
	

	 1	

Global	Land	Use	Implications	of	Dietary	Shifts:		
Sarah	Rizvi,	Chris	Pagnutti,	Evan	Fraser,	Chris	T.	Bauch,	Madhur	Anand	

	

Supporting	Information:	S1	Appendix	

	
Table	of	Contents	
Item	 Page	
Text	A:	Methods	used	to	compute	livestock	yield	(Text	S1)	 1	
Text	B:	Python	Code	for	analysing	land	use	change	under	USDA	guidelines	(Text	S2)	 7	
Table	A:	FAO	items,	codes	and	the	corresponding	food	group	 21	
Table	B:	Top	livestock	product	producing	countries	on	average	since	1990	 21	
Fig	A:	Analysis	by	continent	 22	
	
	
Text	A:	Methods	used	to	compute	livestock	yield	
	
We aim to extend the traditional definition of crop yield to apply to livestock products. In the
context of crops, if p is the quantity produced, and a is the area of land used to produce the
quantity p, then yield y is defined as

y = p/a

In the remainder of this section we use the following labels: i denotes an animal product (e.g.
cattle meat, milk, etc.), j denotes an animal meat product (e.g. cattle meat), k denotes a non-meat
animal product (i.e. milk, eggs), and l denotes a crop (e.g. maize, oats, etc.).

Production

The FAO reports annual data for country, sub-continent, continent, and global-level production
of various livestock products. Let us denote this quantity by pi where i labels a given animal
product (e.g. cattle meat).

Adjusting production for import and export of live animals

At any scale smaller than the global one (e.g. country-level), the concept of production can be
defined in several ways. For example, we may define production simply as pi; that is, the
quantity reported to have been produced in a given country. But consider production of cattle
meat for a moment. In some cases it may be useful to regard exports of live cattle as
contributing to a country’s actual beef production. After all, the country used land to produce the
cattle that was exported and so should be considered in the calculation of yield. If we let N(E)

j
denote the number of live animals exported of the type that produce a meat product j, and we let
mj denote the average carcass weight, then we can define an adjusted meat production p(E)

j to be

	

	 2	

p(E)
j = pj + N(E)

jmj

On the other hand, suppose a given country imports a number N(I)
j of animals that are slaughtered

for meat. Then we should subtract this meat from the country’s overall production because they
did not use their own land to produce it. That is, we define another adjusted production p(IE)

j to
be

p(IE)
j = pj + (N(E)

j – N(I)
j)mj

This definition assumes that all imported animals are slaughtered for meat within the year in
which the trade is reported.

Adjusting production for culling of dairy/egg animals

Finally, there are cases when we would like to exclude meat produced from the culling of dairy
or egg animals. If we denote culling rate by rk of dairy or egg animals labeled by k (e.g. dairy
cattle) but of the same type that produce a meat product j (e.g. meat cattle), then the adjusted
production p(IEC)

j:

p(IEC)
i = pi + (N(E)

i – N(I)
i – rkNk)m

where Nk is the number of producing dairy or egg animals in a given year. This definition of
production is useful when determining the amount of feed required to produce a given quantity
of meat since the feed given to these culled animals was primarily used for milk or egg
production.

The methods we used to estimate rk is differ for dairy and egg animals. Let us define the
following quantities: N(t) is the stock of live animals (e.g. cattle) reported by a given country for
the year t; I(t) and E(t) are the number of imported and exported live animals respectively;
D(t)=N(t) +I(t) -E(t) is the number of domestic live animals; S(t) is the number of animals
slaughtered for meat; P(t) is the number of animals producing milk or eggs.

Culling rate for dairy animals

The lifespan of typical dairy animals (e.g. cows) is greater than one year, which is the time
resolution of the FAO data. For cattle, the number of animals not slaughtered is D(t) - S(t). Thus,
we estimate the number of cattle derived from cattle births from the previous year is

B(t) = N(t) – (D(t-1) - S(t-1))

The number of animals born into the dairy sector is assumed to be in the same proportion as the
number of dairy animals relative to the domestic animal population. That is, the number of new
dairy animals is given by

BP
(t)= B(t)P(t)/D(t)

Thus, the number of dairy animals in a given year that were present in the previous year is given
by

PO
(t) = P(t) - BP

(t)

	

	 3	

Finally, this implies that the number of dairy animals culled in a given year is given by

C(t) = P(t) - PO
(t+1)

so the culling rate is

rk
(t) = C(t)/P(t)

To check the validity of this method we can use the United States as an example. Our method
gives average cull rate of 0.35 for U.S. dairy cattle, which is in excellent agreement with the
value of 0.36 reported by the USDA1. Also, as the slaughter of cattle is forbidden in many states
in India, we should expect a low culling rate there2. We find an average culling rate for dairy
cattle in India of about 0.04.

Culling rate for egg-laying animals

The method to estimate the culling rate of egg-laying animals (e.g. hens) differs from that for
dairy animals because, although the lifespan of egg-laying animals is typically longer than one
year, that of a meat bird is typically much less than a year. In this case, we define the cumulative
stock to be the sum of the number of animals slaughtered and the following year’s stock:

A(t) = S(t) + N(t+1)

Then the number of new births in a given year is

B(t) = A(t) - D(t)

and number of animals born into the egg sector is

BP
(t)= B(t)P(t)/A(t)

Then the number of egg-laying animals in a given year that remain from the previous year is

PO
(t) = P(t) - BP

(t-1)

Finally, this implies that the number of egg-laying animals culled in a given year is given by

C(t) = P(t) - PO
(t+1)

so the cull rate is

rc
(t) = C(t)/P(t)

Again, we can check the method’s results against what might be expected from known practices
in the United States. There, and in much of the developed world, egg-laying hens are typically
slaughtered at less than two years of age3. Thus, if we assume uniform age distribution, we
expect a culling rate greater than 0.5 but less than one. For the U.S. we find an average culling
rate for egg-laying hens of about 0.8. Moreover, we find a smaller culling rate in developing
countries, where replacement hens may be less available and/or not economically viable.

Dividing production into pastoral and mixed/landless production

	

	 4	

For ruminants, we used estimates of the quantity produced in both the pastoral and
mixed/landless agricultural systems at the sub-continent level4. Using a quadratic interpolant on
the relative production in these two systems, we divide the production pi of ruminant animal
products into two parts: production in the pastoral system p(P)

i, p(P,E)
i, p(P,IE)

i, p(P,IEC)
i, and

production in the mixed/landless system p(ML)
i, p(ML,E)

i, p(ML,IE)
i, p(ML,IEC)

i,.

In the event that production data is missing from the FAOSTAT for a given country and year, we
estimate the production to be the same as that in either the next or previous year in which
production data was reported. If no such data can be found, we assume that the production is
zero.

Land area used for meat production

The land used to produce animal products is divided into two parts: pasture area and cropland
used to produce feed.

Ruminant production and pasture area

Ruminant livestock such as cattle and sheep require pasture for their production. Data for the
total pasture area AP used for agricultural production is provided in the FAOSTAT database at
the country, sub-continent, continent and global levels. If no such data can be found, we assume
that the pasture area is 69% (world average) of the country’s agricultural area. To determine the
pasture area required to produce a given product (e.g. cattle meat) in a given country, we first
divided the pasture area into two parts: pasture area in the pastoral system, and pasture area in
the mixed/landless system, denoted by A(P) and A(ML) respectively. This was done using a
quadratic interpolant on estimates of grass land areas in these two agricultural systems in the
corresponding sub-continent4.

Next, let us denote the stocks of animal i in livestock units by Ui where i labels one of the
following animals: meat cattle, dairy cattle, meat buffalo, dairy buffalo, horses, asses, mules,
meat sheep, dairy sheep, meat goats, meat camels, dairy camels, and camelids5. The stocks of
meat animals is defined to be the total number of animals minus the number of dairy or egg
animals, where applicable. We further divided those stocks into parts found in the pastoral and
mixed/landless systems, denoted by U(P)

i and U(ML)
i respectively. The latter was again done

using a quadratic interpolant on estimates of the proportions of each livestock population that is
in either production system in the corresponding sub-continent. The proportions were inferred
from the production, carcass weight/production per animal, and off-take rates in each production
system4. Then the area of pasture in the mixed/landless system assigned to an animal n is the
total area of pasture in the mixed/landless system times the fraction of all livestock units
represented by meat cattle. That is, the pasture area in the pastoral and mixed/landless system
assigned to the production of an animal product i is given by

A(ML)
i = A(ML) U(ML)

i / Si U(ML)
i

and

A(P)
i = A(P) U(P)

i / Si U(P)
i

	

	 5	

respectively.

Cropland area used for feed

Ruminant livestock in the mixed/landless system as well as non-ruminant livestock, including
pigs and chickens, consume feed. This feed can be composed of grasses (for ruminants), crop
residues and food crops. The land required to produce the grasses used in ruminant feed is
already accounted for in the pasture area. We regard the land used to produce the residue portion
of feed to be zero since that land was primarily used for a different purpose (e.g. crop
production). Thus, here we are interested in the area of cropland used to produce the proportion
of feed represented by food crops.

Bouwman et al. give estimates of the feed conversion rate r(f)
i at the sub-continent level for a

given animal product labeled by i; that is, the number of units of feed (dry matter) required to
produce one unit of the animal product4. They also give estimates of the proportion of feed fi
represented by food crops for a given animal product. Using a quadratic interpolant on these
data we can estimate the quantity of food crops required to produce a unit of the animal product
by p(ML,IEC)

ifir(f)
i. However, we do not use this value, which for the moment we will call the un-

normalized feed quantity, for the feed quantity because we do not have a reliable way to convert
dry matter to harvest weight, the latter of which is reported in the FAOSTAT database, and we
could not find any data on the time dependence of feed composition6. Instead, for a given animal
product i, we estimated the proportion pi of the total available feed quantity that is assigned to
the production of that product to be the proportion of the total feed quantity represented by the
animal product i. That is,

pi = p(ML,IEC)
i fir(f)

i / Si p(ML,IEC)
i fir(f)

i

For any given crop the quantity of that crop in a country’s supply that is available for livestock
feed is reported in the commodity balances of the FAOSTAT database. Let Qj denote the
quantity of crop labeled by j assigned to feed. Data for the country’s production Pj, imports Ij
and exports Ej of a crop j are given in the FAOSTAT database, which can be used to determine
the country’s self-sufficiency ratio sj for that crop,

sj = Pj /(Pj + Ij - Ej)

Then the quantity of that feed qij that is assigned to the production of a given animal product i is
given by

qij = pi sj Qj

The factor sj accounts for the fact that land is not required to produce feed that imported by a
given country. Finally, the yield yj of crop j is given in the FAOSTAT database, so the area of
cropland required to produce the amount of that crop that was produced domestically for feed
that was used to produce the animal product i is given by

A(C)
ij = qij / yj

	

	 6	

In the event that there is insufficient data in the FAOSTAT database to complete the calculation
for a given country and year, we estimate the area to be the same as that in either the next or
previous year in which sufficient data was reported.

Yield

With the above definitions, calculating the yield yi of an animal product in the sense of
production per hectare of land used is straightforward.

yi = (p(P,IE)
i + p(ML,IE)

i)/ (SjA(C)
ij + A(P)

i + A(ML)
i)

We also define yield with respect to cropland use only by

y(C)
i = p(ML,IE)

i / SjA(C)
ij

In the event that there is insufficient data to complete the calculation in the FAOSTAT data for a
given country and year, we estimate the yield to be the same as that in either the next or previous
year in which sufficient data was reported. If no such data can be found, we assume that the
yield is the same as that of the sub-continent to which the country belongs.

References

1 United States Department of Agriculture (2013) "Livestock Slaughter" and "Poultry
Slaughter" and ERS calculations for commercial slaughter by class. Available at
http://www.ers.usda.gov/datafiles/Livestock_Meat_Domestic_Data/Meat_statistics/Lives
tock_and_poultry_slaughter/SlaughterCounts.xls

2 Rahman A (2007) (ed Global Campaign Coalition Against the Long Distance Transport
of Animals for Slaughter - Asia Status Report).

3 Beutler A (2007) Introduction to poultry production in Saskatchewan (Ministry of
Agriculture. Government of Saskatchewan). Available at
http://www.agriculture.gov.sk.ca/introduction_poultry_production_saskatchewan.

4 Bouwman AF, Van der Hoek KW, Eickhout B, Soenario I (2005) Exploring changes in
world ruminant production systems. Agricultural Systems 84:121-153.

5 Food and Agriculture Organization of the United Nations (2003) Compendium of
Agricultural – Environmental Indicators (ed FAO Statistics Division, Rome)

6 Wirsenius S (2000) Human use of land and organic materials: modeling the turnover of
biomass in the global food system (Chalmers University of Technology, Gothenburg,
Sweden).

	
	 	

	

	 7	

Text	B:	Python	code	used	for	computing	the	change	in	land	use	under	the	assumption	that	a	
given	country/region	were	to	follow	the	USDA	guidelines.				
	
Here	we	present	the	Python	code	used	for	computing	the	change	in	land	use	under	the	
assumption	that	a	given	country/region	were	to	follow	the	USDA	guidelines.			The	following	
code	depends	on	the	FAOTools	library	available	at	https://github.com/Pacopag/faolyzer,	and	is	
compatible	with	Python2.7.		
	
import	sys	
sys.path.append('../faotools/')	
from	FAOTools	import	*	
	
calorie_intakes	=	{	
	 1000	:	{	
	 	 'fruits':93.12,	
	 	 'vegetables':34.18,	
	 	 'grains':266,	
	 	 'meats':108.67,	
	 	 'dairy':484.67,	
	 	 'oils':199,	
	 	 'sugar':165},	
	 	 	
	 2000	:	{	
	 	 'fruits':186.24,	
	 	 'vegetables':87,	
	 	 'grains':532,	
	 	 'meats':298.84,	
	 	 'dairy':727,	
	 	 'oils':239,	
	 	 'sugar':267}	
}	
cereal_codes_balance	=	[2905]	
fruit_codes_balance	=	[2919]	
oil_codes_balance	=	[2913]	
meat_codes_balance	=	[2911]	
vegetable_codes_balance	=	[2907,2918]	
sugar_codes_balance	=	[2909]	
butter_code	=	2740	
milk_code	=	2948	
	
food_groups	=	{	

	

	 8	

	 'fruits'	 :[2919,2655],	
	 'vegetables':[2918,2907],	
	 'grains'	:[2905,2656,2658],	
	 'meats'		 :[2911,2912,2731,2732,2733,2734,2913,2949],	
	 'dairy'	 	 :[2948,	2740],	
	 'oils'	 	 :[2914],	
	 'sugar'	 	 :[2908,2909,2922]	 	
}	
	
	
b2p_mappings	=	{	
	 2656:[44],		 	 #beer	 	 	 	
	 2658:[1717],		 	 #alcohol	 	 	
	 2655:[560],		 	 #wine	 	 	 	
	 2905:[1717],		 	 #cereal		 	
	 2919:[1801],		 	 #fruit	 	 	 	 	
	 2913:[1732],		 	 #oilcrops	 	 	
	 2911:[1726],	 	 #pulses	 	 	
	 2907:[1720],	 	 #roots	 	 	
	 2909:[156,157,161],	 #sugar		 	 	
	 2908:[156,157,161],	 #sugarcrops	 	 	 	
	 2912:[1729],	 	 #treenuts	 	 	
	 2918:[1735],	 	 #vegetables	 	
	 2922:[661,656],	 	 #stimulants	 	
	 2914:[1732],	 	 #oils	 	 	 	
	 2731:[867],	 	 #beef	 	 	 	 	
	 2732:[977,1017],	 #mutton	 	
	 2733:[1035],	 	 #pork	 	 	 	
	 2734:[1058],	 	 #poultry	 	 	
	 2948:[882],	 	 #milk	 	 	 	
	 2740:[886],	 	 #butter	 	
	 2949:[1062],	 	 #eggs	 	 	
}	
b2p_conversions	=	{	
	 2656:4.78,		 #beer	
	 2658:0.6,		 #alcohol	
	 2655:0.7,		 #wine	
	 2905:1.0,		 #cereal	
	 2919:1.0,		 #fruit	
	 2913:1.0,		 #oilcrops	
	 2911:1.0,	 #pulses	

	

	 9	

	 2907:1.0,	 #roots	
	 2909:0.12,	 #sugar	
	 2908:1.0,	 #sugarcrops	
	 2912:1.0,	 #treenuts	
	 2918:1.0,	 #vegetables	
	 2922:1.0,	 #stimulants	
	 2914:0.2,	 #oils	
	 2731:1.0,	 #beef	
	 2732:1.0,	 #mutton	
	 2733:1.0,	 #pork	
	 2734:1.0,	 #poultry	
	 2948:1.0,	 #milk	
	 2740:0.047,	 #butter	
	 2949:1.0,	 #eggs	
}	
foods_balanced	=	b2p_mappings.keys()	
fbs_codes	=	[food_code_fb,food_supply_code_fb,domestic_supply_code_fb,import_code_fb]	
#parts	of	food	balance	sheet	that	interest	us.	
	
results_groups	=	{'fruits':[],'vegetables':[],'grains':[],'meats':[],'dairy':[],'oils':[],'sugar':[]}	
results_groups_imports	=	
{'fruits':[],'vegetables':[],'grains':[],'meats':[],'dairy':[],'oils':[],'sugar':[]}	
results_groups_domestic	=	
{'fruits':[],'vegetables':[],'grains':[],'meats':[],'dairy':[],'oils':[],'sugar':[]}	
results_total	=	[]	
results_total_imports	=	[]	
results_total_domestic	=	[]	
	
def	get_land_saved_by_food_guide(year,country_code,calorie_level=2000):	
	
	 start_year	=	1961	
	 end_year	=	2009	
	 if	country_code	<	world_code:	
	 	 spec	=	{'countrycode':country_code}	
	 	 fields	=	{'start_year':1,'end_year':1}	
	 	 rec,f	=	find_one(table_balancers,spec,fields)	
	 	 if	rec	is	None:	
	 	 	 print	"Country	not	found",country_code	
	 	 	 raise	ValueError	
	 	 start_year	=	1961	if	rec['start_year']==''	else	rec['start_year']	
	 	 end_year	=	2009	if	rec['end_year']==''	else	rec['end_year']	

	

	 10	

	 	
	 if	year<start_year:	
	 	 return	get_land_saved_by_food_guide(start_year,country_code)	
	 elif	year>end_year:	
	 	 return	get_land_saved_by_food_guide(end_year,country_code)	
	
	 tot_land_saved	=	0.0	
	 tot_land_saved_imports	=	0.0	
	 tot_land_saved_domestic	=	0.0	
	 	
	 #Pre-fetch	world-average	yields	to	use	as	estimated	land	use	due	to	imports.	
	 world_yields	=	{}	
	 for	fb	in	foods_balanced:	
	 	 pcs	=	b2p_mappings[fb]	if	fb!=butter_code	else	b2p_mappings[milk_code]	
	 	 yld,f	=	get_weighted_yield(year,world_code,pcs)	
	 	 world_yields[fb]	=	yld	
	 	 #print	"World	yield	",yld	
	
	 spec	=	{'year':year,	'countrycode':country_code,	'itemcode':population_item_code,	
'elementcode':population_element_code}	
	 fields	=	{'value':1}	
	 rec,f	=	find_one(table_population,	spec,	fields,	[],'year',	None)	
	 pop	=	1000.0*rec['value']	#Population	is	reported	in	units	of	1000	people,	hence	the	
conversion.	
	
	 #print	"Population\t".pop."\n"	
	 for	fg	in	food_groups:	
	 	 res_land_saved	=	0.0	
	 	 res_land_saved_imports	=	0.0	
	 	 res_land_saved_domestic	=	0.0	
	 	 	
	 	 #	Get	country's	"weighting"	trend	for	the	group	components	(e.g.	%wine	and	
%fruit	for	"fruits"	group)	
	 	 group_components	=	food_groups[fg]	
	 	 component_weights	=	{}	
	 	 component_total	=	0.0	
	 	 spec	=	{'year':year,	'countrycode':country_code,	
'itemcode':{'$in':group_components},	'elementcode':food_supply_code_fb}	
	 	 fields	=	{'itemcode':1,'value':1}	
	 	 qry,f	=	find(table_foodbalance,spec,fields)	
	 	 for	r	in	qry:	

	

	 11	

	 	 	 v	=	r['value']	if	bool(r['value'])	else	0.0	
	 	 	 component_weights[r['itemcode']]	=	v	
	 	 	 component_total	+=	v	
	 	 	
	 	 for	fb	in	group_components:	#(foods_balanced	as	fb)	{	
	 	 	 #print	"---\n"	
	 	 	 component_weights[fb]	=	component_weights[fb]/component_total	if	fb	
in	component_weights	and	component_total!=0	else	0.0		#Normalizes	the	component	weights.	
	 	 	 #print	"Component	weight	".component_weights[fb]."\n"	 	 	 	
	 	 	 spec	=	{'year':year,	'countrycode':country_code,	'itemcode':fb,	
'elementcode':{'$in':fbs_codes}}	
	 	 	 fields	=	{'elementcode':1,'value':1}	
	 	 	 qry,f	=	find(table_foodbalance,	spec,	fields)	
	 	 	 (food,domestic,imports,supply)	=	(0.0,0.0,0.0,0.0)	
	 	 	 	

for	r	in	qry:	
	 	 	 	 v	=	float(r['value'])	if	r['value']!=''	else	0.0	
	 	 	 	 if	r['elementcode']==food_code_fb:	
	 	 	 	 #Note:	food	balance	sheets	report	quantities	in	kilotonnes	
	 	 	 	 #						so	we	multiply	by	1000.0	to	convert	to	tonnes.	
	 	 	 	 	 food	=	1000.0*v	
	 	 	 	 elif	r['elementcode']==domestic_supply_code_fb:	
	 	 	 	 	 domestic	=	1000.0*v	
	 	 	 	 elif	r['elementcode']==import_code_fb:	
	 	 	 	 	 imports	=	1000.0*v	
	 	 	 	 elif	r['elementcode']==food_supply_code_fb:	
	 	 	 	 	 supply	=	v	
	 	 	 	
	 	 	 #print	"Food\t\t".food."\n"	
	 	 	 #print	"Supply\t\t".supply."\n"	
	 	 	 #print	"Domestic\t".domestic."\n"	
	 	 	 #print	"Import\t\t".import."\n"	
	
	 	 	 idr	=	imports/domestic	if	domestic!=0	else	1.0	
	 	 	 import_adj	=	(idr*food)/b2p_conversions[fb]		
	 	 	 food_adj	=	(food	-	import_adj)/b2p_conversions[fb]		
	
	 	 	 #print	"IDR\t".idr."\n"	
	 	 	 #print	"Food	(adj)\t".food_adj."\n"	
	 	 	 #print	"Import	(adj)\t".import_adj."\n"	
	 	 	 	 	 	 	

	

	 12	

	 	 	 pcs	=	b2p_mappings[fb]	if	fb!=butter_code	else	
b2p_mappings[milk_code]	
	 	 	 yld,f	=	get_weighted_yield(year,country_code,pcs)	
	 	 	 if	not	bool(yld):	
	 	 	 	 idr	=	1.0		
	 	 	 	 import_adj	=	import_adj	+	food_adj	
	 	 	 	 food_adj	=	0.0	
	 	 	 	 yld	=	1.0#just	a	dummy	value	
	 	 	 #print	"Yield	".country_code.":".implode(",",pcs).":".yield."\n"	
	 	 	 land_local	=	food_adj/yld	
	 	 	 #print	"Local	land	use	".land_local."\n"	
	 	 	 if	world_yields[fb]==0:	
	 	 	 	 print	year,fb	
	 	 	 land_remote	=	import_adj/world_yields[fb]	
	 	 	 #print	"Remote	land	use	".land_remote."\n"	
	 	 	 land_total	=	land_local+land_remote	
	 	 	 #print	"Total	land	use	".land_total."\n"	
	 	 	 rec_cal	=	component_weights[fb]*calorie_intakes[calorie_level][fg]	
	 	 	 #print	"Recommended	daily	calories	".rec_cal."\n"	
	 	 	 #print	"Population	".pop."\n"	
	 	 	 tot_rec_cal	=	rec_cal*pop*365	
	 	 	 #print	"Recommended	annual	calories	".tot_rec_cal."\n"	
	 	 	 kg_per_cal	=	food/(supply*pop*365)	if	tot_rec_cal!=0	else	0.0	
	 	 	 #print	"kg	per	cal	".kg_per_cal."\n"	
	 	 	 tot_rec_kg	=	tot_rec_cal*kg_per_cal	
	 	 	 #print	"Recommended	kg	food	".tot_rec_kg."\n"	
	 	 	 rec_import	=	idr*tot_rec_kg	
	 	 	 #print	"Recommended	import	".rec_import."\n"	
	 	 	 rec_food	=	tot_rec_kg	-	rec_import	
	 	 	 #print	"Recommended	food	(local)".rec_food."\n"	 	
	 	 	 rec_land_local	=	rec_food/yld	if	bool(yld)	else	0.0	
	 	 	 #print	"Recommended	local	land	use	".rec_land_local."\n"	
	 	 	 rec_land_remote	=	rec_import/world_yields[fb]	
	 	 	 #print	"Recommended	remote	land	use	".rec_land_remote."\n"	
	 	 	 rec_land_total	=	rec_land_local+rec_land_remote	
	 	 	 #print	"Recommended	total	land	use	".rec_land_total."\n"	
	 	 	 diff_land_local	=	land_local-rec_land_local	
	 	 	 #print	"Local	land	saved	".diff_land_local."\n"	
	 	 	 diff_land_remote	=	land_remote-rec_land_remote	
	 	 	 #print	"Remote	land	saved	".diff_land_remote."\n"	
	 	 	 diff_land_total	=	land_total-rec_land_total	

	

	 13	

	 	 	 #print	"Total	land	saved	".diff_land_total."\n"	
	 	 	 	
	 	 	 res_land_saved	+=	diff_land_total	
	 	 	 res_land_saved_imports	+=	diff_land_remote	
	 	 	 res_land_saved_domestic	+=	diff_land_local	
	 	 	 tot_land_saved	+=	diff_land_total	
	 	 	 tot_land_saved_imports	+=	diff_land_remote	
	 	 	 tot_land_saved_domestic	+=	diff_land_local	
	 	 	 	
	 	 results_groups[fg]	=	res_land_saved	
	 	 results_groups_imports[fg]	=	res_land_saved_imports	
	 	 results_groups_domestic[fg]	=	res_land_saved_domestic	
	 #	end	foreach	food_groups	
	 results_total	=	tot_land_saved	
	 results_total_imports	=	tot_land_saved_imports	
	 results_total_domestic	=	tot_land_saved_domestic	
	 	
	

return	{	
	 	
	 'total':{'total':results_total,'local':results_total_domestic,'remote':results_total_imports}
,	
	 	
	 'fruits':{'total':results_groups['fruits'],'local':results_groups_domestic['fruits'],'remote':r
esults_groups_imports['fruits']},	
	 	
	 'vegetables':{'total':results_groups['vegetables'],'local':results_groups_domestic['vegeta
bles'],'remote':results_groups_imports['vegetables']},	
	 	
	 'grains':{'total':results_groups['grains'],'local':results_groups_domestic['grains'],'remote'
:results_groups_imports['grains']},	
	 	
	 'oils':{'total':results_groups['oils'],'local':results_groups_domestic['oils'],'remote':results
_groups_imports['oils']},	
	 	
	 'discretional':{'total':results_groups['sugar'],'local':results_groups_domestic['sugar'],'re
mote':results_groups_imports['sugar']},	
	 	
	 'meats':{'total':results_groups['meats'],'local':results_groups_domestic['meats'],'remote
':results_groups_imports['meats']},	

	

	 14	

	 	
	 'dairy':{'total':results_groups['dairy'],'local':results_groups_domestic['dairy'],'remote':re
sults_groups_imports['dairy']},	
	 }	
	
	
As	an	example,	suppose	we	wish	to	know	the	change	in	land	use	if	the	United	States	(FAO	
country	code	231)	were	to	follow	the	guidelines	in	the	year	2003.		From	a	Python2.7	
interpreter,	we	could	run	the	following	commands:	
	
>>>	import	foodguide	
>>>	foodguide.get_land_saved_by_food_guide(2003,		231)	
	
The	output	is	a	dictionary	indexed	by	each	food	group.		For	example,	
	
{'oils':	{'remote':	11935955.053925896,	'total':	17516498.66811648,	'local':	
5580543.614190584},	'dairy':	{'remote':	-894147.8366835385,	'total':	-16054304.588332873,	
'local':	-15160156.751649339},	'discretional':	{'remote':	2765292.0805478753,	'total':	
2800929.6844484867,	'local':	35637.6039006114},	'grains':	{'remote':	-72896.05288693658,	
'total':	378229.8886981746,	'local':	451125.94158511085},	'fruits':	{'remote':	-
593218.3968910384,	'total':	-941216.3453534044,	'local':	-347997.94846236636},	'vegetables':	
{'remote':	288021.3276913505,	'total':	1127656.2250690062,	'local':	839634.8973776556},	
'total':	{'remote':	33799978.598322116,	'total':	128289100.90765314,	'local':	
94489122.309331},	'meats':	{'remote':	20370972.422618505,	'total':	123461307.37500726,	
'local':	103090334.95238875}}	
	
	

Figure	Legends	

cereal_codes_balance = [2905]
fruit_codes_balance = [2919]
oil_codes_balance = [2913]
meat_codes_balance = [2911]
vegetable_codes_balance = [2907,2918]
sugar_codes_balance = [2909]

butter_code = 2740
milk_code = 2948

food_groups = {

 'fruits' :[2919,2655],

	

	 15	

 'vegetables':[2918,2907],
 'grains' :[2905,2656,2658],
 'meats' :[2911,2912,2731,2732,2733,2734,2913,2949],
 'dairy' :[2948, 2740],
 'oils' :[2914],
 'sugar' :[2908,2909,2922]

}

b2p_mappings = {
 2656:[44], #beer *
 2658:[1717], #alcohol *
 2655:[560], #wine **
 2905:[1717], #cereal *
 2919:[1801], #fruit **
 2913:[1732], #oilcrops ***
 2911:[1726], #pulses *** ***
 2907:[1720], #roots ****
 2909:[156,157,161], #sugar *****
 2908:[156,157,161], #sugarcrops *****
 2912:[1729], #treenuts *** ***
 2918:[1735], #vegetables ****
 2922:[661,656], #stimulants *****
 2914:[1732], #oils ***
 2731:[867], #beef *** ***
 2732:[977,1017], #mutton *** ***
 2733:[1035], #pork *** ***
 2734:[1058], #poultry *** ***
 2948:[882], #milk *** *** *
 2740:[886], #butter *** *** *
 2949:[1062], #eggs *** ***

}

b2p_conversions = {
 2656:4.78, #beer
 2658:0.6, #alcohol
 2655:0.7, #wine
 2905:1.0, #cereal
 2919:1.0, #fruit
 2913:1.0, #oilcrops
 2911:1.0, #pulses
 2907:1.0, #roots
 2909:0.12, #sugar

	

	 16	

 2908:1.0, #sugarcrops
 2912:1.0, #treenuts
 2918:1.0, #vegetables
 2922:1.0, #stimulants
 2914:0.2, #oils
 2731:1.0, #beef
 2732:1.0, #mutton
 2733:1.0, #pork
 2734:1.0, #poultry
 2948:1.0, #milk
 2740:0.047, #butter
 2949:1.0, #eggs
}
	

calorie_intakes = {
 1000 : {
 'fruits':93.12,
 'vegetables':34.18,
 'grains':266,
 'meats':108.67,
 'dairy':484.67,
 'oils':199,
 'sugar':165},

 2000 : {
 'fruits':186.24,
 'vegetables':87,
 'grains':532,
 'meats':298.84,
 'dairy':727,
 'oils':239,
 'sugar':267}
}
import sys
sys.path.append('../faotools/')
from FAOTools import *
from calorie_intakes import *
from code_defns import *

foods_balanced = b2p_mappings.keys()
fbs_codes = [food_code_fb,food_supply_code_fb,domestic_supply_code_fb,import_code_fb]
#parts of food balance sheet that interest us.

results_groups = {'fruits':[],'vegetables':[],'grains':[],'meats':[],'dairy':[],'oils':[],'sugar':[]}
results_groups_imports = {'fruits':[],'vegetables':[],'grains':[],'meats':[],'dairy':[],'oils':[],'sugar':[]}

	

	 17	

results_groups_domestic =
{'fruits':[],'vegetables':[],'grains':[],'meats':[],'dairy':[],'oils':[],'sugar':[]}
results_total = []
results_total_imports = []
results_total_domestic = []

def get_land_saved_by_food_guide(year,country_code,calorie_level=2000):

 start_year = 1961
 end_year = 2009
 if country_code < world_code:
 spec = {'countrycode':country_code}
 fields = {'start_year':1,'end_year':1}
 rec,f = find_one(table_balancers,spec,fields)
 if rec is None:
 print "Country not found",country_code
 raise ValueError
 start_year = 1961 if rec['start_year']=='' else rec['start_year']
 end_year = 2009 if rec['end_year']=='' else rec['end_year']

 if year<start_year:
 return get_land_saved_by_food_guide(start_year,country_code)
 elif year>end_year:
 return get_land_saved_by_food_guide(end_year,country_code)

 tot_land_saved = 0.0
 tot_land_saved_imports = 0.0
 tot_land_saved_domestic = 0.0

 #Pre-fetch world-average yields to use as estimated land use due to imports.
 world_yields = {}
 for fb in foods_balanced:
 pcs = b2p_mappings[fb] if fb!=butter_code else b2p_mappings[milk_code]
 yld,f = get_weighted_yield(year,world_code,pcs)
 world_yields[fb] = yld
 #print "World yield ",yld

 spec = {'year':year, 'countrycode':country_code, 'itemcode':population_item_code,
'elementcode':population_element_code}
 fields = {'value':1}
 rec,f = find_one(table_population, spec, fields, [],'year', None)
 pop = 1000.0*rec['value'] #Population is reported in units of 1000 people, hence the conversion.

 #print "Population\t".pop."\n"
 for fg in food_groups:
 res_land_saved = 0.0

	

	 18	

 res_land_saved_imports = 0.0
 res_land_saved_domestic = 0.0

 # Get country's "weighting" trend for the group components (e.g. %wine and %fruit for "fruits"
group)
 group_components = food_groups[fg]
 component_weights = {}
 component_total = 0.0
 spec = {'year':year, 'countrycode':country_code, 'itemcode':{'$in':group_components},
'elementcode':food_supply_code_fb}
 fields = {'itemcode':1,'value':1}
 qry,f = find(table_foodbalance,spec,fields)
 for r in qry:
 v = r['value'] if bool(r['value']) else 0.0
 component_weights[r['itemcode']] = v
 component_total += v

 for fb in group_components: #(foods_balanced as fb) {
 #print "---\n"
 component_weights[fb] = component_weights[fb]/component_total if fb in
component_weights and component_total!=0 else 0.0 #Normalizes the component weights.
 #print "Component weight ".component_weights[fb]."\n"
 spec = {'year':year, 'countrycode':country_code, 'itemcode':fb,
'elementcode':{'$in':fbs_codes}}
 fields = {'elementcode':1,'value':1}
 qry,f = find(table_foodbalance, spec, fields)
 (food,domestic,imports,supply) = (0.0,0.0,0.0,0.0)
 for r in qry:
 v = float(r['value']) if r['value']!='' else 0.0
 if r['elementcode']==food_code_fb:
 #Note: food balance sheets report quantities in kilotonnes

so we multiply by 1000.0 to convert to tonnes.
 food = 1000.0*v
 elif r['elementcode']==domestic_supply_code_fb:
 domestic = 1000.0*v
 elif r['elementcode']==import_code_fb:
 imports = 1000.0*v
 elif r['elementcode']==food_supply_code_fb:
 supply = v

 #print "Food\t\t".food."\n"
 #print "Supply\t\t".supply."\n"
 #print "Domestic\t".domestic."\n"
 #print "Import\t\t".import."\n"

	

	 19	

 idr = imports/domestic if domestic!=0 else 1.0
 import_adj = (idr*food)/b2p_conversions[fb] #import_adj now means imported "food".
 food_adj = (food - import_adj)/b2p_conversions[fb] #food_adj now means locally produced
"food".

 #print "IDR\t".idr."\n"
 #print "Food (adj)\t".food_adj."\n"
 #print "Import (adj)\t".import_adj."\n"

 pcs = b2p_mappings[fb] if fb!=butter_code else b2p_mappings[milk_code]
 yld,f = get_weighted_yield(year,country_code,pcs)
 if not bool(yld):
 idr = 1.0 # Production comes from processed imports (e.g. Canada and Sugars)
 import_adj = import_adj + food_adj
 food_adj = 0.0
 yld = 1.0#just a dummy value
 #print "Yield ".country_code.":".implode(",",pcs).":".yield."\n"
 land_local = food_adj/yld
 #print "Local land use ".land_local."\n"
 if world_yields[fb]==0:
 print year,fb
 land_remote = import_adj/world_yields[fb]
 #print "Remote land use ".land_remote."\n"
 land_total = land_local+land_remote
 #print "Total land use ".land_total."\n"
 rec_cal = component_weights[fb]*calorie_intakes[calorie_level][fg]
 #print "Recommended daily calories ".rec_cal."\n"
 #print "Population ".pop."\n"
 tot_rec_cal = rec_cal*pop*365
 #print "Recommended annual calories ".tot_rec_cal."\n"
 kg_per_cal = food/(supply*pop*365) if tot_rec_cal!=0 else 0.0
 #print "kg per cal ".kg_per_cal."\n"
 tot_rec_kg = tot_rec_cal*kg_per_cal
 #print "Recommended kg food ".tot_rec_kg."\n"
 rec_import = idr*tot_rec_kg
 #print "Recommended import ".rec_import."\n"
 rec_food = tot_rec_kg - rec_import
 #print "Recommended food (local)".rec_food."\n"
 rec_land_local = rec_food/yld if bool(yld) else 0.0
 #print "Recommended local land use ".rec_land_local."\n"
 rec_land_remote = rec_import/world_yields[fb]
 #print "Recommended remote land use ".rec_land_remote."\n"
 rec_land_total = rec_land_local+rec_land_remote
 #print "Recommended total land use ".rec_land_total."\n"
 diff_land_local = land_local-rec_land_local
 #print "Local land saved ".diff_land_local."\n"

	

	 20	

 diff_land_remote = land_remote-rec_land_remote
 #print "Remote land saved ".diff_land_remote."\n"
 diff_land_total = land_total-rec_land_total
 #print "Total land saved ".diff_land_total."\n"

 res_land_saved += diff_land_total
 res_land_saved_imports += diff_land_remote
 res_land_saved_domestic += diff_land_local
 tot_land_saved += diff_land_total
 tot_land_saved_imports += diff_land_remote
 tot_land_saved_domestic += diff_land_local

 results_groups[fg] = res_land_saved
 results_groups_imports[fg] = res_land_saved_imports
 results_groups_domestic[fg] = res_land_saved_domestic
 # end foreach food_groups
 results_total = tot_land_saved
 results_total_imports = tot_land_saved_imports
 results_total_domestic = tot_land_saved_domestic

 return {
 'total':{'total':results_total,'local':results_total_domestic,'remote':results_total_imports},
 'fruits':{'total':results_groups['fruits'],'local':results_groups_domestic['fruits'],'remote':results_
groups_imports['fruits']},
 'vegetables':{'total':results_groups['vegetables'],'local':results_groups_domestic['vegetables'],'r
emote':results_groups_imports['vegetables']},
 'grains':{'total':results_groups['grains'],'local':results_groups_domestic['grains'],'remote':result
s_groups_imports['grains']},
 'oils':{'total':results_groups['oils'],'local':results_groups_domestic['oils'],'remote':results_group
s_imports['oils']},
 'discretional':{'total':results_groups['sugar'],'local':results_groups_domestic['sugar'],'remote':re
sults_groups_imports['sugar']},
 'meats':{'total':results_groups['meats'],'local':results_groups_domestic['meats'],'remote':results
_groups_imports['meats']},
 'dairy':{'total':results_groups['dairy'],'local':results_groups_domestic['dairy'],'remote':results_g
roups_imports['dairy']},
 }
end for year in years
	
	
	
	 	

	

	 21	

Table	A.	FAO	items,	codes	and	the	corresponding	food	group.		The	codes	without	parentheses	
refer	 to	 commodity	 aggregates	 reported	 in	 the	 food	 balance	 sheets,	 and	 the	 codes	 in	
parentheses	 refer	 to	 the	 corresponding	 items	 in	 the	 “Production”	 data	 in	 the	 FAOSTAT	
database	 [2].	 	 The	 conversion	 factors	were	 used	 to	 convert	 quantities	 to	 their	 primary	 item	
equivalent	(e.g.	wine	gets	converted	to	equivalent	quantity	of	grapes)	[7].	
	
Commodity	 FAO	codes	 Food	group	 Conversion	
Fruits	 2919	(1801)	 Fruits	 -	
Wine	 2655	(560)	 Fruits	 0.7	
Vegetables	 2918	(1735)	 Vegetables	 -	
Starchy	Roots	 2907	(1720)	 Vegetables	 -	
Cereals	 2905	(1717)	 Grains	 -	
Beer	 2656	(44)	 Grains	 4.78	
Beverages,	Alcoholic	 2658	(1717)	 Grains	 0.6	
Bovine	meat	 2731	(867)	 Meat/Protein	 -	
Mutton	and	Goat	meat	 2731	(977,1017)	 Meat/Protein	 -	
Pig	meat	 2733	(1035)	 Meat/Protein	 -	
Poultry	meat	 2734	(1058)	 Meat/Protein	 -	
Eggs	 2744	(1062)	 Meat/Protein	 -	
Oil	crops	 2913	(1732)	 Meat/Protein	 -	
Treenuts	 2912	(1729)	 Meat/Protein	 -	
Pulses	 2911	(1726)	 Meat/Protein	 -	
Milk	 2948	(882)	 Dairy	 -	
Butter,	Ghee	 2740	(886)	 Dairy	 0.047	
Oils	 2914	(1732)	 Oils	 0.2	
Sugar	crops	 2908	(156,157,161)	 Discretional	 -	
Sugar	and	Sweeteners	 2909	(156,157,161)	 Discretional	 0.12	
Stimulants	 2922	(661,656)	 Discretional	 -	
	
Table	B.	Top	livestock	product	producing	countries	on	average	since	1990.	

Rank	 Cattle	meat	 Cow	milk	 Sheep	meat	 Chicken	
meat	

Pig	meat	 Hen	eggs	

1	 United	States	 United	States	 China	 United	
States	

China	 China	

2	 Brazil	 Russia	 Australia	 China	 United	States	 United	States	
3	 China	 India	 New	Zealand	 Brazil	 Germany	 Japan	
4	 Argentina	 Germany	 U.K.	 Mexico	 Spain	 India	
5	 Russia	 France	 Turkey	 Japan	 Brazil	 Russia	
6	 Australia	 Brazil	 Iran	 U.K.	 France	 Mexico	
7	 France	 China	 Sudan	 Russia	 Canada	 Brazil	
8	 Mexico	 U.K.	 India	 France	 Poland	 France	
9	 Germany	 Ukraine	 Spain	 India	 Netherlands	 Germany	
10	 Canada	 New	Zealand	 Russia	 Thailand	 Russia	 Italy	

	

	 	

	

	 22	

Fig	A	(1	-	7)	Graphical	representation	of	each	continent	showing	the	amount	of	land	spared	or	
required	in	total	to	meet	the	recommendations	in	the	Dietary	Guidelines	for	Americans	2010.	
The	 red	 depicts	 the	 amount	 of	 land	 spared	 or	 required	 domestically	 while	 the	 blue	 line	
combines	domestic	land	and	displaced	land	to	depict	a	total	amount	of	land	spared	overall.	A	
negative	surplus	is	to	be	interpreted	as	a	deficit,	meaning	that	the	country	would	need	more	
food	from	that	group	to	follow	the	guidelines.	
	
1)	 Africa	 dataset.	Graphical	 representation	 of	 Africa	 showing	 the	 amount	 of	 land	 spared	 or	
required	in	total	to	meet	the	recommendations	in	the	Dietary	Guidelines	for	Americans	2010.	
The	 red	 depicts	 the	 amount	 of	 land	 spared	 or	 required	 domestically	 while	 the	 blue	 line	
combines	domestic	land	and	displaced	land	to	depict	a	total	amount	of	land	spared	overall.	A	
negative	surplus	 is	 to	be	 interpreted	as	a	deficit,	meaning	that	the	country	would	need	more	
food	from	that	group	to	follow	the	guidelines.	
A

	

	

	 23	

	

	 	

	

	 24	

2)	 Asia	 dataset.	 Graphical	 representation	 of	 Asia	 showing	 the	 amount	 of	 land	 spared	 or	
required	in	total	to	meet	the	recommendations	in	the	Dietary	Guidelines	for	Americans	2010.		

 	

 	

	

	

	

	

	

	

	

	

	

	

	

	

	 25	

3)	Eastern	Europe	dataset.	Graphical	representation	of	Eastern	Europe	showing	the	amount	of	
land	spared	or	required	in	total	to	meet	the	recommendations	in	the	Dietary	Guidelines	for	
Americans	2010.

	

	

	

	

	 26	

4)	European	Union	dataset.	Graphical	representation	of	the	European	Union	showing	the	
amount	of	land	spared	or	required	in	total	to	meet	the	recommendations	in	the	Dietary	
Guidelines	for	Americans	2010.

	

	

	

	

	

	

	

	

				

	

	

	

	

	

	 27	

	

5)	North	America	dataset.	Graphical	representation	of	North	America	showing	the	amount	of	
land	spared	or	required	in	total	to	meet	the	recommendations	in	the	Dietary	Guidelines	for	
Americans	2010.	

	

	

	

	

	

	

	

	

	

	 28	

6)	Oceania	dataset.	Graphical	representation	of	Oceania	showing	the	amount	of	land	spared	or	
required	in	total	to	meet	the	recommendations	in	the	Dietary	Guidelines	for	Americans	2010.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 29	

7)	South	America	dataset.	Graphical	representation	of	South	America	showing	the	amount	of	
land	spared	or	required	in	total	to	meet	the	recommendations	in	the	Dietary	Guidelines	for	
Americans	2010.

	

	

	

	

	

	

	

	

	

