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1 Overview of recurrent neural network and long short-
term memory

1.1 Recurrent Neural Network (RNN)

RNN is a deep neural network architecture that can be viewed as a nonlinear dynamical system
mapping from sequences to sequences. The most distinct feature of a RNN is the presence
of hidden states whose values are dependent on those of the previous temporal steps and the
current input. These units represent the internal memory of the model and are designed to
address the sequential nature of the input (the same combination of inputs arranged in different
order outputs different results). The output sequence is determined by the hidden state at each
step. Fig S.1 shows the unfolded structure of a RNN model.

Figure S.1: Computational graph for recurrent neural network. xt,ht and zt are the input,
hidden and output states at time t.

The model is parametrized by weight matrices {Whx,Whh,Woh} and bias vectors {bh,bo},
whose concatenation are denoted by θ for convenience. Given an input sequence (x1, ...,xT ),
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the RNN computes a sequence of hidden states (h1, ...,hT ) and a sequence of outputs (z1, ..., zT )
as follows

ht = σh(Whxxt + Whhht−1 + bh)

zt = σz(Wzhht + bz),
(S.1)

where σh(·) and σz(·) are the hidden and output nonlinear activation functions respectively.
The very first hidden state, h0, is required as an additional input to the model (or set to zero by
default). Given training input and output sequences, a set of θ can be obtained by minimizing
the loss function

Ltot(θ) =

T∑
t=1

L
(
Zt(θ,X),Yt

)
(S.2)

which is a sum of per-time-step losses measuring the difference between the target output Yt

and model-generated Zt (as a function of weights θ and model input X up until time step
t), which are written in upper case to emphasize that they are comprised of multiple training
cases. For regression problems, the most commonly used loss function L is the mean squared
error (MSE):

LMSE(Zt,Yt) =
1

N

N∑
n=1

∣∣∣∣z(n)t − y
(n)
t

∣∣∣∣2
2
, (S.3)

where z
(n)
t and y

(n)
t are model output and target for test case n; N is the total number of training

cases. Typically, a gradient-based procedure is used for optimization, where the derivatives of
L with respect to θ are calculated using back-propagation-through-time (BPTT) algorithm [1].

1.2 Long short-term memory (LSTM)

RNNs are well known to be difficult to train in particular for problems where long-term de-
pendencies are important. Specifically, the derivative of the loss function at one time can be
exponentially large with respect to the hidden activations at an earlier time due to the nonlinear
iterative nature of RNN. As a result, the gradient would either vanish or explode [2]. LSTM
[3] is an effective solution for combating this problem, more specifically through introducing
memory cells. A memory cell is a self-recurrent neuron, equipped with additional input, forget
and output gates. The presence of these gates allows control over, depending on the input and
the previous hidden state, how much memory is received and passed on to the next time-step,
as well as how much to take from the input. When the gates are shut, the gradients can flow
through the memory unit without alteration for an indefinite amount of time, thus overcoming
the vanishing gradient problem.

Fig S.2 shows the unrolled structure of a LSTM model. The evolution of the states are
governed by the following equations:

it = σ(Wihht−1 + Wixxt + bi)

ft = σ(Wfhht−1 + Wfxxt + bf )

ot = σ(Wohht + Woxxt + bo)

C̃t = tanh(Wchht−1 + Wcxxt + bc)

Ct = it ◦ C̃t + ft ◦Ct−1

ht = ot ◦ tanh(Ct),

(S.4)
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Figure S.2: The repeating module in an LSTM. xt and ht are input and output states at time
t; Ct is the running memory; ft, it and ot are forget, input and output gate values calculated
based on previous output ht−1 and current input xt; C̃t is a candidate memory state that is
integrated with the previous memory to generate current memory Ct

where σ(·) is the sigmoid function and ◦ denotes element-wise multiplication. it, ft and ot are
the input, forget and output gates respectively. Ct represents the cell memory (formally called
cell state) calculated as a linear combination of a new candidate cell state C̃t and the previous
memory Ct−1, weighted by the input and forget gate values. ht is the output of the LSTM and
can be regarded as a nonlinear copy of the cell state that helps to decide how to process the
input in the next step. All gates, cell states and outputs have the same dimension nLSTM which
is a hyperparameter of the model. It determines the memory capacity of the network and is
in general different from the target dimension. Hence, ht often has to connect to additional
fully-connected layers to arrive at the desired dimension in the final output zt, such as the
architectures used in this work.

In total, 8 weight matrices and 4 bias vectors make up the parameter space of a single
LSTM unit. Despite having more parameters and a much more intricate forward pass, LSTM
can be easily implemented using software packages equipped with automatic differentiation. In
this work, all models are implemented in Keras [4] with a Tensorflow [5] backend.

1.3 Weight optimization

Here we provide a brief description of the algorithm used for weight optimization in this work.
We start by noting that the total loss function (MSE based) can be rewritten as a sum of
individual losses over test cases:

Ltot(θ) =
1

N

N∑
n=1

T∑
t=1

||z(n)t − y
(n)
t ||22 ≡

1

N

N∑
n=1

L
(n)
MSE(θ|X,Y). (S.5)

where L
(n)
MSE denotes the loss for the nth training trajectory over all time steps. A standard

gradient descent method performs the following update

θ := θ −∇θLtot = θ − η
N∑

n=1

∇θL
(n)
MSE/N, (S.6)

where η is a step size more commonly known as the learning rate. The gradient ∇θLtot, similar
to the loss function itself, is expressed as a sum over a gradient function evaluated on individual
test cases. Computing this gradient in practice can be very slow and memory-intensive for large
data sets. To this end, we often resort to a mini-batch gradient descent algorithm:

θ := θ − η
n2∑

n=n1

∇θL
(n)
MSE/N, (S.7)
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where nbatch = n2 − n1 is a fixed batch size hyperparameter and n1 is iterated through the
training set at nbatch intervals to ensure that all training examples are covered. In this way,
gradient is updated based on mini-batches of training examples, which serves to (a) reduce
the variance of the parameter updates for more stable convergence and (b) make the process
more memory-efficient. This approach is known as stochastic gradient descent (SGD) and is
the foundation for most of the optimization algorithms used for neural networks today.

Choosing an appropriate learning rate η schedule, however, remains difficult. A learning
rate that is too small leads to slow convergence while a large learning rate may potentially
cause fluctuations near the optimum or even divergence. In an attempt to tackle this issue, the
concept of momentum [6] is introduced that helps accelerate SGD in relevant directions and
dampens potential oscillations. This is accomplished by adding a fraction α of the cumulative
update vector to the current gradient:

νt := ανt−1 + η∇θL

θ := θ − νt,
(S.8)

where t is the index of the current update. This momentum term automatically increases the
update in dimensions whose recent gradients point in similar directions and decreases those for
dimensions whose gradients change directions, thereby gaining faster convergence and reducing
oscillations.

Building on this concept, the adaptive moment estimation (Adam) algorithm [7] applies
additional levels of momentum control:

νt := β1νt−1 + (1− β1)∇θL

mt := β2mt−1 + (1− β2)(∇θL)2

ν̂t = νt/(1− βt
1)

m̂t = mt/(1− βt
2)

θ := θ − η√
m̂t + ε

◦ ν̂t,

(S.9)

where ε is a smoothing constant that helps avoid division by zero. Here ν and m are (weighted)
history of the gradient and its squared value obtained in the past. The division of 1− βt

1 and
1− βt

2 counteracts the bias resulted from zero initializations to ν and m. Performing a scalar
division by m̂t on the update dampens any extreme updates experienced previously. This
method has seen great success in practice and utilized for optimizing the model architectures
presented in this work.

2 The Charney DeVore system

2.1 Proper orthogonal decomposition

In this section, we describe the proper orthogonal decomposition (POD) applied to the Charney-
DeVore system. For a set of snapshot state vectors {x(n)}Nn=1 in Rd (centered to zero mean),
POD seeks an orthogonal projector ΠV of fixed rank m that minimizes the projection error

N∑
n=1

||x(n) −ΠVx(n)||2 = J(ΠV), (S.10)

where ΠVx(n) = VVTx(n) and columns of V form an orthonormal basis for an m-dimensional
subspace of Rd. One can show that the optimal basis is given by the leading eigenvectors of
the empirical covariance matrix
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C =
1

N

N∑
n=1

x(n)(x(n))T . (S.11)

We denote the leading eigenvalues and normalized leading eigenvectors by {λ1, . . . , λm} and
{v1, . . . ,vm}. This projection has the property that the new coordinates ξi = vT

i x, i = 1, . . . ,m
are uncorrelated. In addition, the eigenvalue λi represents the variance of the projected coordi-
nate (i.e. var[ξi]) and for full-dimensional projection m = d the sum of eigenvalues is equal to
the total variance summed over the dimensions of x. The eigenvalues and percentage variance
of each mode for the CDV system, computed from the N = 104 data set, is listed in Table S.1.

Mode
number

Mode
variance

Cumulative
variance (%)

1 4.7× 10−2 66.5

2 1.9× 10−2 93.2

3 3.2× 10−3 97.6

4 9.1× 10−4 98.9

5 5.2× 10−4 99.6

6 2.8× 10−4 100.0

Table S.1: POD variance spectrum for CDV system

2.2 Additional computational results

In this section we present additional numerical results for using the proposed data-driven ap-
proach to assist the POD-projected model in lower-dimensional subspaces (dimensions 3 and
4). The architectures used in each case have the same number of hidden units in the LSTM
layer as the number of truncated dimensions. Similar to the 5-dimensional reduced-order model,
presented in the main text, we use architecture I and perform training for 1000 epochs. The
other hyperparameters remain unchanged. Fully data-driven models are also constructed and
tested for comparison.

In Figs S.3 and S.4 we show the model performance in terms of RMSE, ACC and the two
sample trajectories used in Fig 4 for 4- and 3-dimensional subspaces respectively. As expected,
the error for the lower dimensional data-assisted model is in general larger and the short-term
accuracy comes closer to that of the fully data-driven model. This result demonstrates that
there is tremendous value to a good reduced-order model for which the assistive data-driven
strategy is used, as it helps to greatly reduce the difficulties of learning long-term dependencies
from data due to the presence of chaos.

Fig S.5 shows the attractor of each data-assisted model compared with that of the true
system (projected to first two POD dimensions). For both 4- and 3-dimensional reduced-order
model, the data-assisted strategy is able to reconstruct a strange attractor despite the fact that
the projected equations both have a single fixed point. This means that the equation-based
dynamics is sufficient to warrant long term stability (the corresponding fully data-driven models
diverge). However, the quality at which the resulted attractor replicates that of the full system
clearly deteriorates as the reduction dimension lowers.
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Figure S.3: RMSE vs. lead time (first row), ACC vs. lead time (second row) and two example
trajectories (last two rows) comparing the performance of data-assisted approach ( ), fully
data-driven model ( ) and projected equations alone ( ) for a 4-dimensional reduced-order
model based on the most energetic POD modes. For the test trajectories, truth ( ) is also
included. All values are normalized by the square root of the POD eigenvalues.
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Figure S.4: RMSE vs. lead time (first row), ACC vs. lead time (second row) and two sample
trajectories (last two rows) comparing the performance of data-assisted approach ( ), fully
data-driven model ( ) and projected equations alone ( ) for a 3-dimensional reduced-order
model based on the most energetic modes. For the test trajectories, truth ( ) is also included.
All values are normalized by the square root of the POD eigenvalues.

Figure S.5: 2000-unit trajectories projected to the (ξ1, ξ2) plane for 4- and 3-dimensional pro-
jected and data-assisted models. The projected equation-based models result in a single fixed
point while data-assisted models are able to replicate the true system attractor much better.
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3 The Navier-Stokes equation

3.1 Triad dynamics

We provide a derivation for triad dynamics (20). Starting from the original model equations
(17), one can show that ∇p is orthogonal to all divergence-free vector fields {v : ∇·v = 0} and
can therefore be interpreted as taking an orthogonal projection onto the subspace. The pseudo-
differential operation is known as the Leray projection. Hence we can remove the pressure field
dependence and rewrite (17) as

∂tu = −P[u · ∇u] + ν∆u + f (S.12)

where P denotes the Leray projection operator. Substituting in the Fourier coefficients defined
in (19), components of the nonlinear term u · ∇u can be expressed explicitly as

ux
∂ux
∂x

+ uy
∂ux
∂y

= i
∑
p

∑
q

a(p)a(q)

|p||q|
(p2q1q2 − p1q22)ei(p+q)·x

ux
∂uy
∂x

+ uy
∂uy
∂y

= i
∑
p

∑
q

a(p)a(q)

|p||q|
(p1q1q2 − p2q21)ei(p+q)·x

(S.13)

In 2D, the projection operator takes the form

P =
1

|k|2

[
k22 −k1k2
−k1k2 k21

]
. (S.14)

Substituting (S.13) and (S.14) into (S.12), we obtain the evolution equation in Fourier space

∂tûx(k) =− i
∑

p+q=k

[k22q2(p2q1 − p1q2)− k1k2q1(p1q2 − p2q1)]
a(p)a(q)

|p||q||k|2

− ν|k|2ûx(k)− 1

2
i
(
δk,kf

− δk,−kf

)
∂tûy(k) =− i

∑
p+q=k

[k21q1(p1q2 − p2q1)− k1k2q2(p2q1 − p1q2)]
a(p)a(q)

|p||q||k|2

− ν|k|2ûy(k),

(S.15)

which is identical to (20).

3.2 Initial transient effects

In our framework we have expressed the complementary dynamics as a function of past states
in the reduction space. However, we must start the forecast at some initial condition where no
history is available and the model needs to read a few input states in order to “catch up to
speed”. During this transient stage, predictions are not expected to be accurate. It is of great
interest to us to estimate the length of this transient stage so that low weights can be placed
on the corresponding errors. More importantly, such an estimate provides an idea regarding
the minimum set-up stage length s for architecture II.

For the Navier-Stokes equation presented in this work, this parameter is determined em-
pirically: we make a guess, perform training on architecture I and modify guessed value based
on validation results. In Fig S.6 we provide the prediction validation plot for an example case
showing the predicted and true values of the complementary dynamics at each step of a trained
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Figure S.6: Kolmogorov flow: prediction for a validation case using architecture I (p = 200,
τ = 0.005, nLSTM = 70 and nFC = 38). Solid and dashdotted lines are predicted and true
complementary dynamics respectively. Horizontal axis is time. Predictions before time 0.4 are
not expected to be accurate because model memory is initialized to zero.

model. As expected, oscillations and low accuracy are observed for the first few steps. However,
predictions soon converge almost perfectly onto the true values as the effects of zero initializa-
tion to the model memory gradually die out. Moreover, the time it takes for oscillations to
fade differs across dimensions and it makes most sense to use the longest. We use pt = 60 and
a much more conservative s = 100 for the final results. Coincidentally, the length of the set-up
sequence sτ = 0.5 agrees approximately with the eddy turn-over time of the system.

3.3 Sequential training with increasing p

As discussed in the main text, we progressively improve the model weights by training a se-
quence of models starting from architecture I and gradually increasing the length of the predic-
tion stage of architecture II. Smaller learning rates have to be used to for models with longer
prediction stage in order to achieve stable and steady improvement in training loss. The model
structure and associated learning rate used is listed in Table S.2. This training profile is found
to steadily reduce the multi-step prediction error of this problem. The test RMSE of the weights
obtained at the end of each training step is shown in Fig S.7. During each training step the
weights are optimized for 1000 epochs.
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Model learning rate η
arch I 1E-3

arch II, p = 10 1E-3
arch II, p = 30 5E-4
arch II, p = 50 1E-4
arch II, p = 100 1E-5

Table S.2: Learning rate for sequential model training. Model with a larger p is more sensitive
to the weights due to chaos and thus smaller learning rate has to be used.

Figure S.7: Test RMSE for weights obtained from architecture I and architecture II at p =
{10, 30, 50, 100}. At each step the model is trained for 1000 epochs at decreasing learning rate.
Error performance is steadily improved.
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