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Abstract

In this work we are interested in identifying clusters of ‘‘positional equivalent’’ actors, i.e. actors who play a similar role in a
system. In particular, we analyze weighted bipartite networks that describes the relationships between actors on one side
and features or traits on the other, together with the intensity level to which actors show their features. We develop a
methodological approach that takes into account the underlying multivariate dependence among groups of actors. The
idea is that positions in a network could be defined on the basis of the similar intensity levels that the actors exhibit in
expressing some features, instead of just considering relationships that actors hold with each others. Moreover, we propose
a new clustering procedure that exploits the potentiality of copula functions, a mathematical instrument for the
modelization of the stochastic dependence structure. Our clustering algorithm can be applied both to binary and real-
valued matrices. We validate it with simulations and applications to real-world data.
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Introduction

In the last few years, network theory has attracted the interest of

a widespread audience as a powerful tool to model and analyse

complex relationship structures. In particular, the identification of

network communities, known as cluster analysis, plays a central

role and it represents an active field of research (e.g. [1], [2], [3]

and [4]). Community detection allows us to extract sub-networks

which exhibit different properties from the aggregate properties of

the whole network and also to investigate information on groups of

nodes with similar characteristics which are more likely to be

connected to each other. Communities are usually defined as

subsets of actors (nodes) that are densely connected, i.e., they are

more connected among themselves than to the rest of the network.

However, in many network applications, there is a meaningful

group structure which does not coincide with the partition into

dense communities: indeed, the groups may be characterized by

similar patterns of interactions with other groups [5]. Within this

context, positional analysis is particularly interesting since it deals

with the identification of actors who occupy an equivalent position

inside a system, i.e. play a similar role in the considered

organization. Differently to the standard community detection

where the clusters are represented by densely connected groups of

actors, positional analysis aims at studying relational data in order

to cluster the actors into some classes such that the elements of the

same class occupy equivalent positions in the system. In order to

illustrate the distinction between positional analysis and standard

community detection, let us consider the following example of the

e-mails sent among the employees of a company: it may be that we

are able to identify different communities of individuals among

which e-mails are more frequently exchanged. However, densely

connected employees may occupy different positions in the

organization and we need to run a positional analysis if we are

interested in identifying groups of actors with equivalent positions.

In this work we aim at identifying clusters of ‘‘positional

equivalent’’ actors in cases where the available data are the

relationships defined among actors on one side and some features

on the other one [6], [7], [8], instead of interpersonal relation-

ships. Basically, the idea is that positions in a network structure can

be defined according to the characteristics or behaviours that the

actors exhibit, instead of the relationships that actors hold with

other actors. Individual to attribute relations can be represented as

a weighted bipartite network where the edge-weights represent the

level to which actors show a particular feature. More precisely, a

network is bipartite if its nodes can be divided into two sets in such

a way that every edge connects a node in one set to a node in the

other one [9]. Bipartite networks are thus very useful for

representing data in which the elements under scrutiny belong

to two categories (typically referred to as actors, or agents, and

features, respectively), and we want to understand how the

elements in one category are associated with those in the other

one. Notable examples that have been analyzed include networks

of company directors and the board of directors on which they sit

[10], [11], scientific collaboration networks [12], [13], [4],

networks of documents and words [14], as well as network of

genes and genetic sequences [15]. Models generating bipartite
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networks can be found also in statistical mechanics (e.g. [16] and

[17]).

The widespread approach to partition bipartite networks

consists of applying standard community detection algorithms,

such as the Girvan-Newman modularity [3], to the one-mode

projection of the original network. Consider two types of nodes,

say a and b, in a one-mode projection of the bipartite network,

nodes of the same type, say a, are connected to each other if they

share a common node of the other type, say b. For instance, in the

CEO network, two CEOs are connected if they both sit in the

same board. Although the one-mode projection procedure can

give some insights on the topological properties of the network, at

the same time it can imply the lost of relevant information. In fact,

different bipartite networks may reduce to the same one-mode

projection, and thus a clustering based on the latter may produce

unreliable or incorrect results, as shown in [18] and [19].

Regardless of those critiques, in [20] the authors argue that under

some circumstances, using multiple projections, the information

extracted with this procedure is sound, and therefore the simplicity

of this approach can be still exploited. However, several authors

tried to solve this problem by defining measures and algorithms

that could be directly applied to the original matrix associated to

the bipartite network.

In the physics community, two different definitions of bipartite

modularity have been proposed, [21], [22]. Both concepts extend

the Girvan-Newman modularity, but pose different assumptions

on the null model taken as the benchmark in the metric used for

the module identification. They return good results compared to

the one-mode projection, but their applicability is restricted to the

case of binary bipartite networks.

Some applications of bipartite networks refer to affiliation

networks [23], which capture social relationships, such as

membership or event participation. Positional analysis is well

established in social network literature, where the usual approach

consists of applying the standard measures of structural or regular

equivalence, and the related algorithms, to the one mode-

projection of the affiliation network [24]. However, affiliation

networks represent only a very special case of bipartite networks

since the associated matrices are binary.

Other proposed methods for bipartite network clustering, that

are mostly used by sociologists, are based on blockmodeling (e.g.

[25], [26], [27] and [28]). The key idea of this approach is that the

rows and the columns of the matrix associated to the bipartite

network can be partitioned simultaneously by means of a criterion

function, which measures the inconsistencies of the empirical

blocks with the ideal ones. Therefore, blockmodeling works

directly on the matrix by trying to permute rows and columns in

order to fit, as closely as possible, idealized pictures. The

differences between the various types of blockmodeling techniques

concern the definition of the ideal blocks and the criterion

functions. Blockmodeling is mostly applied to binary data, but it

can also be exploited for weighted matrices (valued blockmodeling

and homogeneity blockmodeling [28]). However, with the valued

blockmodeling, information about the values above a pre-specified

parameter is lost and a problem is to determine appropriately the

value of this parameter. The homogeneity blockmodeling does not

require any additional parameters to be set in advance and it uses

all available information, but its main disadvantage is that it can

consider only a few possible ideal blocks.

In [29], the authors proposed a bipartite stochastic block model

where a parametric probabilistic structure is given, and the clusters

are identified by solving the inference problem of finding the

parameters that best fit the observed network. In particular, they

model the generating process of the number of edges between two

nodes of different types with a Poisson distribution with a certain

intensity parameter. The authors show that their method

outperforms the one-mode projection approach. Nevertheless, it

does not deal with the case when we have weights on the edges. In

[30], the authors try to go in this direction by proposing a

stochastic block model for edge-weighted networks, but their

method requires to choose the number of clusters (as in most

stochastic block models).

The algorithm we propose realizes a partition of ‘‘positional

equivalent’’ actors based on the entire information enclosed in the

weighted bipartite network that describes their characteristics or

behaviours. The main contribution of our work is twofold. First,

we develop a methodological approach according to which actors

are grouped with respect to their intrinsic multivariate stochastic

dependence structure. In this framework, not only the magnitude

of a single weight matters but the whole pattern of the values the

actors show along all the features is relevant for the classification.

Second, we propose a new clustering procedure that exploits the

potentiality of copula functions, a mathematical instrument for the

modelization of the multivariate stochastic dependence structure.

In particular, copulas allow us to group actors according to their

underlying dependence structure, without any assumption on their

one-dimensional marginal distributions, and to take into account

various kinds of stochastic dependence structures among actors.

Moreover, there is no need to predefine the target number of

clusters.

The paper is structured as follows. In Sections 1 and 2, we

describe our approach, together with the mathematical tool we

employ, and we illustrate an algorithm whose output is the exact

solution of the optimization problem resulted by our clustering

procedure. In Sections 3 and 4 we show the performance of our

clustering algorithm applying it to simulated and real data. Finally,

in Section 5 we conclude with a discussion on the potentiality of

our method and give some heuristics that can be exploited to

develop new versions of the algorithm that return ‘‘approximate’’

solutions but are computationally faster.

A Copula-Based Approach

As explained in the previous section, we consider the general

setting where we have an N6M real-valued matrix, that collects

the information on the connections that go from a set of N actors

to a set of M items, representing some features or behaviours. The

elements of such a matrix can be any real numbers, with zero

representing the absence of a relationship and a non-zero value

representing the presence of a relationships, together with its

intensity. As an example, this framework can be used to analyse

situations where we have actors on one side and personal qualities

or interests on the other side, and the weighted-edges between the

two sets can be used to represents the level to which an individual

shows a certain quality or interest. Another example may be a set

of individuals in a supermarket and the set of products they buy. In

this case, an edge represent whether an individual bought a

particular product or not, and its value gives the amount of

product bought or its cost.

Against this background, we want to emphasize that actors may

be classified into positions based on their patterns of character-

istics, interests or behaviours that they exhibit and on the intensity

wherewith the actors show them, instead of the kind of

relationships that they keep with other actors. In other words,

we move in the direction that the dependence (we mean positive

dependence, i.e. similarity) in the expression levels of the

considered features is related to the position that the actors

occupy in the system. Hence, we say that some actors are
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positional equivalent if they show a significant dependence

structure that join them. In this framework, the use of the

traditional one-mode projection methods would be meaningless

and misleading and also blockmodeling or modularity approaches

adapted to bipartite networks could not give a clear answer to the

problem because they are not well tailor made for the analysis of

weighted bipartite networks.

Our purpose is to identify clusters of actors by means of the

detection, from the original matrix, of some statistically significant

dependencies among groups of actors. Basically, our assumption is

that actors within a system have an underlying multivariate

stochastic dependence structure which generates the data. In order

to identify this intrinsic dependence structure, we propose to

exploit the mathematical copula theory.

The concept of copula was introduced during the forties and the

fifties with Hoeffding [31] and Sklar [32], but the evidence of a

growing interest in this kind of functions in statistics started only in

the nineties [33]. Copulas are functions that join or ‘‘couple’’

multivariate distribution functions to their one-dimensional

marginal distributions. More precisely, we have the following

definition and results.

Definition 1. A d-dimensional copula C(u) = C(u1,…,ud) is a
function defined on [0, 1]d with values in [0, 1], which satisfies the
following three properties:

1. C(1,:::1,ui,1,:::,1)~ui for every i [f1,:::,dg and ui [½0,1�;
2. if ui = 0 for at least one i, then C(u1,…,ud) = 0;

3. for every (a1,:::,ad ),(b1,::::bd ) [ ½0,1�d with ai#bi for all i,

X2

j1~1

:::
X2

jd ~1

({1) j1z:::zjd C(u1, j1
,:::,ud, jd

)§0

where, for each i, ui,1 = ai and ui,2 = bi.

The advantage of the copula functions and the reason why they

are used in the dependence modeling is related to the Sklar’s

theorem [32]. It essentially states that every multivariate cumu-

lative distribution function can be rewritten in terms of the

margins, i.e. the marginal cumulative distribution functions, and a

copula.

Theorem 1. Let F be a multivariate cumulative distribution
function with margins F1,:::,Fd . Then there exists a copula

C : ½0,1�d?½0,1� such that, for every x1,:::,xd [
we have

F(x1,:::,xd )~C(F1(x1),:::,Fd (xd )) ð1Þ

If the margins F1,…,Fd are all continuous, then C is unique;
otherwise C is uniquely determined on F1( d (

Conversely, if C is a copula and F1,…,Fd are cumulative
distribution functions, then F defined by (1) is a multivariate
cumulative distribution function with margins F1,…,Fd.

In the case when f and f1,…,fd are the marginal probability

density functions associated to F and F1,…,Fd, respectively, the

copula density c satisfies

f (x1, . . . ,xd )~c(F1(x1), . . . ,Fd (xd ))P
d

i~1
fi(xi):

There are different families of copula functions that capture

different aspects of the dependence structure: positive and negative

dependence, symmetry, heaviness of tail dependence and so on. In

our work, we limit ourselves to the principal copula functions of

the Archimedean family (namely, Gumbel, Clayton and Frank

copulas, see Text S1 for their definitions), which model, through a

unique parameter h, situations with different degrees of depen-

dence. Nonetheless, it is worth to note that the application of our

methodology is not restricted to those copula functions.

For more details on copula theory, we refer to the various

excellent monographs existing in literature, such as [34], [33] and

[35].

Methodology

In this section we present a copula-based technique that realizes

a partition of actors into clusters so that the actors belonging to the

same cluster show a significant dependence structure that allows us

to classify them as being ‘‘positional equivalent’’. Our approach is

inspired by the work of Di Lascio and Giannerini [36], which

introduced and studied a copula-based clustering algorithm, called

CoClust, in the framework of microarray data in genetics. As they

did, we use copula functions in order to model the multivariate

stochastic dependence structure among groups of actors and we

apply the maximized log-likelihood function criterion for the

detection of the different clusters. Notwithstanding, our algorithm

Table 1. Description of the scenarios used in the simulation experiment.

S First cluster Second cluster Third cluster

1 d = 3, Gu, N(0,1), h = 4 d = 4, Gu, N(0,1), h = 3 d = 3, Gu, N(0,1), h = 4

2 d = 3, Cl, N(0,1), h = 4 d = 4, Cl, N(0,1), h = 3 d = 3, Cl, N(0,1), h = 4

3 d = 3, Fr, N(0,1), h = 4 d = 4, Fr, N(0,1), h = 3 d = 3, Fr, N(0,1), h = 4

4 d = 3, Gu, Po(4), h = 4 d = 4, Gu, Po(4), h = 3 d = 3, Gu, Po(4), h = 4

5 d = 3, Cl, Po(4), h = 4 d = 4, Cl, Po(4), h = 3 d = 3, Cl, Po(4), h = 4

6 d = 3, Fr, Po(4), h = 4 d = 4, Fr, Po(4), h = 3 d = 3, Fr, Po(4), h = 4

7 d = 3, Gu, Pa(1,2), h = 4 d = 4, Gu, Exp(0.5), h = 3 d = 3, Gu, LogN(0,1), h = 4

8 d = 3, Cl, Pa(1,2), h = 4 d = 4, Cl, Exp(0.5), h = 3 d = 3, Cl, LogN(0,1), h = 4

9 d = 3, Fr, Pa(1,2), h = 4 d = 4, Fr, Exp(0.5), h = 3 d = 3, Fr, LogN(0,1), h = 4

For each scenario (S) and each cluster, we report the number of actors in the cluster (d), the copula type (Gumbel (Gu), Clayton (Cl), Frank (Fr)), the margins (Normal (N),
Poisson (Po), Pareto (Pa), Exponential (Exp), LogNormal (LogN)) and the dependence parameter h, used to generate the data.
doi:10.1371/journal.pone.0109507.t001
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presents the following important differences with respect to the

one proposed by Di Lascio and Giannerini:

1) while they assume independence within clusters and

dependence between clusters, we look for clusters of

dependent actors;

2) while they first find the optimal number K of clusters and

then perform sequential extractions of K actors, where at

each time one actor is added to each cluster in a certain

way, we do not use a sequential extraction method but we

directly look for the optimal partition of the actors into

clusters;

3) differently from them, we allow clusters to be of different

sizes and we allocate all the actors into the clusters;

4) whereas they assume identity in distribution for actors

inside a certain cluster, i.e. each cluster identifies one

margin, we do not make this assumption and we estimate

for each actor his own cumulative distribution function.

Given N actors and M items, we can represent the data that

describe the relationships between actors and items with a real-

valued matrix X of dimension N6M,

X~

x11 � � � x1m � � � x1M

..

.
P

..

.
P

..

.

xi1 � � � xim � � � xiM

..

.
P

..

.
P

..

.

xN1 � � � xNm � � � xNM

2
66666664

3
77777775
~

x1:

..

.

xi:

..

.

xN:

2
66666664

3
77777775

where xim represents the value of the item m for the actor i and xi:

is the row-vector that contains all the item values of the actor i.
With the language of network theory, this matrix can be seen as

the matrix associated to a weighted bipartite network.

The procedure we propose takes as input this matrix and

returns the optimal decomposition into clusters after the following

four steps:

1. It derives the margin for each actor i by finding the empirical

cumulative distribution function

F̂i(x)~
1

M

XM

m~1

Ifximƒxg

based on the corresponding M-dimensional row xi: of the items.

For each actor i, we are taking the values xi1, . . . ,xiM of the M
items as i.i.d. realizations drawn from the same univariate

distribution.

2. It considers each possible cluster C of actors, with card(C)§2,

and it computes the maximum value of the copula log-likelihood

associated to it. Formally, for each possible group, say

C~fi1, . . . ,ikg, with 2#k#N, of actors, it maximizes the copula

log-likelihood function defined as

h.‘C(h)~
XM

m~1

ln c F̂ i1
(xi1m), . . . , F̂ ik

(xikm); hÞ,
�

where c(u1, . . . ,uk; h) denotes the parametric expression of the

density for the chosen copula, and it records the value ‘�(C) such

that

T
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‘�(C)~ max ‘C(h):

Note that we are taking the vectors

f(xi1m, . . . ,xikm) : m~1, . . . ,Mg as M i.i.d. realizations drawn

from the same k-variate distribution.

3. It considers the set P of all possible partitions of the N actors

that do not contain clusters with a single actor. Hence, each p [ P
is formed by a certain number of clusters C with card(C)§2. The

set P represents the set of all possible decompositions into clusters

that the procedure can return. For example, if we have 4 actors,

numbered from 1 to 4, the set P is formed by the following

partitions: p1~fC1,1~f1,2g,C1,2~f3,4gg, p2~fC2,1~f1,3g,
C2,2~f2,4gg, p3~fC3,1~f1,4g,C3,2~f2,3gg and p4~fC4,1~

f1,2,3,4gg. For each p [ P, it computes the value of the ‘‘global

log-likelihood’’ of the partition p as

L(p)~
X
C[p

‘�(C):

4. Finally, the procedure returns p* with the highest ‘‘global log-

likelihood’’ value among all p [ P, that is p� [ P such that

L(p�)~ max
p[P
L(p):

More precisely, it returns the clusters that form p* in a

decreasing order with respect to the value ‘�(C) of each cluster C in

p*.

The R code for this procedure is available at http://dx.doi.org/

10.6084/m9.figshare.1162514.

Simulation Experiments

In order to verify the accuracy of the proposed algorithm, we

conducted some simulation experiments by generating random

weighted bipartite networks (i.e. their corresponding matrices X)

by means of copula functions in order to create a clustering

structure. In practice, when simulating from a copula of dimension

d, we obtain d vectors xi1
:, . . . ,xid

: of M values that correspond to

d rows of the matrix X associated to d actors forming a specific

cluster.

An experiment foresees the generation of 50 random weighted

bipartite networks of N = 10 actors belonging to 3 different

clusters. Table 1 reports the 9 scenarios under which we generated

these networks. We repeated the simulations of these different

scenarios for M = 20, 50, 100, 250, thus developing a total of 36

experiments. These experiments were built with the purpose of

pointing out different features of the algorithm: first, its

performance under different number of items (this is the reason

why we used several values of M); second, its ability to work with

both continuous and discrete data (that explains the choice of the

marginal distributions); third, its ability to detect clusters under

similar dependence structures (hence we used the same copula

type to generate different clusters).

As to the copula function employed in the clustering procedure,

we first run the algorithm with the same copula used to generate

the random network. After that, to test the performance of the

algorithm under ‘‘misspecification’’, we generate again the first

three scenarios for all the chosen values of M and run the

algorithm with the two Archimedean copulas different from the

one used in the simulation. For each of the described experiments,

we checked the performance of the algorithm by counting the

number of times it correctly recognizes the true clusters over the

number of random networks generated. Summarizing the results,

we observed that the choice of the copula in the algorithm has no

great effect on its performance and the overall results seem quite

good, especially in the case when M = 100 or M = 250. Some main

remarks can be made:

Figure 1. Trade share plot. In this figure we report for each country, classified in the relative cluster, a coloured bar representing the share of
export for each of the 97 HS2 product categories over the total amount of export. Regarding Cluster 1, the high number of colours into the bar makes
it clear that these countries use to trade in several product categories. Furthermore, an explicit dependence pattern arise from the proportion of the
colours into the bars. In particular, the following product categories contributes to this strong relationship: 84, 87, 88, 85, 30, 90. Regarding Cluster
2, the dependence relationship mainly arises from these three categories: 27, 29, 39. However, it is important to remark that our clustering approach
takes in consideration also the fact that these countries trade in a very small number of products, as can be seen from the few colours in the
respective bars. The same reasoning apply for Cluster 3 where, although the countries are specialized in a unique product such as category 9 for
Burundi or category 1 for Somalia, the common pattern that makes them similar is the fact that they do not trade in most of the 97 HS2 categories.
doi:10.1371/journal.pone.0109507.g001
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N First of all, under all the possible scenarios, for M = 100 or

M = 250, we always got a 100% percentage of successes in

recognizing the clusters correctly.

N Second, when the observations are drawn from the Gumbel

and the Clayton copulas, we got a percentage of successes

equal to 100% already for M = 50 and between 80% and

100% for M = 20.

N Finally, when the observations are drawn from the Frank

copula, we notice some problems for M = 20. Indeed, for this

copula type, 20 realizations are too few to generate an evident

dependence structure and so the algorithm does not work well

in recognized it. However, we observed a fast improvement for

M getting larger and, starting from M = 50, we can say that the

percentage of successes are good (75–80%).

Empirical Results

In this section, we describe two applications of our algorithm to

real datasets. The first one deals with a benchmark real-valued

bipartite network that we built on our own to test the algorithm.

The second one refers to a widely studied social network that is

described by a signed network.

Trade data
The first application we show is based on the BACI-

COMTRADE dataset, featuring the amounts of import-export

trades among several countries in the world. We extracted a

weighted bipartite network taking the export dollar values for the

M = 97 product categories of the HS2 classification, for selected

N = 12 countries, in the year 2011. More in details, we decided to

select the countries according to their economies, in order to

identify 3 hypothetical categories:

N a First world category composed by France, Germany,

Canada and United states;

N a Third world category represented by Burundi, Zimbabwe,

Liberia and Somalia;

N an OPEC representative category made by Kuwait, Saudi

Arabia, Qatar and Iran.

We applied our procedure to the matrix, where the countries

were in rows, the products in columns, and each cell contained the

gross export value of a given country for a given product. Our aim

was to create clusters of countries which are similar (i.e. positional

equivalent in the International Trade Network) with respect to the

products they export. Much of the literature that focuses on

international trade looks for community detection, that is for

communities of countries with a high number of connections

among them, while being relatively less interconnected with

countries outside the community they are part of [37], [38], [39],

[40], [41]. Differently from the classical clustering analysis in

international trade, we tried to define ‘‘positional equivalent’’

countries based on the products they trade and not on the basis of

the countries wherewith they trade. Indeed, we were not interested

in finding dense communities of countries for different commod-

ities, but we wanted to identify countries that cover the same

position in the trade network since they present a similarity in their

exports. The result we obtained is reported in Table 2, together

with the results provided by two other clustering methods:

Figure 2. Trade network structure. In this figure we show the
weighted bipartite Trade network. On the right the three groups of
countries, detected by our algorithm, and on the left the 97 products
categories, grouped in 15 homogeneus macro categories in order to
highlight the relevant connections among the two different type of
nodes. The size of the macro categories are in proportion to the
number of categories grouped in them. It is clear from the links
partition how our metodology is able to disentangle different country
categories according to the trade patterns, even for the third world
countries (green background) for which the link weights are much
smaller than the others.
doi:10.1371/journal.pone.0109507.g002

Table 4. Justice data.

Our method Doreian [27]

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Scalia Breyer Kennedy Scalia Breyer Kennedy O’Connor

Thomas Ginsburg O’Connor Thomas Ginsburg

Souter Rehnquist Rehnquist Souter

Stevens Stevens

doi:10.1371/journal.pone.0109507.t004
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Figure 3. Justice sentences network. This figure depicts the bipartite signed network of the US Supreme Court Justice votes upon 26 different
issues. The blue edges correspond to votes in the majority (+1), the red edges correspond to votes in the minority (21) and the unique green edge
correspond to a case of abstention (0). Furthermore, the nodes are classified as follow: yellow for the 26 issues, violet for Cluster 1, orange for Cluster 2
and green for Cluster 3. The network has been built so as to capture the sharpness of the clusters partitioning. In particular, an higher cohesiveness
among the judges within the first and second clusters with respect to those ones in the third cluster can be ascertained by the fact that a more
coherent coloured pattern can be glimpsed from the beam of edges that originate from the first two clusters with respect to the last one, i.e. two
different stacks can be distinguished, a red one and a blue one.
doi:10.1371/journal.pone.0109507.g003

Figure 4. Log-likelihood plots. (Left) For each couple of countries, the figure shows circles whose areas correspond to the maximum log-
likelihood values of the bivariate copulas. The colours are used to identify the countries belonging to the same cluster. (Right) For different
dimensions of the copula function, the figure shows the maximum log-likelihood values for each possible combination of countries, in decreasing
order.
doi:10.1371/journal.pone.0109507.g004
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N (Modularity optimization) We derived a unipartite projection

of the original weighted bipartite network using a cosine

similarity measure between couples of countries and then we

applied the modularity optimization approach with the well-

known Louvain method [42].

N (K-means) with the number of clusters K chosen a priori equal

to 3, see [43]. We use the K-means function of the stats R-

package.

As we can see, our algorithm is able to perfectly recognize the

above mentioned country groups; while the other two methods

provide a different grouping. Since the hypothetical three groups

were built according to a subjective judgement, we decided to

analyze the data in order to provide a more robust explanation for

the clusters we found. An overview of the differences between the

three groups is provided by Figure 1, where we report for each

country a coloured bar with the export shares for each of the 97

HS2 product categories over the total amount of export. In more

detail, in Table 3 we report for each country, the percentage on

the total amount of export for a selection of 21 HS2 categories out

of the 97 available, in order to give some hints on the trade joint

patterns that our algorithm recognize. Overall, we can agree on

the fact that the result is coherent with the observed data.

Regarding the First world category, we can see that at least a small

amount of their total exports is allocated in each selected

categories and about the 60% of their total export is concentrated

in the nine categories, corresponding to the following commod-

ities: 84 - Nuclear reactors, Boilers, Machinery and mechanicals

appliances; 87 - Vehicles; 88 - Aircraft and Spacecraft; 85 -

Electrical machinery, Telecommunications equipment, Sound and

Television recorders; 30 - Pharmaceutical products; 90 - Optical,

Photographic, Cinematographic, Measuring, Checking, Precision,

Medical instruments. Conversely, for the OPEC Representative
group, it is clear that the nature of the dependence arises from the

fact that more than the 90% of the total export of these countries

belongs to the following three categories: 27 - Mineral, Fuels, Oils;

29 - Organic chemicals; 39 - Plastic and Articles thereof.

Nonetheless, we underline that our algorithm did not recognize

this cluster just because of the large share of export these countries

have in these few products, but it captured the whole dependence

between these countries and so also the categories in which they do

not trade, or trade a little, play an important role. This is clear by

looking at the network structure for the Third world category in

the last four columns of Table 3. As it can be seen, all these

countries present a huge amount of the total export in a few

specific commodities. For example, more than the 80% of the

somalian export is in category 1 - Live animals, while the 78% of

the burundian export is in category 9 - Coffee, Tea, Mate and

Spices. Thus, we can affirm that these countries present a highly

specific production and the dependence among them arise not as a

consequence of the products in which they trade but rather from

the products in which they do not trade. By looking carefully at

Table 3, it is possible to notice that for most of the selected 21 HS2

categories, the share of export is almost zero in all these Third
World countries. In this sense, they are similar to the OPEC
representative countries but, as we already said, the latter present a

specific dependence deriving from the common commodities they

trade. Finally, Canada deserves some comments. It has an high

value in category 27 as the countries in the Opec representative
category, but its values for the other categories are more similar to

those of the First world than the ones of the Opec representative
group. Our algorithm is able to capture this aspect. An insight of

all these distinguishing features between the clusters can also be

grasped looking at Figure 2, where we depict the bipartite trade

network between the countries and 15 macro-categories of the

HS2 products classification.

Supreme Court voting data
The second application is based on the dataset used in [27] of

the Supreme Court judges and their votes on a set of issues. We

have a signed bipartite network [44] with N = 9 justices, M = 26

issues and the expressed votes.

In Table 4, we present both our result and the one in Doreian

[27]. Although the number of clusters is different, we notice that

the two approaches classify, exactly in the same way, the first two

members of the first cluster and those ones of the second cluster.

Contrarily, a remarkable difference stems from the fact that our

algorithm groups together Kennedy, O’Connor and Rehnquist
while Doreian [27] put them in three different clusters (two of

which have a single element). Regarding this, we need to recall

that our algorithm does not allow for the size of the cluster to be

lower than two, thus the third cluster arises as a residual one.

Next to these first considerations, it is interesting to deepen the

analysis by studying the data structure and try to give a more

detailed explanation for the differences. To this end, we report in

Table 5 a permuted version of the Supreme Court voting matrix,

where the issues are blocked as in [25] and the judges are

partitioned according to the results from our algorithm, whereas in

Figure 3 we depict the bipartite network structure. Looking at the

first cluster, containing Scalia and Thomas, and the second cluster,

composed by Breyer, Ginsburg, Souter, and Stevens, we can easily

recognize a voting pattern remarkably opposed one to each other

and at the same time a coherent preference expression within the

groups.

The unique puzzling doubt concerns the allocation of Rehnquist
in the group of Kennedy and O’Connor rather than in the group of

Scalia and Thomas. In order to further investigate this issue, we

decided to check the global likelihood value in the case where we

move Rehnquist in the first group. What we found is that the

addition of him to the group of Scalia and Thomas considerably

decreases the global likelihood. This effect is a consequence of the

fact that our procedure recognizes the perfect dependence among

these last two actors, and therefore it prefers to allocate Scalia and

Thomas alone in one cluster in order to point out their ‘‘positional

equality’’, and to group into the third cluster O’Connor, Kennedy
and Rehnquist, which perfectly agree over half of the issues.

Conclusions and Future Lines of Research

Clustering algorithms have increasingly assumed a central role

for the identification of communities in complex networks. In this

paper, we deal with a notion of community different from the

classical one: while the network clustering analysis, namely the

community detection, aims to identify clusters of densely

connected actors, we try to determine groups of actors that play

a similar role inside a certain organization basing on the

characteristics or habits that they exhibit. In the social network

literature, this is known as positional analysis.

To this end, we propose a new clustering algorithm that can be

applied to situations which are suitably modelled through a

weighted bipartite network. Starting from the associated real-valued

matrix, with the actors on the rows, the features on the columns,

and the weights as the elements, we try to capture possible

similarities among groups of actors by analyzing the multivariate

stochastic dependence among them.

The contribution of this paper has to be found in the

methodological approach we propose for positional analysis that

is based on the detection of the intrinsic multivariate stochastic
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dependence among groups of actors and in the development of a

new related algorithm that uses copula functions in order to model

these dependence structures. Furthermore, this algorithm directly

operates on the matrix describing the actor-feature relationships,

differently from many other algorithms that collapse the informa-

tion of the bipartite network to a unipartite one and then apply the

classical clustering procedure. In fact, this kind of operation can

cause a lost of information and a consequent erroneous cluster

identification. Another advantage of our technique is that it finds

the optimal partition, without fixing a priori the number of clusters

and the maximum number of elements per cluster (though we

don’t allow for cluster of single elements). Furthermore, our

algorithm is able to work directly on any matrix, binary or

weighted with real numbers.

This is the first time this methodology is applied to the network

field, therefore it is not surprising that there are still some issues to

be addressed, and that we leave for future research. The major

drawback of our algorithm concerns the high computational

burden it bears as a consequence of the fact that it explores all the

possible combinations of groups of actors. Since our first purpose

was to understand the potentiality of such a new approach, we

have not tried to develop any optimized version of the algorithm

yet. For the moment, we have provided an algorithm whose

output is the exact solution of the optimization problem, as it

explores all the possible combinations. However, we are convinced

that a deeper study of its behaviour could give some criteria to

reduce the number of combinations to explore and allow the

development of a new version of the algorithm that provides an

‘‘approximate’’ solution but is computationally faster. For

instance, on the left side of Figure 4 we report the maximum

copula log-likelihood values of each couple of countries obtained

from the trade example in Section 4. It can be noticed that from

the log-likelihood values of the bivariate copulas, we already have

some insights on the possible clusters. In fact, we can see that the

bivariate copula log-likelihoods of those countries belonging to the

same cluster tend to be higher than the others. Given this

information, we could for example adopt an agglomerative

approach, as it is common in the community detection literature

[42], and group those actors that present a more significant

bivariate dependence so as to avoid the calculation of all the

possible combinations for the various dimensions.

Another heuristic argument we could exploit to reduce the

computational cost can be deduce from the right side of Figure 4,

where we plot the maximum log-likelihood values of copulas with

different dimensions for all the combination of countries used in

the trade example in Section 4. We can see that, for this study

case, the maximum log-likelihood value of the 7-dim copula is

constant across the combinations so as to suggest that clusters

larger than six countries are less plausible. Therefore, it seems that

the algorithm recognizes some sort of upper bound for the cluster

size, and we can exploit this information to avoid all those

calculations over the sixth dimension.

A second issue concerning the proposed algorithm consists in

that it does not allow for clusters with a single element, and in

positional analysis it may be a limitation. We avoid to address this

issue because it would cause an increase of computational cost, but

it could be theoretically feasible to exploit the copula functions in

such a way to consider also clusters of a single element. Regarding

this point, we also point out that, since the present algorithm

returns the clusters in decreasing order with respect to the

maximum copula log-likelihood value, the eventual single

elements are contained in the last (residual) cluster, see for

instance Table 4.

In conclusion, though there are still some open issues to be

solved in order to apply this new clustering algorithm to large

networks, it seems to capture dependence patterns that other

algorithms ignore. Therefore, we strongly believe it could have

interesting implications on positional analysis in the future, and we

foster future developments of this approach.

Supporting Information

Text S1 Archimedean family of copulas. Technical de-

scription of the copula functions employed in the analysis.

(PDF)
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13. Guimerà R, Uzzi B, Spiro J, Amaral LAN (2005) Team assembly mechanisms

determine collaboration network structure and team performance. Science 308:

697–702.

14. Dhillon IS (2001) Co-clustering documents and works using bipartite spectral

graph partitioning. Proceedings of the seventh international conference on

knowledge discovery and data mining: 269–274.

15. Larremore DB, Clauset A, Buckee CO (2013) A Network Approach to

Analyzing Highly Recombinant Malaria Parasite Genes. PLoS Comput Biol

9(10): e1003268. doi:10.1371/journal.pcbi.1003268

16. Agliari E, Barra A (2011) A Hebbian approach to complex network generation.

Europhysics Letters 94(1), 10002.

17. Agliari E, Barra A, Galluzzi A, Guerra F, Moauro F (2012) Multitasking

associative networks. Physical review letters 109(26), 268101.

18. Good BH, de Montjoye YA, Clauset A (2010) The performance of modularity

maximization in practical contexts. Phys Rev E Stat Nonlin Soft Matter Phys

81: 046106.

19. Zhou T, Ren J, Medo M, Zhang Y (2007) Bipartite network projection and

personal recommendation. Phys Rev E Stat Nonlin Soft Matter Phys 76:

046115.

20. Everett MG, Borgatti SP (2013) The dual-projection approach for two-mode

networks. Social Networks 35: 204–210.

Clustering of Weighted Bipartite Networks: A New Copula-Based Approach

PLOS ONE | www.plosone.org 11 October 2014 | Volume 9 | Issue 10 | e109507



21. Barber MJ (2007) Modularity and community detection in bipartite networks.

Phys Rev E Stat Nonlin Soft Matter Phys 76: 066102.
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