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Technical Annex 

This annex summarises definitions and the technical background of the Bayesian network 

analysis and the applied network statistics used in this manuscript. 

DAG, nodes and edges 

A directed acyclic graph (DAG) is a graph (or network) that consists of nodes and edges. 

Nodes relate to random variables measured in the study which are included in the analysis, 

and edges indicate the dependence structure of the network in terms of conditional 

independencies. Two variables are said to be associated with each other when the 

respective nodes are connected by an edge in the graph, although formally an edge 

indicates that these two variables are not conditionally independent. 

Conditional independence 

Conditionally independence is defined as follows: let 𝑋, 𝑌, 𝑍 be random variables with joint 

distribution 𝑃. We say that 𝑋 is conditionally independent of 𝑌 given 𝑍 if and only if 

𝑃(𝑋 = 𝑥|𝑌 = 𝑦, 𝑍 = 𝑧) = 𝑃(𝑋 = 𝑥|𝑍 = 𝑧). 

Let us assume that 𝑋 = sedentary behaviour, 𝑌 = occupational level and 𝑍 = educational 

level. Then, the above statement means that “if we know the educational level, then the 

information on the occupational level does not provide any further information to understand 

sedentary behaviour”. DAGs represent conditional independencies by a missing edge 

between two variables.   

Bayesian network analysis – Model selection 

A Bayesian network is a probabilistic model that represents a set of factors and their 

conditional dependence structure in terms of a DAG. Bayesian networks combine probability 

theory and graph theory such that (a) a DAG visualises the structure of a probability model, 

(b) conditional independencies can directly be read off the DAG and (c) algorithms utilise 

graph theory for model selection.1  



Bayesian networks represent a special type of graphical model as a combination of a 

probabilistic model and graph theory to cope with complex data structures. Graphical models 

estimate the joint probability distribution of the whole network, instead of applying a set of 

independent regression analyses, since these are only able to estimate parts of the network, 

even if they allow for multiple responses. Learning algorithms for Bayesian networks, 

however, can deal with complex dependence structures and derive an optimal network. 

Using the concept of conditional independence, the joint probability distribution of all 

variables in the model can be decomposed into variable-specific conditional probability 

distributions that only depend on the states of their parent nodes in the DAG. Parents are 

those nodes from which an arrow originates and is pointing to another node. Any two nodes 

are conditionally independent given the values of their parents.2 

Model selection algorithms to estimate the structure of a Bayesian network can be 

distinguished in (1) constraint-based algorithms, that use conditional independence tests; (2) 

score-based algorithms, that rank network structures with respect to a goodness-of-fit score; 

and (3) hybrid algorithms, that combine features of the previous two approaches.3 All model 

selection algorithms iteratively select the final network structure. We used the heuristic 2-

phase restricted maximisation (RSMAX2) hybrid algorithm which is suitable for mixed 

discrete and continuous variables under the conditional Gaussian distribution assumption. In 

the first step the Interleaved Incremental Association algorithm3 which is based on the 

Markov blank detection algorithm is used to limit the search space of possible network 

structures by using Pearson’s χ² tests for associations between ordinal variables based on 

an α-level of 0.01 to restrict the number of false positives and to account for the larger 

sample size. The results of the first steps were used to reduce the remaining number of 

possible network structures. In the second step the greedy hill-climbing algorithm orients 

arrows and searches for the optimal network structure, i.e. number of edges, in the restricted 

space based on the minimised Gaussian log-likelihood. All selection algorithms are suitable 

for ordinal data in this study and do not take any subject-matter knowledge into account 

when deciding on the direction of the arrows. Instead, this decision is solely based on the 

size of the score. Since the aim of the study is mainly exploratory, we considered the 

skeleton of the BNs, i.e. the graph without any arrows, to avoid misinterpretation of the BNs 

as causal pathways.3 

Network statistics 

Graph density 

The graph density for a network is defined as the frequency of selected edges relative to the 

number of potential edges, i.e. 

den(network) =
#number of selected edges

(
#number of nodes

2
)

. 

The graph density is an overall measure for characterising the cohesion of a graph. 

Node centrality measures 

Centrality measures seek to rank the nodes according to their importance in the network. 

There are different kinds of centrality measures. Here, the weighted betweenness centrality 

was applied.  



Betweenness centrality 

This popular centrality measure is based on the perspective that central nodes of a network 

are located “between” any other pairs of nodes and are therefore important for the 

communication flow within a network. A node that lies on many paths between two arbitrary 

nodes is likely more critical to the information flow. The betweenness centrality thus identifies 

nodes that are located between other pairs of nodes and is calculated as 

𝑐𝐵(𝑣) = ∑
𝜎(𝑢, 𝑤|𝑣)

𝜎(𝑢, 𝑤)
𝑢≠𝑤≠𝑣∈𝑉

, 

where 𝑉 is the set of nodes, 𝜎(𝑢, 𝑤|𝑣) is the total number of shortest paths between 𝑢 and 𝑤 

that pass through 𝑣, and 𝜎(𝑢, 𝑤) is the sum over all shortest paths between 𝑢 and 𝑤. In this 

analysis, we applied the weighted betweenness centrality for which the Bootstrap strengths 

of edges were used as proxy for the strengths of the respective association in the calculation 

of the shortest paths. Highest and second highest weighted betweenness centralities were 

used to identify the two most important factors in the BNs around SB. 
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