 5 and maximum number of mismatches

of 2 (CLC Genomics Workbench; CLC Bio). RNA-Seq count

data from the poly (I:C) and control groups were analyzed by

DESeq [14] to assess statistically different gene expression.

Settings for nonreplicated data were used in the analysis.

Supporting Information

Figure S1 Cell sorting of cultured trout erythrocytes using MoFlo

cell sorter (Dako Cytomation). Cells were first gated using pulse

width and forward scatter (FSC) (left). R1 population was gated by

FSC and side scatter (SSC) (right) in order to exclude aggregates.

(PDF)

Figure S2 (a) Agarose gel electrophoresis showing the PCR

products of different mRNAs in purified rainbow trout erythro-

cytes under control conditions. ENO, enolase; CR, glucocorticoid

receptor; PU.1 (spleen focus forming virus (SFFV) proviral

integration oncogene spi1); TNF, tumor necrosis factor. Ribo-

somal 18S was used as a loading control. M, molecular weight

marker. (b) Pathogen recognition receptor (PRR) expression in

control purified rainbow trout erythrocytes. Abundance of TLR3,

TLR9 and PGRP mRNAs is shown on the left panel. Right panel

is the negative controls (-). M, molecular weight marker.

(PDF)

Figure S3 Semi-quantification of RT-PCR products (densitom-

etry) from tEC and cEC stimulated over 24 h with different

PAMPs. Density of the bands was normalized with 18S and fold

change calculated over the control. (trout n = 3, chicken n = 4)

(PDF)

Figure S4 (a) Electrophoresis (virtual total RNA; Bioanalyzer

2100, Agilent Technologies) of cytoplasmic mRNA fractionated in

a 15–40% sucrose gradient (Polysome-bound mRNAs). Lane 1–8

represents fractions relative to density sedimentation; lane 9, total

RNA from rainbow trout macrophages; and M, molecular weight

marker. (b) Benzonase (500Units/ml) digestion of 50 mg/ml of

poly (I:C) in cell culture medium (DMEM, 10%FBS).

(PDF)

Table S1 All genes that were regulated at 12 h 2 fold or greater

in tEC control and poly (I:C) libraries determined by RNA-seq

analysis. ABI SOLiD sequences were mapped against the rainbow

trout SIGENAE contigs (http://public-contigbrowser.sigenae.

org:9090/Oncorhynchus_mykiss/index.html) and the RPKM

expression values were determined. Table provides number of

mapped reads/contig, expression levels, difference and fold
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change in RPKM between control and poly (I:C) libraries.

SIGENAE contigs were aligned against the Gene Ontology

Database (version GO.200801) and the top blast hit (accession

number and description) is provided for each contig.

(XLS)

Table S2 Results of DESeq analysis on the RNAseq data for

poly (I:C) and control tEC. For ‘‘Fold Change,’’ values of $1

indicate contigs for which expression in poly (I:C)-stimulated tECs

were greater than controls, while values of ,1 indicate higher

expression in control vs poly (I:C)-stimulated tECs. Annotation of

SIGENAE contigs (http://www.sigenae.org/) was performed

using a local, custom ‘‘Best Blast’’ program that aligns sequences

first by BLASTX against the NCBI nonredundant (nr) protein

database, then depending on the BLASTX results, against the

NCBI nucleotide (nt) database by BLASTN.

(XLS)

Table S3 Rainbow trout and chicken specific primers for PCR.

(JPG)
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