TY - JOUR T1 - Biological Feedbacks as Cause and Demise of Neoproterozoic Icehouse: Astrobiological Prospects for Faster Evolution and Importance of Cold Conditions A1 - Janhunen, Pekka A1 - Kaartokallio, Hermanni A1 - Oksanen, Ilona A1 - Lehto, Kirsi A1 - Lehto, Harry Y1 - 2007/02/14 N2 - Several severe glaciations occurred during the Neoproterozoic eon, and especially near its end in the Cryogenian period (630–850 Ma). While the glacial periods themselves were probably related to the continental positions being appropriate for glaciation, the general coldness of the Neoproterozoic and Cryogenian as a whole lacks specific explanation. The Cryogenian was immediately followed by the Ediacaran biota and Cambrian Metazoan, thus understanding the climate-biosphere interactions around the Cryogenian period is central to understanding the development of complex multicellular life in general. Here we present a feedback mechanism between growth of eukaryotic algal phytoplankton and climate which explains how the Earth system gradually entered the Cryogenian icehouse from the warm Mesoproterozoic greenhouse. The more abrupt termination of the Cryogenian is explained by the increase in gaseous carbon release caused by the more complex planktonic and benthic foodwebs and enhanced by a diversification of metazoan zooplankton and benthic animals. The increased ecosystem complexity caused a decrease in organic carbon burial rate, breaking the algal-climatic feedback loop of the earlier Neoproterozoic eon. Prior to the Neoproterozoic eon, eukaryotic evolution took place in a slow timescale regulated by interior cooling of the Earth and solar brightening. Evolution could have proceeded faster had these geophysical processes been faster. Thus, complex life could theoretically also be found around stars that are more massive than the Sun and have main sequence life shorter than 10 Ga. We also suggest that snow and glaciers are, in a statistical sense, important markers for conditions that may possibly promote the development of complex life on extrasolar planets. JF - PLOS ONE JA - PLOS ONE VL - 2 IS - 2 UR - https://doi.org/10.1371/journal.pone.0000214 SP - e214 EP - PB - Public Library of Science M3 - doi:10.1371/journal.pone.0000214 ER -