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Abstract

Background: MiR-221 and miR-222 are two highly homologous microRNAs whose upregulation has been recently described
in several types of human tumors, for some of which their oncogenic role was explained by the discovery of their target p27,
a key cell cycle regulator. We previously showed this regulatory relationship in prostate carcinoma cell lines in vitro,
underlying the role of miR-221/222 as inducers of proliferation and tumorigenicity.

Methodology/Principal Findings: Here we describe a number of in vivo approaches confirming our previous data. The
ectopic overexpression of miR-221 is able, per se, to confer a high growth advantage to LNCaP-derived tumors in SCID mice.
Consistently, the anti-miR-221/222 antagomir treatment of established subcutaneous tumors derived from the highly
aggressive PC3 cell line, naturally expressing high levels of miR-221/222, reduces tumor growth by increasing intratumoral
p27 amount; this effect is long lasting, as it is detectable as long as 25 days after the treatment. Furthermore, we provide
evidence in favour of a clinical relevance of the role of miR-221/222 in prostate carcinoma, by showing their general
upregulation in patient-derived primary cell lines, where we find a significant inverse correlation with p27 expression.

Conclusions/Significance: These findings suggest that modulating miR-221/222 levels may have a therapeutic potential in
prostate carcinoma.
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Introduction

MicroRNAs are short (,22 nt) RNA molecules whose rele-

vance as regulators of gene expression has been shown in relatively

recent times [1], during which, however, a huge amount of data

have been collected demonstrating that they play extremely

important roles in almost all aspects of biology, such as

development and disease. They commonly act as negative

regulators of the expression of protein coding genes, usually

recognizing and binding to specific sites in the 39UTRs of their

mRNAs, and impairing their translation, or sometimes even

inducing the degradation of the target mRNA (for an exhaustive

review, see [2]. Their involvement in cancer onset and progression

is to date well assessed [3], to such an extent that we can now

classify microRNAs as ‘‘oncomiRs’’ (oncogenic microRNAs) or,

conversely, tumor suppressor microRNAs [4]. Among oncomiRs,

we and others previously found that miR-221 and miR-222 are

involved in several different types of human neoplasms, such as

glioblastoma [5–8], prostate carcinoma [9], non-small cell lung

cancer [10,11], hepatocellular cancer [12,13], pancreatic cancer

[14], and many others. The common observation was that this

couple of microRNAs, or at least one of them, is significantly

upregulated in tumors versus normal tissues, and often its

expression marks the most aggressive forms of human solid

tumors. The molecular basis of their ‘‘oncogenic’’ role was

clarified for the first time by our group in the context of prostate

carcinoma cells, through the discovery of their target mRNA,

p27kip1, a negative regulator of cell cycle progression [9], and then

this same finding was confirmed in most forms of cancers where

the overexpression of miR-221/222 had been detected
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[7,8,11,13,15]. More recently, another cell cycle inhibitor, p57,

has been described as a specific target of miR-221/222 [8,13],

once more contributing to the general rule that one microRNA

can have pleiotropic effects by targeting more than one mRNA. In

this way a single microRNA can control a whole biological (or

pathological) pathway by ‘‘hitting’’ numerous of its keypoints. The

reason accounting for the recognition of shared targets for both

miR-221 and miR-222 is found in their ‘‘seed’’ sequences, short

(,7–8 nt) regions at their 59 ends through which they bind their

target sites in mRNA 39UTRs: these ‘‘seeds’’ are identical in miR-

221 and miR-222 and are also very well evolutionarily conserved,

likely indicating the common involvement of these two micro-

RNAs in the same pathways.

Prostate carcinoma represents a big challenge to the scientific

and clinical community as it remains the most common

malignancy in men of the Western world, where it is still the

second leading cause of cancer death [16]. The study of the

involvement of microRNAs in this tumor dates back to only three

years ago [17], and the first evidence clearly linking a microRNA

and its target to prostate carcinogenesis is even more recent [18–

21]. We previously described that miR-221/222 expression is

directly correlated with the aggressiveness of cell models of

prostate carcinoma, and that the forced overexpression of miR-

221 or miR-222 in the poorly aggressive prostate carcinoma

LNCaP cell line is sufficient to accelerate their proliferation and in

vitro tumorigenicity [9]. In the limited number of studies available

to date involving patients tissues, the expression of some selected

microRNAs has been proven useful as a biomarker for prostate

carcinoma [22–24], but no results have been published about the

possibility of in vivo modulating the expression of microRNAs

which are deregulated in this tumor.

The aim of our work was to clarify if the overexpression of these

microRNAs is able to enhance prostate carcinoma growth in vivo,

as it is in vitro, in a mouse model of subcutaneously induced

tumorigenesis, to provide a proof of the relevant role played by this

microRNA also in vivo. On the other hand, we sought to investigate

if it is possible to inhibit miR-221 and miR-222 expression in

mouse models of established prostate carcinoma, in order to set up

the premises for a future therapeutic approach. To achieve this

goal, we treated pre-established tumors induced by the s.c.

injection of PC3 cells into SCID mice, with anti-miR-221 and

anti-miR-222 ‘‘antagomirs’’, cholesterol-conjugated antisense

molecules previously shown to own a good bioavailability and

stability in vivo [25,26]. Moreover, we wanted to validate the

clinical relevance of miR-221/222 expression in prostate tumors,

and thus we measured the expression of these two microRNAs in

primary cells from 18 patients with stage II–III prostate cancer,

and concurrently quantified p27 expression, to check if the inverse

relationship linking miR-221/222 to p27 is reproducible and

significant in clinical samples.

Our findings indicate that miR-221 and miR-222 are key

modulators of prostate carcinoma also in vivo. In fact, their

inhibition significantly slows down tumor growth in a mouse

model, and they appear aberrantly expressed in patient samples

compared to normal tissues.

Results

The overexpression of miR-221 is sufficient to strongly
enhance growth of LNCaP xenografts

We have recently shown that miR-221 and miR-222 are

positive regulators of in vitro prostate carcinoma growth through

the repression of p27 [9]. In our in vitro models, each microRNA

can separately reduce p27 protein levels, and consequently is able

to accelerate prostate carcinoma cell growth and colony formation

[9]. In order to investigate if this role is relevant also in in vivo

models of prostate carcinoma, we employed LNCaP cells

permanently transfected with p-221 [9], expressing one of these

microRNAs, miR-221 (Fig. 1A), to establish subcutaneous tumors

in SCID mice, and measured tumor growth and significant

features. As shown in Fig. 1B, a strongly significant increase in

growth was conferred to tumors overexpressing miR-221, as

compared to empty-vector transfected control tumors. As clearly

depicted in the graph, the advantage in growth was very early

achieved by miR-221 expressing tumors, producing volumes that

were statistically much greater than control ones for the whole

duration of the experiment (p,0.01 for all time points). In

agreement with this observation, the average volume fold increase

of miR-221 expressing tumors at the end of the experiment was

extremely higher than that of control tumors (4.02460.89 vs

74.432619.79, p = 0.025) (Fig. 1C). Thus, the mere overexpres-

sion of miR-221 is able, per se, to highly enhance the growth of

LNCaP xenografts.

MiR-221 overexpressing tumors display significantly
enhanced levels of proliferation markers and reduced
p27 expression

To further characterize the proliferative status of miR-221 and

control xenografts, we measured the mitotic index and the

expression of Ki67 as markers of proliferation in the xenograft

tumors. As shown in the representative micrographs of Fig. 1E
(lower panels), there was a substantial increase in the percentage of

Ki67 positively stained nuclei in tumors from the p-221 transfected

cells, as compared with that in control tumors transfected with

pCDNA3 (p221 = 76% vs CTRL 57% p,0.01; Fig. 1D). The

mitotic index showed a similar trend with a three-fold increase in

miR-221 expressing cells (p-221 = 44.4 vs CTRL 13.6, p,0.00003;

Fig. 1D,E, upper panels).

In order to verify whether the effects observed in tumor growth

and proliferation were due to a persistent expression of miR-221,

we performed Northern blot analysis. As shown in Fig. 1F, the

expression of miR-221 was still very strong, even though a long

time had passed after the subcutaneous injection of LNCaP cells.

This observation led us to check the p27 status in transfected

tumors, in search of the inverse correlation expected on the basis

of the in vitro validated negative regulation of p27 by miR-221 [9],

exerted by miR-221 and miR-222 via the specific recognition of

two target sequences in the p27 39UTR (Fig. 1G). Western blot

analysis performed on protein extracts from miR-221 expressing

tumors showed a clear reduction of p27 levels, as compared to

control samples (Fig. 1F). These data indicate that the persistent

miR-221 overexpression reduces p27 expression and stimulates

proliferation in LNCaP cell xenografts.

The in vitro depletion of miR-221 and miR-222 renders
PC3 cells less efficient in the establishment of in vivo
xenografts

The data collected with LNCaP cells, physiologically expressing

low levels of miR-221, represent a proof of principle that miR-221 is a

powerful enhancer of prostate tumor growth. Thus, it can ideally

represent a target for a treatment aimed at reducing tumor growth.

As a first step to test this hypothesis, we pre-transfected PC3 cells, a

high miR-221 and miR-222 expressing prostate carcinoma cell line

[9], with LNA oligonucleotides targeting mir-221 and miR-222, in

order to abolish their expression. As shown in Fig. 2A, LNA oligoes

efficiently depleted miR-221 and mir-222 from PC3 cells, to such an

extent that miR-221/222 expression was almost undetectable by
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Northern blot. Treated cells were then subcutaneously injected into

SCID mice, and tumor growth was followed and compared to that

generated by control LNA oligo-transfected PC3 cells. In Fig. 2B a

negative modulation of growth is shown for miR-depleted tumors

compared to control ones: the growth curves of control and pre-

transfected tumors start diverging when control tumors begin their

exponential growth, while the slope of pre-treated tumors is still very

low, and remain statistically different (*, p,0.05) until the end of the

experiment. When measuring the average volume fold increase of

tumors at the sacrifice with respect to the first measurements

performed, a statistically significant difference was detectable between

treated and control tumors (Fig. 2C, 21.1863.95 vs 56.41613.75,

p = 0.029).

In vivo intratumoral knockdown of miR-221 and miR-222
upregulates p27 and reduces tumor growth of PC3
xenografts

Encouraged by the previous results, we took a further step toward

the assessment of the feasibility of the direct in vivo anti-miR-221/

222 treatment. PC3 cells were subcutaneously injected into both

flanks of SCID mice in order to yield tumors that were then treated

by direct intratumoral injection as soon as they became clearly

palpable. For each mouse, the tumor on one flank was injected with

a mixture of anti-miR-221 and anti-miR-222 antagomirs, while the

controlateral tumor was injected with a control antagomir. The

growth curves of treated vs untreated tumors are compared in

Fig. 3A: as shown, the two curves slowly become divergent until

they reach statistically different values at 33 days after the first

antagomir injection (197.2612.21 vs 276.82621.28, p = 0.009). In

accordance with this observation, the average volume fold increase

of treated tumors at the end of the experiment with respect to the

day of the first antagomir injection, set as day 0, was significantly

reduced as compared to that of control tumors (5.260.5 vs

8.1960.73, p = 0.009) (Fig. 3B). These numbers, in fact, represent

the observation that 7 out of 8 experimental animals had a reduced

volume fold increase at the day of sacrifice for the treated tumor

with respect to the controlateral control tumor. In this experimental

setting, where each mouse bears both the treated tumor and the

control one, thus avoiding the common high inter-animal variations

linked to the assignment of different treatments to different groups

of animals, this result obtained for the volume fold increase appears

particularly encouraging.

We then sought to determine if the observed effects on tumor

growth were still accompanied, at the day of sacrifice, by a

consistent reduction of miR-221/222. To answer this question, we

performed Q-RT-PCR on total RNA extracted from excised

tumors, and verified an effective and persistent reduction of miR-

221 and miR-222 in treated tumors vs control ones (Fig. 3C).

We also checked if antagomir-mediated suppression of miR-221/

222 resulted in a correspondent increase of p27 levels, as compared

to untreated tumors; Fig. 3D shows a representative image of

Western blot analyses of total protein extracts from the same tumors

already tested for miR-221/222 expression: in all cases assayed, a

high p27 expression was measured where miR-221 and miR-222

were kept low by antagomir action, whereas the lack of inhibition of

the two microRNAs matched with a low level of p27 expression.

Altogether, these results indicate that intratumoral injection of

antagomirs targeting miR-221 and miR-222 can effectively keep

low the concentration of these two microRNAs for as long as 24

days (i.e. time elapsed from third and last antagomir injection to

animal sacrifice), concomitantly increasing p27 amount and

ultimately reducing the growth of PC3 xenografts.

MiR-221 and miR-222 are highly expressed in human
prostate carcinoma primary samples and their expression
is inversely correlated to that of p27

To assess the significance of our results in human tumor

samples, we analyzed miR-221 and miR-222 expression in 21

patients with stage II–III prostate cancer. Freshly-isolated surgical

tumor specimens were collected and cultivated in a medium that

allowed the propagation of prostate primary cells (see methods).

Non tumor samples were used as control reference. Real-time

PCR showed a consistent upregulation of both miR-222 and miR-

221 in about 80% of the tumor samples analyzed with respect to

normal counterparts, even if no correlation was observed with

Gleason and stage (Fig. 4A and Table 1). The expression of the

two microRNAs appeared always comparable, with no indication

of a specific regulation of a single microRNA. We then analyzed

the correlation between miR-221/222 and p27 in these patient

samples by Western blot (Fig. 4B), and found that tumor samples

characterized by high miR-221/222 had a significantly low

amount of p27. When the values of p27 protein expression were

plotted against miR-221 and miR-222 expression, an inverse

correlation was evident (Fig. 4C, Spearman: p = 0.0164 for miR-

Figure 1. MiR-221 ectopic overexpression enhances the growth of LNCaP-derived tumors. A Northern blot analysis of LNCaP cells
permanently transfected with p-221 or empty vector pCDNA3.1. The expression of miR-221 in the highly aggressive PC3 prostate carcinoma cell line
is also shown, as a positive control. Hybridization to snRNA U6 is included as a loading control. Under each lane, a number indicates the relative miR-
221 expression as compared to LNCaP cells transfected with the empty vector pCDNA3.1, where miR-221 endogenous expression is set as = 1. B In
vivo tumor growth in SCID mice. Average tumor volumes are represented (n = 6 for both experimental groups) starting from the first time point when
tumor volumes were clearly measurable (t0) until the last measurement before sacrifice, performed 6 weeks later. C Average volume fold increase of
the same tumors as in B at the moment of sacrifice (i.e. 6 weeks after the first measurement) as compared to values measured at time 0. Data are
presented as the mean6SEM *, P,0.05, and are representative of 2 independent experiments. D–E Proliferation markers: mitotic index and Ki-67
expression. D Graph of the mitotic index and Ki-67 expression as percent of positive cells (10 fields, 2 sections for each tumor. *, P,0.01; **, P%0.001).
Grey bars: pCDNA3.1 transfected LNCaP cells; black bars: p-221 transfected LNCaP cells. E, left upper panel: LNCaP cells transfected with empty vector
pCDNA3.1, haematoxylin eosin stained section (magnification 6006). Cells have epithelioid phenotype with low mitotic index. Right upper panel:
tumor tissue from LNCaP cells transfected with p-221, haematoxylin-eosin stained section (magnification 6006). Cells have epithelioid phenotype
with high mitotic index; arrows indicate mitotic pictures. Left lower panel: immunohistochemistry of the proliferation marker Ki-67 in tumor tissue
from LNCaP ctrl cells; scattered cells with brown, granular nuclear staining considered to be positive for Ki-67 (magnification 2006). Right lower
panel: immunohistochemistry of the proliferation marker Ki-67 in tumor tissue from LNCaP cells transfected with p-221: numerous cells with brown,
granular nuclear staining positive for Ki-67 (magnification 2006). F Northern and Western blot analysis of RNA and proteins extracted from p-221 and
control vector transduced tumors from two mice sacrificed at 6 weeks from the first measurement (as in B). The upper part of the panel (Northern
blot) shows the persistent expression of miR-221 in p-221 transduced tumors, and the lower part (Western blot) shows the downregulation of p27 in
miR-221 expressing tumors. U6 and b-actin are shown as loading controls for Northern and Western blot, respectively. The numerical values under
each lane indicate the relative expression of miR-221 and of p27, where each p-221 transfected tumor is compared to its controlateral control
(pCDNA3.1) tumor, whose miR-221 and p27 expression levels are set as = 1. G p27 mRNA 39UTR sites targeted by miR-221 and miR-222. The core
annealing regions are located at nucleotides 201–208 and 274–281 of p27 39UTR. Dotted vertical lines indicate G-U bonds.
doi:10.1371/journal.pone.0004029.g001
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221 and p = 0.0057 for miR-222). These results provide a strong

indication that the previously identified regulatory relationship

inversely linking miR-221/222 to p27 is true and relevant in

human primary prostate carcinoma samples.

Discussion

Prostate carcinoma represents a field of great interest for the

scientific and clinical community as it is, in its most aggressive

forms, untreatable and the second leading cause of cancer death in

men from the Western world. Effective treatments are still missing

for the most aggressive forms of this tumor, and, also, there is still a

great need for precise molecular markers of prostate carcinoma. In

the recent years, the data collected about tumor-specific micro-

RNA expression have shed a very promising light on the possibility

of classifying some tumors on the basis of specific microRNA

expression, raising new hopes about the use of microRNAs as

diagnostic and prognostic tools [27]. In our work we aimed to

demonstrate that the overexpression of miR-221 and miR-222, a

couple of microRNAs that we had previously shown to be strongly

upregulated in vitro in aggressive prostate carcinoma cell lines, is

relevant to prostate carcinoma cell growth in vivo, both in mouse

models and in human tumor samples. To achieve this, we have

overexpressed miR-221 in the poorly aggressive human prostate

carcinoma cell line LNCaP, and observed the growth of tumor

xenografts derived from those cells in SCID mice. Our results are

in full agreement with the pro-proliferative action of miR-221:

tumors grew faster and larger, their mitotic and proliferative (Ki-

67) indexes were strongly enhanced, and the long-lasting

overexpression of miR-221 reduced the tumor expression of

p27, again confirming our in vitro data.

However, of course, the great interest of this observation lies in

its reverse implications: that inhibiting miR-221 and miR-222 in

prostate carcinoma may be a way to reduce its growth potential.

Indeed, we have demonstrated this via two different approaches

whose results anyhow converge towards the same conclusion. We

have pre-transfected cells from the highly aggressive PC3 cell line

with LNA antisense oligonucleotides targeting miR-221 and miR-

222, and subsequently followed the growth of tumor xenografts

obtained through the injection of pre-transfected cells into SCID

mice. On the other hand, we have injected anti-miR-221 and anti-

miR-222 antagomirs into pre-established PC3 xenografts. Both

approaches clearly aimed at reducing miR-221 and miR-222 in

the tumors but, while the first one theoretically conferred a delay

to pretransfected cells that received the LNA oligoes, before they

settled in the host environment and started assembling a true

tumor, the second one more closely mimicked a ‘‘treatment’’, as it

was performed in already grown tumors, where cells had already

formed their network of contacts within the host body. For these

reasons we believe that our positive data in this latter settlement

are the most significant and interesting, as they show that miR-

221/222 inhibition can reduce the growth of pre-established

prostate carcinoma xenografts. Once more, we show that treated

tumors growing smaller than controls maintain reduced levels of

miR-221 and miR-222 for the whole duration of the experiments,

and that this produces a permanent upregulation of p27, otherwise

low in control tumors. Thus, our prostate carcinoma xenograft

data demonstrate, as a whole, that miR-221 (and most likely miR-

222, even if here we are not providing a direct evidence for this) is

sufficient to strongly enhance prostate carcinoma growth and,

consequently, that the inhibition of miR-221 and miR-222 is

necessary, and in fact effective, to reduce the in vivo growth of this

tumor. We think that our data involving antagomirs, beside being

promising per se, represent one of the first attempts to use these

molecules locally in a tumor. In fact, while most of the papers

published to date provide data about the systemic use of use of

antagomirs [26,28], only two recent papers have described the

intra-tumoral treatment with antagomirs: Felicetti and colleagues

[29] employed antagomir doses similar to the ones we have used

here, to treat melanoma xenografts, obtaining inhibitory results

comparable to ours, even if the growth of the tumors was not

followed for as long as we did in our present work. In a different

work, Fontana and colleagues [30] injected anti-miR-17-5p

Figure 2. In vitro inhibition of miR-221 and miR-222 reduces
tumor growth of PC3 derived tumors in SCID mice. A Northern
blot analysis of total RNA extracted from PC3 cells transfected in vitro
with anti-miR-221+anti-miR-222 LNA oligonucleotides (anti-221/222).
The hybridisation to snRNA U6 was used as a loading control. B Tumor
growth curves measured after the injection of PC3 cells transfected with
either anti-miR-221 and anti-miR-222 LNA oligonucleotides (anti-221/
222) or a control LNA oligo (ctrl). The tumor volumes were calculated as
v = L6l260.5, where L is the longer diameter, and l the shorter one. C
Average volume fold increase of tumors derived from PC3 cells
transfected with anti-miR-221+anti-miR-222 LNA oligonucleotides (anti-
221/222) or with a negative control LNA oligonucleotide (ctrl). Values
represent the ratio between the volumes at the day of sacrifice and the
volumes measured 54 days before, when all tumors were clearly
detectable and measurable. N = 4 for ctrl tumors and n = 5 for anti-miR
treated tumors. Data in B and C are presented as the means6SEM. *,
P,0.05.
doi:10.1371/journal.pone.0004029.g002
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antagomirs into neuroblastoma xenografts, indeed obtaining a

total regression of 30% of tumors. It must be noticed, though, that

the antagomir dosage employed in that work is several orders of

magnitudes higher than the one we have used here. Moreover, the

molecular analyses demonstrating the effectiveness of antagomir

treatment were performed at very short times after antagomir

injection, whereas we were able to prove an effective downreg-

ulation of miR-221/222, and a consequent upregulation of p27,

for longer than three weeks.

Finally, we think that the relevance of our data, collected in

mouse models of prostate carcinoma, is supported by the last

results we show in this study, about a significant inverse correlation

between miR-221/222 and p27 expression in primary cell lines

derived from tumor samples of prostate carcinoma. Reduced p27

expression was associated with the most aggressive forms of

prostate cancer and poor survival [31,32], to such an extent that

p27 was proposed as a biomarker for this tumor [32]. However,

we still lack a full comprehension of the regulatory mechanisms

Figure 3. The intratumoral injection of anti-miR-221 and anti-miR-222 antagomirs into PC3-derived tumors reduces tumor growth
and has long lasting effects on miR-221 and miR-222 endogenous expression. A Tumor growth curves depicting the average6SEM values
of PC3 derived tumors injected either with a negative control antagomir (ctrl) or with a mixture of anti-miR-221 and anti-miR-222 antagomirs (anti-
miR221/222). Each tumor was treated with three injections of 1 mg of each antagomir at days 0, 5, and 9 (arrows). Day 0 is the day of the first
antagomir injection. Each mouse (n = 8) was bearing a negative control injected tumor on one flank, and an antagomir treated one on the
controlateral flank. Data are presented as the means6SEM of two independent experiments. *, P = 0.009. B Average volume fold increase of the same
tumors as in A. The data presented are the means6SEM, and represent the ratio between the volumes at the sacrifice (33 days from the first
antagomir injection) and the volumes measured at the day of the first antagomir injection. *, P = 0.009. C Quantitative real-time PCR of miR-221
(upper panel) or miR-222 (lower panel) in tumors excised from four representative mice (A10, D3, D10, E3) at the day of sacrifice, 24 days after the last
antagomir injection. The data are presented as the means6SD of three independent experiments, each performed in triplicate. *, P,0.05. The values
presented are the miRNA expression fold changes, as compared to the expression detected in negative control tumors grown in each mouse, set as
= 1. D Representative p27 Western blot analysis on total proteins extracted from the same tumors as in c. For each mouse, the proteins from the
negative control tumor and the antagomir-treated tumor are shown. b-actin immunoreactivity is shown as a loading control. Under each lane, the
numerical values represent p27 relative amount, that was set = 1 in each control tumor (ctrl), and the p27 expression in the respective controlateral
anti-miR221/222 tumor was calculated.
doi:10.1371/journal.pone.0004029.g003
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Figure 4. MiR-221 is strongly expressed in prostate carcinoma-derived primary cells and its expression inversely correlates with
that of p27. A MiR-221 and miR-222 expression measured by quantitative real-time PCR in primary cell lines from prostate carcinomas (T samples) or
normal prostate (N samples). The graph shows the log fold change of miR-221 and miR-222 expression as compared to the value obtained for non-
tumoral control sample N1. B Representative Western blot analysis showing p27 expression in 4 tumor- and 2 non-tumor-derived primary cell lines. b-
actin immunoreactivity is shown as a loading control. Under each lane, the numerical values represent p27 relative amount, that was set = 1 in the
normal control sample N1. C Spearman correlation analysis performed between miR-221, miR-222, and p27 levels in 18 primary cell lines derived from
prostate carcinoma tissues. P,0.05.
doi:10.1371/journal.pone.0004029.g004
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perturbing p27 expression during prostate carcinoma onset and

progression. We believe that our work now indicates that miR-

221/222 upregulation may be one of the possible mechanisms

responsible for p27 downregulation in this tumor. Further studies

are certainly needed to more deeply dissect miR-221/222 role,

also taking into account that it is very likely that their oncogenic

action is not limited to the inhibition of p27, as recently

demonstrated in other tumors [8,13]. However, our results

represent the first step toward a possible use of miR-221/222 as

molecular markers for prostate carcinoma, and set the base for the

future employment of anti-miR-221/222 antagomirs for the

inhibition of prostate carcinoma growth.

Materials and Methods

Cell lines and transfections
LNCaP and PC3 cell lines were maintained in RPMI-1640

medium supplemented with 10% heat-inactivated fetal bovine

serum, 20 mM L-Glutamine, 100 U/ml of penicillin G sodium,

100 mg/ml of streptomycin sulphate in a humidified atmosphere

containing 5% CO2 at 37uC.

Transfections were performed by Lipofectamine 2000 reagent

(Invitrogen, Italy) using 8 mg of plasmid DNA in Opti-MEM I

(Invitrogen, Italy), as recommended by the manufacturer.

In vivo studies
For studies involving LNCaP cells, 36106 exponentially

growing, empty vector-transduced or miR-221-transduced

LNCaP cells were resuspended in a solution of 50% Matrigel in

PBS, and s.c. injected into the left and the right flank respectively

of 5 wk old male CB.17 SCID mice (Harlan Italy S.r.l.).

For the experiments with in vitro transfected PC3 cells, LNA

oligonucleotides against miR-221 and miR-222, and a negative

control oligonucleotide were obtained from Ambion Inc. (Celbio,

Italy). Knockdown oligos were transfected by Lipofectamine 2000

(Invitrogen, Italy) into PC3 cells at a final concentration of 40 nM

each. A FAM-labeled negative control LNA oligonucleotide

(Ambion, # AM 17012) was transfected in the same conditions

as those used for the unlabeled LNA molecules, and used for

measuring transfection efficiency by fluorescence microscopy at

48 hours after transfection. Transfection efficiency was estimated

as 80–90%. After 48 hr from transfection, the cells were collected

and miR-221 expression was analyzed by Northern blotting to

verify the effective miRNA knockdown. At the same time point,

1.56106 cells were resuspended in PBS and s.c. injected into each

flank of 5 wk old male CB.17 SCID mice (Harlan Italy S.r.l.).

Each animal received control cells on one flank and anti-miR-

221+anti-miR-222 pre-treated cells on the other.

For in vivo antagomir treatments, 5 wk old male CB.17 SCID

mice (Harlan Italy S.r.l.) were s.c. injected in both flanks with

1.56106 wild type PC3 cells. After approximately one week, when

the tumors reached an average volume of ,50 mm3, the tumors

were directly injected with a cocktail of antagomirs (Dharmacon,

CelBio, Italy) targeting miR-221 and miR-222 on one flank, or

with a control antagomir on the other. 40 ml of PBS containing

1 mg of each anti-miR-221 and anti-miR-222 antagomir, or

control antagomir, were injected intratumorally at day 0, 5 and 9,

for a total of three injections per tumor. Antagomir sequences were

59-gsasaacccagcagacaaugusasgscsu-Chol 39 (anti-miR-221), 59-gsas-

gacccaguagccagauguasgsuscsu-Chol 39 (anti-miR-222). Lower case

letters represent 29-O-Methyl-modified oligonucleotides, subscript

‘s’ represents a phosphorothioate linkage, and ‘‘Chol’’ represents

39-linked cholesterol.

At the end of each study, animals were sacrificed and tumors

were collected and divided into one part that was stored in

RNAlater (Ambion Inc., Celbio, Italy) following manufacturer’s

instructions for the following RNA extraction, and in another part,

fixed in formalin for immunohistochemistry.

Animals were housed at the University animal house according

to institutional guidelines, and all experiments were approved by

the Institutional review Board. Tumor growth was monitored by

caliper measurement once or twice a week for at least 5 weeks.

Tumor volume was calculated as follows: V = L6l260.5, where L

and l represent the larger and the smaller tumor diameter

respectively.

RNA extraction and Northern blot analysis
Total RNA was extracted from PC3 and LNCaP cells, and from

excised tumors, by using Trizol reagent (Invitrogen, Italy)

according to the manufacturer’s instructions. For Northern blot

analysis of miRNAs, 15 mg of total RNA were separated on 10%

denaturing polyacrylamide gels and electro-transferred to Im-

mobilon-Ny+ membrane (Millipore Corporation). The specific

probes, end-labeled with T4 polynucleotide kinase in the presence

of c-32P-ATP, were: miR-221, 59-gaaacccagcagacaatgtagc-39;

miR-222, 59-gagacccagtagccagat-39; U6, 59-cacgaatttgcgtgt-

catccttgcgcaggggcc-39. Bands were quantified with ImageJ 1.34 s

or OptiQuant 3.1 Packard Instrument software.

Table 1. Clinical aspects of prostate cancer cases used in this
study.

Casea Age PSAb
Gleason gradec pTNMd

5–10 ng .10 ng

T1 74 5.7 Gleason 6 T3N0Mx

T2 58 94 Gleason 9 T3N0Mx

T3 69 44 Gleason 7 T3N0Mx

T4 65 7.2 Gleason 6 T2N0Mx

T5 71 14.45 Gleason 7 T3N0Mx

T6 54 3.9 Gleason 6 T3N0Mx

T7 59 9.5 Gleason 6 T3N0Mx

T8 63 15.16 Gleason 7 T3N0Mx

T9 61 6 Gleason 6 T2N0Mx

T10 58 9 Gleason 7 T2N0Mx

T11 67 7.1 Gleason 6 T2N0Mx

T12 60 10.2 Gleason 6 T2N0Mx

T13 57 7.3 Gleason 6 T2N0Mx

T14 62 8.6 Gleason 7 T2N0Mx

T15 63 5.9 Gleason 6 T2N0Mx

T16 58 12.15 Gleason 6 T2N0Mx

T17 67 12.18 Gleason 6 T2N0Mx

T18 69 12 Gleason 8 T2N0Mx

T19 57 6.5 Gleason 6 T2N0Mx

T20 69 6.13 Gleason 6 T2N0Mx

T21 70 10.13 Gleason 8 T3N0Mx

aCase: patients treated with radical prostatectomy.
bPSA: Prostate Specific Antigen.
cGleason grade: Gleason’s score.
dTNM: Tumor, Nodes, Metastasis.
pT: pT category, N: lymphnodes, N0: not involved; M: metastasis, Mx: not
reliable.
doi:10.1371/journal.pone.0004029.t001
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Immunoblot Analysis
20–40 mg of whole cell protein extracts (lysis buffer: 20 mM

Tris/HCl pH 7.2, 200 mM NaCl, 1% NP40 with Protease and

Phosphatase Inhibitor Cocktails I and II (Sigma-Aldrich, Italy)

were separated on 12% SDS-PAGE gels and transferred to

nitrocellulose membrane. The levels of p27 expression were

evaluated out by using the monoclonal anti-p27 antibody (610241;

B&D Bioscience). As a loading control, b-actin expression levels

were measured by rabbit polyclonal anti-actin antibody (A2066

Sigma, Italy) or anti-b-actin monoclonal antibody (Oncogene

Research Products, San Diego, CA). The secondary horseradish

peroxidase conjugated antibody (AP132P or AP160P; Chemicon)

was detected using ECL Plus Western blotting detection reagents

(Amersham Biosciences, Italy). Bands were quantified with ImageJ

1.34 s or OptiQuant 3.1 Packard Instrument software.

Histology and Immunohistochemistry
The tumors were excised, fixed in a 10% paraformaldehyde

solution, embedded in paraffin, and cut into 5 mm-thick slices for

staining. A set of slides was stained with haematoxylin eosin for the

morphological study and for the count of mitosis. To evaluate the

mitotic index (number of mitotic pictures in ten high-power fields)

ten fields at 6600 magnification were randomly selected and the

number of mitosis counted. Another set of slides was stained with

rabbit monoclonal antibody to Ki67 (Ventana Medical System

Inc., Tucson, AZ, USA) to observe the proliferating cells, and the

slides were viewed on a Nikon Eclipse E600 microscope (Nikon

Corporation,Tokyo, Japan). The Ki-67 labeling index was

determined by counting 1000 tumor cells at 660 magnification.

Ten high power fields, each containing 150–200 cells, were

randomly selected for counting on each slide at a 6600

magnification. Brown, granular nuclear staining was considered

to be positive for Ki-67. Labeling indices were calculated as the

percentages of tumor cells with positive nuclear staining.

Immunostaining was performed blindly and scored on prostate

tumor tissue sections from each mouse (n = 10 per group; two

sections from each tumor) by an independent pathologist. The

number of positive cells over the total number of cells were

counted manually by two independent operators. Both the Ki67-

stained and unstained cells were counted, and the number of

Ki67-positive cells per total number of cells determined the Ki67

score. For statistical evaluation, the Ki67 scores and the mitotic

index were averaged over ten fields in each tumor and averaged

again over all tumors in each group.

Primary prostate cells
Tissues were obtained from radical prostatectomy at the

Department of Urology, S. Giovanni Bosco Hospital of Turin, Italy,

where this study was approved by the Institutional Review Board. All

samples were collected with written, informed consent of the patients.

For a detailed description of patients’ samples, see Table 1. The

tumoral or non-tumoral nature of each sample was determined by

histopathological examination. Freshly-isolated surgical tumor spec-

imens were collected and treated with collagenase for enzymatic

dissociation. The homogenate suspensions were maintained in

culture in collagen-coated plates with a specific medium that allowed

the propagation of primary prostate cells (BRFF-HPC1 medium,

AthenaES, Baltimore, MD). In these conditions, cells grew in a

monolayer assuming a round-shaped aspect visible under the

microscope. To determine the number of luminal cells and

contaminating fibroblasts, cells were stained for cytokeratin 18

(Clone 5D3 by NovoCastra, used 1:10) and Thy-1 (Clone 5E10 by

Becton Dickinson, used 1:50), respectively. The percentage of tumor

cells was evaluated with anti-AMACR (1:50, Sanova Pharma,

Vienna, Austria), while normal basal cells were detected with anti-p63

(1:50, BioGenex). Only cultures with .85% enrichment of prostatic

epithelial cells were used for further experiments.

MiR-221/222 quantitative real time PCR
Total RNA was extracted using TRIzol method. Fifty nanograms

of RNA were reverse transcribed with M-MLV reverse transcriptase

(Invitrogen, Italy) and cDNA was diluted 1:10 in the PCR reactions.

Housekeeping gene reverse transcription was performed using

random primers, while miR specific looped-primers were used for

miR-221 and miR-222 reactions. TaqMan microRNA assays

(Applied Biosystems, Italy) for miR-221 and miR-222 were used for

PCR amplification. Normalization was performed using rRNA S18

as a reference (S18 TaqMan assay on demand, Applied Biosystems,

Italy). Calibration was performed using cDNA samples from normal

prostate primary cells. Values are expressed in terms of 2-DDCT

where DDCT =DCTsample2DCTcalibrator. DCT was the differ-

ence in threshold cycles between the miR and S18 amplicons, and

CT was a parameter given by ABI PRISM 7700 Sequence Detector

software by negative correlation with an internal reference dye

(ROX).

Statistical analysis
Results of quantitative analysis are presented as means6stan-

dard error (S.E.) or 6standard deviation (SD) as specified in the

figure legends. Student’s paired t-test was used to evaluate

individual differences between means. Spearman correlation

analysis was performed between miR-221/222 and p27 levels.

P,0.05 was considered significant in all tests.
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