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Abstract

In this study, 145 peaches and nectarines displaying typical brown rot symptoms were collected from multiple provinces in
China. A subsample of 26 single-spore isolates were characterized phylogenetically and morphologically to ascertain
species. Phylogenetic analysis of internal transcribed spacer (ITS) regions 1 and 2, glyceraldehyde-3-phosphate
dehydrogenase (G3PDH), b-tubulin (TUB2) revealed the presence of three distinct Monilinia species. These species included
Monilinia fructicola, Monilia mumecola, and a previously undescribed species designated Monilia yunnanensis sp. nov. While
M. fructicola is a well-documented pathogen of Prunus persica in China, M. mumecola had primarily only been isolated from
mume fruit in Japan. Koch’s postulates for M. mumecola and M. yunnanensis were fulfilled confirming pathogenicity of the
two species on peach. Phylogenetic analysis of ITS, G3PDH, and TUB2 sequences indicated that M. yunnanensis is most
closely related to M. fructigena, a species widely prevalent in Europe. Interestingly, there were considerable differences in
the exon/intron structure of the cytochrome b (Cyt b) gene between the two species. Morphological characteristics,
including spore size, colony morphology, lesion growth rate, and sporulation, support the phylogenetic evidence
suggesting the designation of M. yunnanensis as a new species. A new multiplex PCR method was developed to facilitate
the detection of M. yunnanensis and differentiation of Monilinia spp. causing brown rot of peach in China.
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Introduction

China is the primarily producer of peaches (Prunus persica L.

Batsch) worldwide providing approximately 43% of the world

production. In addition, peaches and other agronomically

important Prunus spp. are believed to have originated from

Western China. Indeed, ancient records and archaeological

findings, indicate that the domestication of P. persica may have

occurred as early as 3000 BC [1]. Aside from P. persica, other

Prunus spp. originating from Western China include Prunus

davidiana (Carr.) Franch., Prunus ferganensis (Kost. and Rjab) Kov.

and Kost., and Prunus kansuensis Rehd., reflecting great diversity

of Prunus spp. in the region. In addition to serving as the origin

of domesticated stone fruit, Western China is, likely to serve as

the evolutionary origin of pathogens that cause diseases of

Prunus spp.

The economically most important diseases of stone fruit are

blossom blight and brown fruit rot caused by Monilinia spp. The

earliest reports of brown rot on stone fruit in China were made in

the 1920s [2]. At this time, fungal species were identified solely on

the basis of morphology and as such were classified as Monilinia

fructigena and Monilinia laxa [2,3,4,5]. It was not until the 21st

century that the diversity of Monilinia species in China was more

extensively characterized [6,7]. However, many PCR-based

diagnostic tools used to distinguish Monilinia spp. in Europe and

the Americas, failed to differentiate the morphological species

believed to be present in China [8] suggesting that other

undescribed species may be present. To date, however, completely

thorough investigations into the species causing brown rot of

peach in China have not been undertaken. Please note that

although only anamorph of several species are presented and

discussed in the manuscript, we will use the teleomorph

designation, Monilinia, when referring to the genus in order to be

consistent with the nomenclature preference of recent literature on

this organism. We will however, refer to the anamorph genus

name Monilia when describing the new species.

To date, only three species of Monilinia have been found to

occur on Prunus species worldwide; Monilinia fructicola (G. Winter)

Honey, Monilinia fructigena (Aderhold & Ruhland) Honey, and

Monilinia laxa (Aderhold & Ruhland) Honey. While M. fructicola is

widespread in the Americas, and parts of Europe and Asia [9], M.

laxa and M. fructigena are the primary species causing brown rot of

peach in Europe [10]. However, all three Monilinia spp. have also,

been reported in China [2,3,4,5,6,11]. In addition to the three

ubiquitous species, two additional species were reported recently in

China. These include M. polystroma, which was documented to

cause brown rot of Malus spp., Pyrus spp. and Prunus spp. (but not

Prunus persica) [7,12], and M. mumecola, which was initially isolated

in Japan from mume (Prunus mume) in 1982 [13,14], and later

classified as a separate species [15]. M. mumecola was described as

the causal agent of the brown rot of papaya in Hubei, China in

2009 [16].
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Given the evolutionary history of Prunus sp, and the extensive

history of Monilinia species reporting and reclassification in Asia,

there is potential for both the identification of new species, and

improved taxonomic delineation of existing species. Hence, an in-

depth investigation of species prevalence using modern phyloge-

netic tools could be warranted to better understand disease

concerns as they relate to species identity in the intensive modern

production systems of peach and nectarine in China. The

objectives of this study were to: 1) Survey and describe the

Monilinia species attacking peach in the primary production

regions of China; 2) morphologically and phylogenetically

characterize a subset of isolates representing each species identified

from each region; and 3) develop a rapid, PCR-based method to

differentiate the previously documented, and newly described

Monilinia species attacking peach in China.

Materials and Methods

Ethics statement
Hundreds of samples were collected in this study and sampling

was always conducted with the approval of the owners of the fields.

Collection of Monilinia isolates
Peach and nectarine (Prunus persica var. nectarine) fruit

sporulating with Monilinia were collected from twenty-nine

commercial orchards and one experimental orchard from nearly

all of the major peach production provinces in China including

Beijing (23 isolates), Shandong (12 isolates), Zhejiang (4 isolates),

Fujian (11 isolates), Shanxi (4 isolates), Gansu (3 isolates), Hubei

(36 isolates) and Yunnan (52 isolates). Single spore isolates were

obtained as described previously with slight modifications [17].

Briefly, individual conidia dispersed on potato dextrose agar (PDA;

200 ml juice from 200 g potato, 20 g dextrose, and 18 g agar L21)

were excised with a thin glass needle under a COIC XSZ-4G

compound light microscope (ChongQing Opitical & Electrical

Instrument Co., Ltd, Chongqing, China) and transferred to clean

PDA. After conidia germinated, individual colonies were trans-

ferred but only one single-spore isolate was maintained for each

infected fruit sample. All of the 145 isolates collected were

identified to species by morphological observation and PCR

identification (data now shown). Twenty isolates were selected for

phylogenetic and 11 for morphological analysis, respectively with

an approximately equal number representing each species

identified. The selected isolates represented all of the different in

vitro phenotypes and geographical locations included in this study

(Table S1). For long-term storage, isolates were stored at 220uC
on filter paper (Haier, Shandong, China) until further use. Briefly,

isolates were allowed to grow on filter paper discs (5 mm in

diameter) placed on PDA and incubated at 22uC in darkness. After

4 days, discs with mycelium were removed and placed into a

desiccator with silica gel for 7 days. Discs were transferred into

1.5 ml sterile centrifuge tubes with desiccated silica gel at the

bottom, and stored at 220uC. For each experiment in the study, a

new culture was started from a stored filter disc.

An additional 18 isolates of known species (Table S1) used as

morphological and phylogenetic standards for M. laxa and Chinese

M. fructicola were either on hand or provided by Dr. Imre J. Holb

(Department of Plant Protection, University of Debrecen,

Debrecen, Hungary) and Dr. Xili Liu (College of Agriculture

and Biotechnology, China Agricultural University), respectively.

In total, 37 isolates (Table S1) representing five species and three

continents were used for phylogenetic analysis, and a further

subset of this collection was selected for morphological and

pathological characterization. An isolate of Botryotinia fuckeliana

from a Hubei province peach tree, and an isolate of Sclerotinia

sclerotiorum from a Hubei province canola (Brassica napus L.) plant

were used to validate the genera specificity of diagnostic primer

sets.

DNA extractions
All representative isolates (Table S1) selected for phylogenetic

analysis were grown on PDA at 22uC for 5 days in the dark. Single

agar plugs containing actively growing mycelium were taken from

the periphery of the advancing colonies and transferred to 250-ml

flasks containing 40 ml of PDB (200 ml juice from 200 g potato

and 20 g dextrose per liter). Flasks were shaken at 120 rpm for 4

days at 22uC. The mycelium was then removed from the broth,

rinsed under sterile deionized water, and genomic DNA was

subsequently extracted using the Easypure Plant Genomic DNA

Extraction Kit (TransGen Biotech, Beijing, China) according to

the manufacturer’s instruction.

Sequencing of the ITS regions and G3PDH and TUB2 gene
fragments

From representative isolates (Table S1), the ITS regions and

fragments of the G3PDH and TUB2 gene were sequenced for

phylogenetic analysis. The ITS1-5.8S-ITS2 region was amplified

from genomic DNA with primer pair ITS1/ITS4 [18]. Based on

G3PDH gene sequences from M. fructicola (EF367148) and M.

fructigena (AJ705043), a primer pair Mon-G3pdhF/Mon-G3pdhR

was designed to amplify a 786 bp fragment (approximately 70%)

of the G3PDH gene. Similarly, primer pair Mon-TubF1/Mon-

TubR1 was designed based on the TUB2 sequences from M.

fructicola (AY283679) and M. laxa (AY349149) to amplify a 1630 bp

fragment (approximately 92%) of the TUB2 gene. All primers used

in this study are listed in table 1. PCR amplification of both genes

was performed for all isolates in 50 ml reaction volumes containing

16 PCR buffer (TransGen Biotech, Beijing, China), 20 ng

template DNA, 0.4 mM of each primer, 200 mM of each dNTP,

2.5 unit of Easy Taq DNA polymerase (TransGen Biotech,

Beijing, China). All amplifications were performed in an ‘‘iCycler’’

thermal cycler (Bio-Rad Laboratories Inc., Hercules, CA). The

amplification parameters for the ITS, consisted of an initial

denaturation at 94uC for 3 min followed by 30 cycles of 94uC for

1 min, 55uC for 1 min and 72uC for 2 min, and a final elongation

step of 72uC for 5 min. The parameters for amplifying G3PDH

and TUB2 gene fragments were largely identical with ITS

amplification, except for the annealing temperature, which was

reduced to 50uC. PCR products were extracted for sequencing

from agarose gels using a DNA Gel Extraction Kit (Axygen,

Hangzhou, China) according to the manufacturer’s instructions.

Sequencing was conducted at Beijing Genomics Institute (BGI;

Shenzhen, China).

Construction of phylogenetic trees
Phylogenetic analysis on the representative isolates (Table S1)

was performed for the noncoding renal region (ITS1-5.8S-ITS2)

and a combined data matrix of the two coding loci (G3PDH and

TUB2) respectively. Multiple alignments were conducted using

DNASTAR (DNASTAR Inc., Nevada City CA) and CLUSTAL

X 1.81 [19,20]. For constructing the ITS phylogenetic tree,

sequences of B. fuckeliana (FJ791158) was used as out-group

reference species. Strain SAS56 of B. fuckeliana (GenBank

accessions: AJ705006 and Z69263) was used as the outgroup

species in the construction of the G3PDH and TUB2 phylogenetic

trees. Maximum parsimony (MP) method and neighbor-joining

(NJ) method were used to carry out phylogenetic constructions

Monilinia spp. in China
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using MEGA version 4.0 [21]. For the MP tree, the following

settings were used: heuristic search using close neighbor

interchange (CNI; level = 1), and branch swapping method with

initial trees generated by random addition (10 reps). A maximum

composite likelihood model was used to generate the NJ tree. A

complete deletion option was used to treat gaps/missing data and

the reliability of clusters was evaluated by bootstrapping with 1000

replicates.

Cloning and analysis of cytochrome b sequences from M.
yunnanensis and M. mumecola

To provide further evidence that M. yunnanensis and M.

mumecola were phylogenetically distinct from known Monilinia

species of peach, the mitochondrial cytochrome b (Cyt b) genes

were cloned and sequences were compared to those of known

species. Genomic DNA was extracted from 1-week-old mycelial

cultures of M. yunnanensis (isolate YQG10-6c) and M. mumecola

(isolate ML-1a) using Trizol reagent (Invitrogen, Carlsbad, CA)

according to the manufacturer’s recommendations. Total RNA

was isolated from 5-day-old mycelial cultures of M. yunnanensis

(isolates SBG10-3a, YKG10-61c, KY-1, QJ-2a and YQG10-6c)

and M. mumecola (ML-1a and HXL10-1a) using the RNeasy

Plant Mini Kit (Qiagen, Valencia, CA) according to the

manufacturer’s instructions. RNA integrity was verified by

resolving on a 1% agarose gel. Quantification of all nucleic acids

was carried out using a NanoDrop 1000 spectrophotometer

(Thermo Fisher Scientific Inc., Waltham, MA). First-strand

cDNA synthesis was conducted using 500 ng total RNA from

each of the M. yunnanensis and M. mumecola isolates with an oligo-

dT primer and Superscript III reverse transcriptase (Invitrogen)

in a final volume of 10 ml according to the manufacturer’s

recommendations. Subsequent amplifications of Cyt b-specific

cDNAs were performed using 1 mL cDNA and the Platinum

PCR Supermix High Fidelity system (Invitrogen) in a final

volume of 25 mL. Primers MoniliniaP450ATG-fwd (ATG AGA

ATT TTT AAA AGT CAT CCC T) and MoniliniaP450STOP-

rev (TTA TCT ACT AGG CTT TTC TTT AGT TAA TAC)

were designed to amplify the Cyt b sequence from translational

start codon to translational stop codon based on the previously

published Cyt b sequence from the closely related B. fuckeliana

(GenBank accession AB262970). In each case, reactions were

incubated at 94uC for 2 min, followed by 32 cycles of 94uC for

30 s, 55uC for 30 s and 68uC for 1.5 min, with a final

elongation step of 68uC for 5 min.

The full-length Cyt b gene (from translational start codon to

translational stop codon) was amplified from genomic DNA of M.

yunnanensis (YQG10-6c) in a single PCR reaction using primers

MoniliniaP450ATG-fwd and MoniliniaP450STOP-rev. PCR

amplifications were carried out with approximately 200 ng

template DNA using the Platinum PCR Supermix High Fidelity

system. Thermal parameters utilized were identical to those

described for the cloning of Cyt b cDNA, except for the elongation

time, which was increased to 13 min, and the number of cycles,

which was increased to 35.

Table 1. Primers used for PCR amplification and sequencing.

Primer Name Primer Sequence (59R39) Description

Mon-G3pdhF ACGGTCAATTCAAGGGTGAT To amplify the partial fragment of G3PDH in Monilinia spp

Mon-G3pdhR ATCGAAGATGGAGGAGTGGT To amplify and sequence the G3PDH fragment

Mon-TubF1 ATGCGTGAGATTGTACGTAT To amplify and sequence the b-tubulin fragment in Monilinia spp

Mon-TubR1 GTACCAATGCAAGAAAGCCT Same as Mon-TubF1

ITS1a TCCGTAGGTGAACCTGCGG To amplify ITS region

ITS4a TCCTCCGCTTATTGATATGC To amplify and sequence ITS region

PRC Laxa-F1 ATGAGAATTTTTAAAAGTCATCCC Amplified and sequenced fragment 1

PRC Laxa-R1 CTAATGTTCTAGGTGCTCTG Same as PRC Laxa-F1

PRC Laxa-F2 GCGTGATGTTAACAATGGATG Amplified and sequenced fragment 2

Check R3 CAGGAACAGGCAGAATACA Amplified fragment 2

KES 1238b AGCTTTCCTGGGTTTGTCAAA Amplified and sequenced fragment 3

KES 1261b TCCAATTCATGGTAYAGCACTCATA Amplified fragment 3

PRC Laxa-F3 GCAACTGTGATCACCAACCT Amplified and sequenced fragment 4

P450intron6-2-revc AGTTCAACTCAGATCTAAAGATACCTC Same as PRC Laxa-F3

P450intron6-2-fwdc AGGTGAGTAGGAAATACAGATAAATG Amplified and sequenced fragment 5

PRC Laxa-R4 TTATCTACTAGGCTTTTC Same as P450intron6-2-fwd

PRCmon-F ATCTCCAACGCTTCTTGCAC Specific primer for Monilinia spp. from G3PDH

PRCmon-R CTTCTTGACGACAGCCTTGA Same as PRCmon-F

Cola-F CTGTATGATGACCGAGAAGG Species-specific primer for M. fructicola

Ensis-F GGAAACCAAGTGGTTGAGAT Species-specific primer for M. yunnanensis

Mume-F AAAGGTAGAAGACATCTTAAGG Species-specific primer for M. mumecola

Mon-R ATCTCCAAGATCCGTGAGGAG Common reverse primer for M. fructicola, M. yunnanensis, and M.
mumecola from b-tubulin gene

aWhite et al 1990.
bMiessner and Stammler 2010.
cHily et al 2010.
doi:10.1371/journal.pone.0024990.t001
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PLoS ONE | www.plosone.org 3 September 2011 | Volume 6 | Issue 9 | e24990



In the case of M. mumecola (isolate ML-1a), five successive PCR

reactions were performed to achieve the full-length Cyt b gene

sequence. The five primer pairs for the reactions are listed in

Table 1. Thermal parameters for amplifying each fragment were

as follows with 35 cycles each: 20 sec at 95uC, 30 sec at 52uC, and

5 min at 68uC (Fragments 1 and 4); 40 sec at 94uC, 50 sec at

50uC, and 3 min at 72uC (Fragments 2 and 5); 15 sec at 95uC,

30 sec at 55uC, and 5 min at 68uC (Fragment 3).

All PCR products were gel-purified using the Wizard SV Gel

and PCR Clean-Up system (Promega, Madison, WI) and were

cloned into the pGEM-T easy vector (Promega). All sequencing

was carried out using Big Dye Terminator chemistry and

AmpliTaq-FS DNA Polymerase (Applied Biosytems, Foster

City, CA) using the Applied Biosystems Automated 3730xl

DNA Analyzer at the Cornell University DNA Sequencing

facility in Ithaca, NY. In the case of the Cyt b gene sequence, a

primer walking strategy was utilized for sequencing due to its

large size (a complete listing of the primer sequences are

available upon request). All nucleotide sequences were aligned

manually using Clustal W [22] and BioEdit version 7.0.8.0 [23],

and were compared to previously reported sequences using

BLAST [24].

Colony morphology, mycelial growth rate, sporulation,
and conidial morphology of Monilinia species

At least four representative isolates from each species (M.

yunnanensis, isolates SBG10-3a, YQG10-6c, SM09-1a, KY-1; M.

fructigena, isolates SL10, Mfg2-GE-A, Mfg4-GY-A, Mfg5-SP-A;

M. mumecola, isolates ML-1a, ML-1c, HWL10-13b, HXL10-1a;

M. laxa, isolates EBR Ba11b, GEARI 3c2a, BEK-SZ, BSZGY-

SZ-1 and M. fructicola, isolates ZM09-2a, MSA9, 0907-a,

SC.Dap3, GA.Bmpc5, SC.Egpc8) were selected for in-depth

morphological and physiological characterization. To obtain

uniform colonies for each isolate, 6 mm-diameter plugs with

actively growing mycelium were removed from the periphery of a

4-day-old colony grown on PDA and placed in the center of

plastic Petri dishes (90 mm diameter) containing PDA and

incubated at 22uC in the dark. Mycelial growth rates were

determined on both PDA and V8 (200 ml V8 juice and 20 g

agar/l) media. Growth rates of isolates were determined by

incubating isolates at 22uC in darkness and measuring colony

diameters (excluding the transfer plug of 6 mm) every 2 days until

hyphae were within 2 mm of the edge of the 90 mm in diameter

Petri dish. Growth rates were expressed as mm of growth per day

and the mean of 3 replicate colonies were used to represent each

isolate. Sporulation was quantified on PDA, V8, and peach fruit.

Isolates were incubated on the two media at 22uC in darkness for

9 days before conidia were rinsed off in 2 ml of sterile water for

spore counts. Inoculation of peach fruit for determination of

sporulation was identical to the method for determining

pathogencity on fruit (see below). After 9 days of incubation,

2 ml of sterile water was added to the surface of sporulating

colonies and conidia were gently dislodged using sterile plastic

inoculation loops. The concentration of conidia in the suspen-

sions from media and fruit was determined using a haemocy-

tometer, and mean counts of three replicate samples were

determined for each isolate and medium (including fruit)

combination. In addition of the quantification of conidia, the

conidial size, and germ tube morphology were also determined

for each of the representative isolates. Conidia were harvested

from sporulating peach fruit and spread onto shallow PDA media

(,3 mm thick for maximal optical density) using sterile cotton

swabs. PDA media containing conidia was incubated at 22uC in

the dark for 5 hrs, and subsequently, the length and width of

conidia and germ tubes were measured with a stage micrometer

using a COIC XSZ-4G compound light microscope (ChongQing

Opitical & Electrical Instrument Co.) at 4006magnification. For

each isolate a minimum of 100 conidia and germ tubes were

measured. Least significant difference (LSD) tests were conducted

using DPS Data processing system 3.01 [25].

Pathogenicity of Monilina species
The pathogenicity of representative isolates of M. yunnanensis,

M. fructigena, M. mumecola, M. laxa and M. fructicola on peach was

determined. Commercially mature peach fruit (cv. ‘Zhonghua

2’) of similar size were collected, surface-sterilized with 75%

ethanol and rinsed with sterile water to remove any pesticide

residues prior to inoculation. A 5 mm plug taken from the

periphery of a 4-day-old colony grown on PDA was inserted into

a 5 mm deep hole created in the periderm of the fruit using a

5 mm cork borer. Fruit were subsequently transferred into non-

branded plastic plant propagation trays (l6w6h = 506306
20 cm) and covered with a transparent plastic lid. Wet paper

towels were placed on the bottom of the trays to maintain near

100% humidity. Trays were incubated at 22uC, 97% RH

(relative humidity) under a 14 hr light/10 hr dark regime.

Lesion diameters were measured after 2 and 4 days of

incubation. Afterwards, the lid was removed and RH was

adjusted to 75% to promote dehiscence of conidial chains. One

day later, conidia were collected with a sterile swab and

transferred into 15–20 ml distilled water. The suspension was

filtered through a double layer of gauze, and the number of

conidia was determined using a haemocytometer and a COIC

XSZ-4G compound light microscope. Lesion development and

sporulation were determined on six replicate fruit per isolate,

and the entire pathogenicity assay was repeated. Statistical

analyses were performed by DPS Data processing system 3.01

[25].

Evaluation of PCR-based methods to distinguish
Monilinia species from China

Six PCR based methods previously developed to distinguish

Monilinia spp. were evaluated for applicability to differentiate the

Chinese Monilinia species pathogenic on peach. Primer sets

included ITS1Mfcl/ITS4Mfcl, ITS1Mlx/ITS4Mlx, ITS1Mfgn/

ITS4Mfgn [26]; IMfF/IMfR, MLF2/MLR2 [27,28]; MO368-5,

MO368-8R, MO368-10R, and Laxa-R2 [29]; IColaS/IColaAS,

IGenaS/IGenaAS, and ILaxaS/ILaxaAS [30]; KES 1238/KES 1261

[31], as well as P450intron6-2-fwd/P450intron6-2-rev [32]. All

PCR procedures were performed as described in the associated

references.

Development of a PCR-based method to distinguish
Chinese Monilinia species

Based on the aligned sequences of G3PDH from Chinese

Monilinia isolates, B. fuckeliana (AM231159), and S. sclerotiorum

(AJ705044), primers PRCmon-F and PRCmon-R were designed

to differentiate the Monilinia species causing brown rot of peach.

Primers based on TUB2 sequences were designed to distinguish

Chinese Monilinia species from each other. Reverse primer Mon-R

and species-specific forward primers, Cola-F, Ensis-F and Mume-F

were designed to differentiate M. fructicola, M. yunnanensis and M.

mumecola, respectively. Closely related B. fuckeliana and S. sclerotiorum

were included in all PCR experiments as out-group negative

controls [33]. PCR reactions were carried out in a volume of 25 ml

containing 16 PCR buffer (TransGen Biotech, Beijing, China),

200 mM of each dNTP, 20 ng template DNA, 0.2 mM of each

Monilinia spp. in China
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primer, and 1 unit of Easy Taq DNA polymerase (TransGen

Biotech, Beijing, China). The PCR amplification program

consisted of an initial denaturation at 94uC for 3 min followed

by 35 cycles of 30 sec at 94uC, 30 sec at 58uC, and 40 sec at 72uC
and a final extension step at 72uC for 5 min. Products were

resolved on 1.2% agarose gel (AGAROSE G-10, GENE

COMPANY, Hong Kong, China) in 0.56TBE buffer for 1 h at

100 v. Gels were stained with ethidium bromide, and visualized

using an AlphalmagerH EP image acquisition system (Alpha

Innotech, Santa Clara, CA, USA).

Results

Based on nucleotide sequence comparisons of the noncoding

ribosomal ITS regions and the coding regions of G3PDH and TUB2

genes, and unique morphological features (see below), several Chinese

isolates were found to be sufficiently distinct from other known

Monilinia species as to potentially warrant classification of a new species,

which we designated Monilia yunnanensis. Detailed description of the

proposed species and summary to distinctive features is provided

below. The remainder of the isolates was classified as either M. fructicola

with highest similarity to those from the United States or M. mumecola

with highest similarity to those from China.

Analysis of internal transcribed spacer (ITS) regions 1
and 2

The ITS1-5.8S-ITS2 sequences of 7 isolates (Table S1) were

identical with M. mumecola (Genbank accession nos. AB125620,

AB125613 and AB125614). Within each species, the ITS

sequences of M. yunnanensis, M. fructigena, M. fructicola, and M. laxa

isolates were 100% identical to one another. Interestingly, all of

the M. mumecola isolates collected from peach had a cytosine (C) at

the 442 position while all isolates from nectarine displayed a

thymine (T) at this location (Fig. 1). Between the four species, there

were considerable nucleotide variations. A total of eleven base pair

differences were observed between M. yunnanensis and the next

closest species M. fructigena. A minimum of eight base pair

differences were observed between M. mumecola and the next

closest species M. laxa from Europe and the United States. All M.

fructicola isolates regardless of the origin had identical ITS

sequences. There were 18 or 19 (depending on the origin of the

isolate) variations between M. mumecola and M. polystroma, and 10

variations between M. yunnanensis and M. polystroma.

Phylogenetic analysis was conducted with Monilinia species

causing brown rot of peach and nectarine in China (thus M.

polystroma was excluded). The ITS data set consisted of 38 fungal

isolates including the outgroup fungus B. fuckeliana. There were a

total of 437 nucleotide positions included in the final dataset, 18 of

which were parsimony informative. MP (Fig. 2) and NJ (data not

shown) analyses resulted in similar topologies. Both phylogenetic

trees revealed distinct clusters for each species. From the topology

of the ITS tree, M. yunnanensis isolates were most closely related to

M. fructigena, whereas M. mumecola isolates were most closely related

to M. laxa. The ITS sequences for M. fructicola isolate 0907-a, M.

laxa isolate BF-SZ-1 obtained from Europe , M. fructigena isolate

SL10 from Europe, and M. yunnanensis isolate KY-1 were deposited

in GenBank under accession numbers HQ908789, HQ908790,

HQ908791, and HQ908788 respectively. The sequences of M.

mumecola isolates ML-1a from peach and HXL10-1a from

nectarine were submitted under accession numbers HQ908786

and HQ908787, respectively. Unfortunately, the phylogenetic tree

based on ITS sequences revealed many low bootstrap values, and

as such, provided a weak indication of genetic relationships

between some of the clades (Fig. 2).

Construction of phylogenetic trees using G3PDH and
TUB2 sequences

Phylogenetic trees were generated from a data set of combined

partial sequences of the G3PDH and TUB2 genes from the same

above-mentioned 38 isolates including the outgroup species B.

fuckeliana. There were a total of 2215 nucleotide positions included

in the final dataset, 172 of which were parsimony informative. MP

and NJ analysis of the combined DNA sequences generated two

distinct phylogenetic trees with a similar topological structure.

Hence, the MP phylogeny for the combined partial G3PDH and

TUB2 sequences (Fig. 3) was used for drawing conclusions

regarding species. In both MP and NJ (data not shown)

phylogenetic trees, isolates of the three European and North

American Monilinia species (M. fructicola, M. fructigena and M. laxa),

and the two Chinese species M. yunnanensis and M. mumecola formed

monophyletic clades within a larger derived clade within the

Monilinia genus. M. yunnanensis isolates were more closely related to

European M. fructigena isolates than to M. mumecola isolates. M.

fructicola was the most basal clade, while the clades of the other

species were more derived but shared a single common ancestor

with M. fructicola. G3PDH sequences were deposited in GenBank

under accession nos. HQ908777, HQ908778 & HQ908779 for

M. fructicola, HQ908781 for M. laxa from Europe, HQ908784 &

HQ908785 for M. mumecola, HQ908780 for European M.

fructigena, and HQ908782 & HQ908783 for M. yunnanensis.

TUB2 sequences were deposited under accession nos. HQ908768,

HQ908769 & HQ908770 for M. fructicola, HQ908772 for M. laxa

from Europe, HQ908774, HQ908775 & HQ908776 for M.

mumecola, HQ908771 for European M. fructigena, and HQ908773

for M. yunnanensis.

Comparison of the Cyt b sequences from Monilinia
species

Cyt b sequences were shown phylogenetically informative

among Monilinia spp. in our previous study [32]. Therefore, Cyt

b genes were isolated from M. yunnanensis and M. mumecola and

compared to M. fructicola, M. laxa and M. fructigena. The Cyt b gene

from M. yunnanensis was 12632 bp in length with 7 introns

separating the exons; the same gene from M. mumecola was

14203 bp in length with 6 introns separating exons (Genbank

accession nos. HQ908793 and JN204425, respectively; Fig. 4).

The Cyt b coding sequences were both 1176 bp in length and

shared 99% identity.

The Cyt b gene coding sequences were identical for all five M.

yunnanensis isolates (GenBank accession no. of isolate YQG10-6c is

HQ908792) and shared 99% identity with M. fructigena from

Europe (Genbank accession no. GU952818), 99% identity with

M. laxa from the United States (GU952816), and 98% identity

with M. fructicola from the United States (GU952814). The Cyt b

gene coding regions were identical for the two M. mumecola isolates

sequenced (GenBank accession no. for isolate ML-1a is JN572107)

and shared 99% identity with M. laxa from the United States

(GU952816), 99% identity with M. fructigena from Europe

(GU952818), and 98% identity with M. fructicola from the United

States (GU952814). The Cyt b gene structure of M. laxa, M.

mumecola, M. fructigena, M. yunnanensis and M. fructicola isolates

differed in exon/intron organization (Fig. 4) in that the introns

showed a patchy distribution. For example, in M. yunnanensis, the

positions of five of the seven introns were identical to those of other

Monilinia species [32]. Intron 1 of M. yunnanensis and M. fructigena

was located at position 201, and introns 2, 5, and 6 of M.

yunnanensis corresponded to introns 4, 6, and 7 of M. fructigena

located at positions 393, 506 and 779, respectively (Fig. 4). Despite
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the fact that these homologous introns have high levels of identity

(.98%) with one another, the sizes of these introns clearly differed

between the two species. Interestingly, intron 4 of M. yunnanensis

and intron 5 of M. fructigena were located at position 490 but the

sequences did not share noticeable sequence similarity (Fig. 4).

Moreover, introns 3 and 7 of M. yunnanensis and introns 2 and 3 of

M. fructigena were located at different positions in the coding

sequence and shared no noticeable sequence similarity (Fig. 4).

Colony morphology, mycelial growth rate, sporulation,
and conidial morphology of Monilinia species

Colony morphology of M. mumecola was similar to M. laxa

(Fig. 5A–D). These two species have a growth pattern distinct from

any other species characterized by concentric rings of mycelium

with lobbed margins. Despite a similar appearance, the colony

color of M. mumecola tended to be gray-green compared to the gray

M. laxa colony. Similarly, the colony color of M. yunnanensis isolates

was gray-green compared to the gray M. fructigena colony (Fig. 5E–

H). Fragmented radial colonies, which were frequently observed in

M. fructigena isolates, were rarely observed in M. yunnanensis

(Fig. 5E–H). After more than 10 days of incubation, most M.

yunnanensis isolates started to develop stromata. However, stroma-

tization was never observed in any of the M. fructigena isolates.

The mean and range of colony growth rates of Monilinia species

on PDA medium were significantly different (P,0.05) between M.

fructicola and M. laxa, M. fructicola and M. mumecola and between M.

fructigena and M. laxa. M. fructicola isolates displayed the highest

growth rates while M. laxa exhibited the lowest. On V8 medium,

M. mumecola grew significantly (P,0.05) faster than M. laxa isolates.

However, no significant differences (P.0.05) in growth rate were

observed between M. yunnanensis and M. fructigena. In general,

colony growth rates of all test isolates were found to be higher on

V8 medium compared to PDA. On PDA medium, there were no

significant differences in the number of conidia produced among

Monilinia species (Table 2). On V8 medium only M. fructicola

consistently sporulated, and the other species groups rarely

produced conidia (Table 2).

Differences in conidia size were apparent among species

(Table 3). The conidia of M. mumecola were the largest on average,

and those of the M. laxa were the smallest on average. The conidia

of M. yunnanensis isolates were smaller on average compared with

those of M. fructigena (Table 3). Consistent with that, the range of

conidia sizes was unique for each of the new species and strikingly

distinct from the genetically closest Monilinia relative. For example,

the range of conidia size for M. yunnanensis was 10–2167–12,

whereas the range for M. fructigena was 12–3167–17 (Table 3).

M. mumecola isolates often produced more than two germ tubes

per conidium, which also appeared somewhat misshapen (Fig. 6A,

B). By comparison M. yunnanensis and M. fructigena produced one or

two germ tubes per conidium, and all M. laxa and M. fructicola

isolates consistently produced one germ tube per conidium

(Fig. 6C).

Pathogenicity of Monilina species
All species tested (M. yunnanensis. M. fructigena, M. mumecola, M.

laxa and M. fructicola) were pathogenic and sporulated on peach

fruit. Koch’s postulates were fulfilled by reisolating the fungus

from symptomatic fruit and re-identifying the pathogen to the

species level (data not shown). In each experimental run,

significant differences (P,0.05) in average lesion growth rates

were observed between M. yunnanensis and M. fructigena and

between M. mumecola and M. laxa (Table 3). Similarly, the average

number of conidia produced on lesions by M. yunnanensis and M.

fructigena were significantly different (P,0.05), but not for M.

mumecola and M. laxa (Table 3). Also, lesion morphology on peach

fruit differed between M. mumecola and M. laxa (Fig. 7A, B). The

lesions on fruit inoculated with M. mumecola developed a whiter,

denser mycelium than those of produced by isolates of M. laxa,

which produced sparse aerial mycelium with a black distinct lesion

margin. M. yunnanensis and M. fructigena produced indistinguishable

symptoms (Fig. 7C, D), which was also the case for M. fructicola

isolates from China and the US (Fig. 7E, F).

Evaluation of PCR-based methods to distinguish
Monilinia species from China

PCR results of six methods designed to differentiate Monilinia

spp. are shown in Table 4. None of the six molecular tools alone

was able to distinguish all five species (M. fructicola, M. fructigena, M.

laxa, M. yunnanensis and M. mumecola) from one another. M.

fructicola, M. fructigena, and M. laxa isolates were reliably

differentiated by the methods of Ioos et al. [26], Miessner and

Stammler, [31], and Hily et al. [32]. However, neither of these

Figure 1. Sequence alignment of the ITS1 and ITS2 regions of ribosomal DNA (rDNA) of Monilinia spp. The sequence of M. polystroma
(accession no. Y17876) was obtained from Genbank. Each Symbol ‘*’ represents conserved regions of 5 bp in length. while ‘...’ represent conserved
regions of 95 bp in length. ‘‘Y’’ in bold indicates both cytosine(C) and thymine (T) were present in this position in M. mumecola.
doi:10.1371/journal.pone.0024990.g001
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methods was able to distinguish M. yunnanensis from M. fructigena.

Likewise, the methods developed by Ioos et al. [26] and Ma et al.

[27,28] did not distinguish between M. mumecola and M. laxa and

the method developed by Hily [32] did not distinguish M. mumecola

from M. fructicola. Additionally, the methods developed by

Miessner and Stammler [31], and Hily et al. [32] did not

distinguish between M. yunnanensis and M. laxa (Table 4).

Development of a molecular tool to distinguish Chinese
Monilinia species affecting peach

A multiplex PCR method was developed to differentiate

Chinese Monilinia species on peach. Based on the G3PDH gene

sequences, primer pair PRCmon-F/PRCmon-R amplified a

354 bp fragment from all Monilinia species, but not from closely

related genera such as Botrytinia and Sclerotinia (Fig. 8). The cocktail

also contained common reverse primer Mon-R and forward

species-specific primers Cola-F, Ensis-F, and Mume-F, which

produced amplicons 237 bp, 534 bp, or 712 bp in length from

M. yunnanensis, M. fructicola, or M. mumecola, respectively (Fig. 8). All

previously confirmed Monilinia isolates used in this study (Table S1)

produced the expected amplicon sizes with this new multiplex

PCR tool. All 145 isolates collected for this study from China were

identified as M. fructicola, M. yunnanensis, or M. mumecola. Isolates

that were collected from Beijing, Shandong, Zhejiang, Fujian and

Figure 2. Phylogeny of the rDNA region ITS1-5.8S-ITS2. Shown is the most parsimonious tree for 37 Monilinia isolates and one outgroup
species (Botryotinia fuckeliana), with 437 characters, out of which 18 were parsimony informative. The numbers labeled at each node indicate the
bootstrap (BS) percentages (N = 1000) supporting individual branches: BS value from the MP test/BS value from the neighbor-joining (NJ) test.
doi:10.1371/journal.pone.0024990.g002
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Gansu provinces were M. fructicola, isolates from Hubei province in

central China were M. mumecola, and isolates from Yunnan and

Shanxi provinces in Western China were M. yunnanensis. The

closely related B. fuckeliana and S. sclerotiorum were also tested using

these two primer sets. While there was no amplicon obtained from

S. sclerotiorum, a 237 bp fragment was produced from B. fuckeliana.

Although, this 237 bp amplicon was also produced in M. fructicola,

B. fuckeliana produces no amplicon with the PRCmon-F1/

PRCmon-R1 primer set (Fig. 8).

Discussion

Our phylogenetic, morphological, and cultural characterization

of Monilinia isolates suggested that in our sample size there were

three species causing brown rot of peach and nectarine in China,

one of which we believe to be a new species M. yunnanensis. The

ITS sequence is widely used in taxonomy and molecular

phylogeny [34,35,36], and several phylogenetic analyses had been

performed among and within Monilinia species on the basis of

Figure 3. Phylogeny of 38 isolates of Monilinia spp. and Botryotinia fuckeliana. Maximum parsimony (MP) tree inferred from the data set
containing the combined DNA sequences of G3PDH and TUB2, with 2215 characters, 172 of which were informative. The numbers labeled at each
node indicate the bootstrap (BS) percentage (N = 1000): BS value from the MP test/BS value from the neighbor-joining (NJ) test.
doi:10.1371/journal.pone.0024990.g003
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sequence differences in this region [33,37,38]. However, we found

this locus to provide a fairly weak phylogeny of Monilinia species

evidenced by the low bootstrap values resulting from the relative

low number of parsimony informative positions. Hence, we

constructed addiltional phylogenies from TUB2, and G3PDH,

which have also revealed significant taxonomic relations in fungi

[39,40,41,42,43,44]. For examples, Couch and Kohn [39]

segregated Magnaporthe oryzae from M. grisea using a multilocus

gene genealogy, including the TUB2 sequences; Fournier et al.

[45] distinguished two Botrytis sibling species (B. cinerea Group I and

II) from grape by using DNA sequence data including the TUB2

and G3PDH genes. The ITS, TUB2, and G3PDH data in our study

Figure 4. Exon/intron organization of the Cyt b gene from five Monilinia species. Schematic of Cyt b gene exon and intron organizations
from Monilinia species showing intron positions and intron sequence similarities. Identical intron symbols at the same nucleotide position indicate
high sequence similarity. For example, at position 490, M. laxa and M. fructigena had homologous introns, and M. mumecola, M. yunnanensis and M.
fructicola had homologous introns but the two groups of introns did not share high sequence similarity.
doi:10.1371/journal.pone.0024990.g004

Figure 5. Characteristics of single spore isolates of Monilinia spp. grown on potato dextrose agar (PDA) at 226C in darkness for 9
days. A–B colonies of M. laxa (isolates GEARI 3c2a and BSZGY-SZ-1). C–D colonies of M. mumecola (isolates HGL10-1a and ML-1a). E–F colonies of M.
fructigena (isolates Mfg2-GE-A and Mfg4-GY-A). G–H colonies of M. yunnanensis (isolates QJ-4a and SM09-5a).
doi:10.1371/journal.pone.0024990.g005
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clearly support the designation of a new Monilinia species, M.

yunnanensis. Morphological data as well as in vitro growth

characteristics and pathogenicity data are concordant with the

molecular evidence for the suggested species delineation.

ITS sequence data showed that M. yunnanensis was distantly

related to M. polystroma, a species shown to affect Malus, Pyrus, and

Prunus spp. (but not P. persica) and which was found in China only

recently [7]. M. polystroma, which is most closely related to M.

fructigena, was designated as a new species based on its ability to

produce more stroma and based on five basepair differences in the

ITS regions compared to M. fructigena [12]. In comparison, M.

yunnanensis revealed eleven nucleotide variations in the ITS

compared to its respective closest Monilinia relative M. fructigena.

In addition to the phylogenetic support, morphological data also

distinguished M. yunnanensis from the closely related M. fructigena.

For example, the colony morphology was unlike that of M.

fructigena, and M. yunnanensis conidia were smaller than those of M.

fructigena. Previous studies [37,46,47,48] have acknowledged that

what was believed to be populations of M. fructigena from Asia were

different from European M. fructigena populations. Indeed,

Khokhriakova [46] found differences in conidia size between M.

fructigena populations from Europe and different regional popula-

tions in the former Soviet Union. The author found that the mean

length and width of conidia were 19.4611.5 mm for isolates from a

European population, 17.2611.9 mm for isolates from a central

Asian population, and 18611.4 mm for isolates from a Far Eastern

population. Leeuwen [12] also made similar observations and

found that conidia from Asian isolates tended to be smaller.

Wormald [47] noted that a Japanese M. fructigena culture produced

zones of black stromatal plates in culture, but the author never

observed this phenomenon in European M. fructigena isolates.

Willetts [48] found that European M. fructigena isolates produced

few poorly-developed stromatic tissue, compared with Asian M.

fructigena isolates. Consistent with this study, considerable numbers

of stromata were produced in most M. yunnanensis isolates. Given

the considerable evidence, it is likely that what was believed to be

M. fructigena from Asia was likely a new species, but not realized.

The already strong phylogenetic and morphological evidence

outlined in this study for delineating M. yunnanensis from M.

fructigena was further supported by analysis of the cytochrome b

gene sequence. The Cyt b gene exon/intron organization of M.

yunnanensis was quite different from M. fructigena. Only four of the

seven introns in M. yunnanensis revealed sequence identities greater

than 98% compared to the corresponding introns in M. fructigena.

The coding region of the Cyt b gene from M. yunnanensis showed

99.1% identity with that of M. fructigena. This high level of

homology is to be expected given that the Cyt b exon sequences in

general were highly conserved among the five Monilinia species for

which the gene has been cloned [32]. For example, the authors

found that M. fructicola and M. fructigena exhibited 97.5% sequence

identity the least, while M. laxa and M. fructigena displayed more

than 99.1% sequence identity.

Based on both molecular and morphological evidence we

propose to name M. yunnanensis its own species. Given that only the

anamorph has been observed, we describe the anamorph of

Monilia yunnanensis.

Table 2. Colony growth rate and sporulation of Monilinia isolates on PDA and V8 mediaz.

Species Colony growth rate (mm d21) Sporulationx

On PDA On V8 On PDA On V8

Meany Range Mean Range Mean Range Mean Range

M. fructicola 10.860.79a 8.3–12.7 12.060.24a 10.9–12.5 3.960.45a 2.8–5.3 5.260.14 4.6–5.4

M. yunnanensis 8.560.59abc 6.5–9.9 10.960.06ab 10.8–11 nd - nd -

M. fructigena 8.961.02ab 6.8–10.8 10.260.82ab 7.8–11.5 nd - nd -

M. mumecola 6.961.48bc 4.0–8.7 11.661.31a 9.7–14.1 2.560.85a 0–2.9 nd -

M. laxa 6.060.58c 4.5–7.3 8.260.94b 5.4–9.5 1.860.91a 0–3.7 nd -

zAverage of at least 4 isolates from each species.
xlog-transformed number of conidia per cm2; nd = not detected.
yMean 6 S.E.M (standard error of mean); values within the same column followed by the same letters are not significantly different based on the analysis of least
significant difference (LSD) test at P = 0.05.

doi:10.1371/journal.pone.0024990.t002

Table 3. Lesion growth rate, sporulation, and conidia size of selected Monilinia isolates on peach fruit.

Species Lesion growth rate (mm d21) Num of conidia, cm22 Conidia size, mm

Exp 1 Exp 2 Exp 1 Exp 2 Mean (L6W) Range

M. fructicola 21.261.16cz 20.760.77b 6.360.11a 6.560.08a 16610 10–1967–14

M. yunnanensis 25.560.52ab 27.760.79a 2.660.34d 2.960.32d 1569 10–2167–12

M. fructigena 21.360.89c 23.661.04b 4.360.02b 4.260.07b 22612 12–3167–17

M. mumecola 22.460.79bc 23.561.30b 3.360.29cd 3.460.04cd 21615 14–31611–17

M. laxa 25.861.07a 27.360.21a 4.060.16bc 3.960.09bc 1369 10–1767–11

zMean 6 S.E.M (standard error of mean); values within the same column followed by the same letters are not significantly different based on the analysis of least
significant difference (LSD) test at P = 0.05. Values were log transformed prior to statistical analysis.

doi:10.1371/journal.pone.0024990.t003
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Monilia yunnanensis M.J. Hu & C.X. Luo, sp. nov.
MycoBank no.: MB563122.

Etym. ‘‘yunnanensis’’ indicates the province (Yunnan), where the

fungus was originally isolated.

Colonies on potato dextrose agar (PDA) and on V8 reaching

50–70 mm, 75–80 mm in diameter respectively after 7 d at 22uC.

When grown on PDA, colonies begin pale green and become tan

after 15–20 days of incubation at 22uC, conidia sparse, stromata

abundant, black in color, spherical to elliptical in shape, discrete or

aggregated. Conidia ovoid or limoniform, measuring 10–2167–

12 mm, av. 1569 mm when grown on peach fruit at 22uC.

Mycelial pustules are common on symptomatic fruits.

Living culture YKG10-61c (AF2011002, CCTCC) was depos-

ited in the China Center for Type Culture Collection (CCTCC) at

Wuhan University, Wuhan City, Hubei Province, China. This

single-spore isolate was collected from a peach fruit in Anning

City, Yunnan Province, China, on August 5, 2010.

Despite attempts (not shown), we were not able to induce

apothecium production in M. yunnanensis following the method

described previously [49]. Mummified peach fruit infected by M.

yunnanensis were collected to induce the production of apothecia

using the method for Monilinia vaccinii-corymbosi [50]. However, no

apothecia were produced from fruit infected with M. yunnanensis

using this method. Given that no teleomorph examples are

currently available, we only describe a new anamorphic species.

In regard to M. mumecola, one of the other species in our survey,

the phylogenetic and morphological data (ITS1-5.8S-ITS2

sequences, conidium size, germ tube development, and colony

appearance on PDA) were consistent with the previous description

of the species [15]. However, to our knowledge this is the first

report of M. mumecola causing brown rot of peach and nectarine in

China.

M. fructicola was the third species we routinely identified in our

survey. This fungus was only recently reported a new pathogen in

China [6,11], however, a population analysis indicated that this

species had been in the country long before the first report in 2005

[51]. In our study, M. fructicola was collected from most provinces

investigated, which supports the conclusions made by Fan et al.

Figure 6. Germ tube morphology of M. mumecola (A–B) and M. laxa (C). Conidia were incubated on PDA at 22uC in the dark for 6 hours.
Bar = 10 mm.
doi:10.1371/journal.pone.0024990.g006
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Figure 7. Symptoms of infection by Monilinia spp. on peach fruit (cv. ‘Zhonghua 2’) after 3 days of incubation at 226C in 14 h light/
10 dark regime. A–F, lesion resulting from infection by M. mumecola, M. laxa, M. yunnanensis, M. fructigena, Chinese M. fructicola and American M.
fructicola, respectively.
doi:10.1371/journal.pone.0024990.g007

Tables 4. PCR results of different diagnostic methods to distinguish Monilinia speciesz.

Isolates Ioos et al., 2000
Ma et al., 2003,
2007

Cote et al.,
2004 Gell et al., 2007

Miessner and
Stammler, 2010 Hily et al., 2010

Name Taxon A B C A C A B C A B C A B C A B C

0907a M. fructicola + 2 2 + 2 + 2 2 + 2 2 + 2 2 + 2 2

SD25a M. fructicola + 2 2 + 2 22 2 2 + 2 2 + 2 2 + 2 2

ZM0922a M. fructicola + 2 2 + 2 + 2 22 + 2 2 + 2 2 + 2 2

SC.Dap3 M. fructicola + 2 2 + 2 2 2 2 + 2 2 + 2 2 + 2 2

SC.Egpc8 M. fructicola + 2 2 + 2 2 2 2 + 2 2 + 2 2 + 2 2

QJ22a M. yunnanensis 2 + + 2 + 2 2 2 2 2 2 2 2 + 2 2 +

SM0927a M. yunnanensis 2 + + 2 + 2 2 2 2 2 2 2 2 + 2 2 +

SBG1023a M. yunnanensis 2 + + 2 + 2 2 2 2 2 2 2 2 22 2 2 +

SL10 M. fructigena 2 + 2 2 + 2 + 2 2 2 2 2 + 2 2 + 2

Mfg22GE2A M. fructigena 2 + 2 2 + 2 + 2 2 2 2 2 + 2 2 + 2

ML21c M. mumecola 2 2 + + + 2 2 2 2 2 2 2 2 2 + 2 2

HGL1021a M. mumecola 2 2 + 2 + 2 2 2 2 2 2 2 2 2 + 2 2

HXL1024a M. mumecola 2 2 + 2 + 2 2 2 2 2 2 2 2 2 + 2 2

BSZGY2SZ21 M. laxa 2 2 + 2 + 2 2 + 2 2 + 2 2 + 2 2 +

EBR Ba2121b M. laxa 2 2 + 2 + 2 2 22 2 2 + 2 2 + 2 2 +

zA: M. fructicola–specific product; B: M. fructigena–specific product; C: M. laxa–specific product; ‘+’ and ‘2’ indicate the presence and absence of specific band patterns,
respectively.

doi:10.1371/journal.pone.0024990.t004
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(2010) that this species has been in China for a considerable period

of time. In both of our phylogenetic analyses, the M. fructicola

isolates from China and America clustered together and this close

relationship was further supported by morphological and cultural

characteristics. This species was most distantly related to M. laxa

and M. mumecola.

In contrast to other studies [8,52], we did not find evidence for

the presence of M. fructigena and M. laxa on peach or nectarine in

China. Although isolates were collected from nearly all major

peach growing provinces including Northern China (Beijing),

Eastern China (Shandong), Southeastern China (Zhejing, Fujian),

Central China (Hubei), Northwestern China (Shanxi, Gansu), and

Southwestern China (Yunnan), our sample size of 145 isolates may

not be sufficient to rule out the existence of M. fructigena and M.

laxa in China.

We developed a new PCR-based method for differentiating

Monilinia spp. infecting peach in China. Aforementioned studies

[8] used three molecular techniques to identify Chinese isolates of

Monilinia to the species level. We’ve demonstrated that techniques,

developed primarily to distinguish European and North American

Monilinia species, do not accurately discriminate Monilinia species

from China, especially M. yunnanensis. Moreover, using previously

developed techniques, we’ve found that M. yunnanensis and M.

mumecola can be misidentified as M. fructigena and M. laxa,

respectively. For example, our phylogenetic analysis of the ITS,

G3PDH and TUB2 sequences confirmed that M. mumecola is closely

related to M. laxa, which supports of the possibility of prior

misidentification. Additionally, the cultural characteristics on PDA

medium, including growth rate, colony morphology, and sporu-

lation, largely matched those described for M. laxa by Leeuwen

and Leeuwen [53] and Lane [54].

The phylogenetic analysis of ITS, G3PDH and TUB2 gene

sequences allows some speculation on the evolution of the Monilinia

species. M. mumecola appears to be a direct descendant of M. laxa.

Both phylogenetic trees also indicate a close relationship between

M. yunnanensis and M. fructigena suggesting that M. fructigena may

have evolved from M. yunnanensis. In contrast to a previous rDNA

analysis [33], our phylogenetic analyses of G3PDH plus TUB2

gene sequences illustrated that M. fructicola may have evolved

earlier than other Monilinia spp. The latter hypothesis is

strengthened by the fact that the rDNA sequences contained less

phylogenetically informative characters compared with the

G3PDH and TUB2 sequences. A more detailed DNA sequence

analysis, including additional populations, populations from other

parts of world, and additional genes, would provide a more

complete picture of the evolution of Monilinia species. Leeuwen

[12] suggested that the ancestor of M. fructigena and M. polystroma

might have evolved in the Far East as a specialized fruit pathogen,

before they evolved into two distinct groups in Europe and Japan

due to geographical separation. The fact that M. yunnanensis found

in China appears to be more basal in the phylogeny than M.

fructigena, lends some support to Leeuwen’s suggestion.

In conclusion, phylogenetic, morphological, and cultural

analysis of Monilinia isolates from China revealed a previously

undescribed species we’ve designated Monilia yunnanensis, and the

first report of M. mumecola on peach and nectarine. A molecular

assay was developed to detect these two species and differentiate

the Chinese Monilinia species pathogenic on peach including the

newly described M. yunnanensis.
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