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SUPPORTING TEXT
Resolution of ChIP-exo data localizes the TSS to within basepairs
ChIP-chip and ChIP-seq data are enriched at bacterial promoters when the σ factor is immunoprecipitated [1-8]. Ecocyc annotated TSSs were checked for σ70 ChIP-exo enrichment within ±200 bp for data generated on three different substrates—glucose, fructose, and glycerol (Fig 1A and S1 Fig). Like its predecessors, ChIP-exo peaks are consistently found near promoters. However, only the single-nucleotide resolution of ChIP-exo provides the exact genomic location bound by RNAP holoenzyme. Surprisingly, ChIP-exo data generated on σ70 is found to be a better proxy for the TSS than it is for the -35 and -10 promoter recognition sequence elements. The median position of the σ70 peak center is 5 bp downstream of the TSS for all three carbon sources (Fig 1A and S1 Fig). The spatial consistency of the σ70 peak center demonstrates the utility of ChIP-exo to approximate TSSs to within base pairs from where they exist and provides an orthogonal method to complement 5’ RACE-based TSS detection.   
Confirmation of Crp ChIP-exo binding sites with published data. 
Compared with published studies we are able to have a 91% (21/23) overlap with experimentally validated Crp binding sites [42] and a 79% (23/29) overlap with previous ChIP-chip measurements that occurred in characterized Crp binding sites [43]. We further see a 65% overlap (317/486) with all reported Crp target genes in RegulonDB [44]. If one excludes the 65 genes conservatively estimated to be active only upon substrate specific inductions, this overlap increases to ~75% overlap (317/421) with Crp regulated genes found in RegulonDB. 

Brief review of Crp Activating regions
[bookmark: _GoBack]The activating properties of Crp and many transcription factors is through stabilizing interactions with RNAP holoenzyme at the promoter [45, 46]. Molecular characterization studies and mutational analysis of Crp has revealed three activating regions (Ar’s) that make protein/protein interactions at specific positions in RNAP holoenzyme [47, 48]. The first, Ar1, interacts with either of the α subunit at the C-terminus and the HL159 mutation to Crp prevents this interaction from forming [49, 50]. This region is involved with activation at Class I and Class II promoters [47, 48]. The second region, Ar2, is only associated with Class II promoters and binds to the N-terminus of the α subunit. This bond was shown to be severely disrupted by introduction of two mutations to Crp, KE101 and HY19 [49]. Lastly, a weaker interaction was found to occur at Ar3 between Crp and the σ factor [51, 52]. 
REFERENCES
[bookmark: _ENREF_1]1.	Cho BK, Kim D, Knight EM, Zengler K, & Palsson BO (2014) Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states. BMC biology 12:4.
[bookmark: _ENREF_2]2.	Cho BK, Knight EM, & Palsson BO (2008) Genomewide identification of protein binding locations using chromatin immunoprecipitation coupled with microarray. Methods in molecular biology 439:131-145.
[bookmark: _ENREF_3]3.	Cho BK, et al. (2009) The transcription unit architecture of the Escherichia coli genome. Nature biotechnology 27(11):1043-1049.
[bookmark: _ENREF_4]4.	Herring CD, et al. (2005) Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays. Journal of bacteriology 187(17):6166-6174.
[bookmark: _ENREF_5]5.	Kroger C, et al. (2012) The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proceedings of the National Academy of Sciences of the United States of America 109(20):E1277-1286.
[bookmark: _ENREF_6]6.	Qiu Y, et al. (2010) Structural and operational complexity of the Geobacter sulfurreducens genome. Genome research 20(9):1304-1311.
[bookmark: _ENREF_7]7.	Reppas NB, Wade JT, Church GM, & Struhl K (2006) The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. Molecular cell 24(5):747-757.
[bookmark: _ENREF_8]8.	Wade JT, Struhl K, Busby SJ, & Grainger DC (2007) Genomic analysis of protein-DNA interactions in bacteria: insights into transcription and chromosome organization. Molecular microbiology 65(1):21-26.
[bookmark: _ENREF_9]9.	Hook-Barnard IG & Hinton DM (2007) Transcription initiation by mix and match elements: flexibility for polymerase binding to bacterial promoters. Gene regulation and systems biology 1:275-293.
[bookmark: _ENREF_10]10.	Hsu LM (2002) Promoter clearance and escape in prokaryotes. Biochimica et biophysica acta 1577(2):191-207.
[bookmark: _ENREF_11]11.	Record M, Reznikoff WS, Craig ML, McQuade KL, & Schlax PJ (1996) Escherichia coli RNA polymerase (Es70), promoters, and the kinetics of the steps of transcription initiation. Escherichia coli and Salmonella Cellular and Molecular Biology. Edited by Neidhardt FC et al. ASM Press, Washington DC:792-821.
[bookmark: _ENREF_12]12.	Saecker RM, Record MT, Jr., & Dehaseth PL (2011) Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. Journal of molecular biology 412(5):754-771.
[bookmark: _ENREF_13]13.	Rogozina A, Zaychikov E, Buckle M, Heumann H, & Sclavi B (2009) DNA melting by RNA polymerase at the T7A1 promoter precedes the rate-limiting step at 37 degrees C and results in the accumulation of an off-pathway intermediate. Nucleic acids research 37(16):5390-5404.
[bookmark: _ENREF_14]14.	Schickor P, Metzger W, Werel W, Lederer H, & Heumann H (1990) Topography of intermediates in transcription initiation of E.coli. The EMBO journal 9(7):2215-2220.
[bookmark: _ENREF_15]15.	Sclavi B, et al. (2005) Real-time characterization of intermediates in the pathway to open complex formation by Escherichia coli RNA polymerase at the T7A1 promoter. Proceedings of the National Academy of Sciences of the United States of America 102(13):4706-4711.
[bookmark: _ENREF_16]16.	Bartlett MS, Gaal T, Ross W, & Gourse RL (1998) RNA polymerase mutants that destabilize RNA polymerase-promoter complexes alter NTP-sensing by rrn P1 promoters. Journal of molecular biology 279(2):331-345.
[bookmark: _ENREF_17]17.	Kovacic RT (1987) The 0 °C closed complexes between Escherichia coli RNA polymerase and two promoters, T7-A3 and lacUV5. The Journal of biological chemistry 262(28):13654-13661.
[bookmark: _ENREF_18]18.	Cook VM & Dehaseth PL (2007) Strand opening-deficient Escherichia coli RNA polymerase facilitates investigation of closed complexes with promoter DNA: effects of DNA sequence and temperature. The Journal of biological chemistry 282(29):21319-21326.
[bookmark: _ENREF_19]19.	Davis CA, Bingman CA, Landick R, Record MT, Jr., & Saecker RM (2007) Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 104(19):7833-7838.
[bookmark: _ENREF_20]20.	Borukhov S, Sagitov V, Josaitis CA, Gourse RL, & Goldfarb A (1993) Two modes of transcription initiation in vitro at the rrnB P1 promoter of Escherichia coli. The Journal of biological chemistry 268(31):23477-23482.
[bookmark: _ENREF_21]21.	Gourse RL (1988) Visualization and quantitative analysis of complex formation between E. coli RNA polymerase and an rRNA promoter in vitro. Nucleic acids research 16(20):9789-9809.
[bookmark: _ENREF_22]22.	Newlands JT, Ross W, Gosink KK, & Gourse RL (1991) Factor-independent activation of Escherichia coli rRNA transcription. II. characterization of complexes of rrnB P1 promoters containing or lacking the upstream activator region with Escherichia coli RNA polymerase. Journal of molecular biology 220(3):569-583.
[bookmark: _ENREF_23]23.	Craig ML, et al. (1998) DNA footprints of the two kinetically significant intermediates in formation of an RNA polymerase-promoter open complex: evidence that interactions with start site and downstream DNA induce sequential conformational changes in polymerase and DNA. Journal of molecular biology 283(4):741-756.
[bookmark: _ENREF_24]24.	Spassky A, Kirkegaard K, & Buc H (1985) Changes in the DNA structure of the lac UV5 promoter during formation of an open complex with Escherichia coli RNA polymerase. Biochemistry 24(11):2723-2731.
[bookmark: _ENREF_25]25.	Krummel B & Chamberlin MJ (1989) RNA chain initiation by Escherichia coli RNA polymerase. Structural transitions of the enzyme in early ternary complexes. Biochemistry 28(19):7829-7842.
[bookmark: _ENREF_26]26.	Krummel B & Chamberlin MJ (1992) Structural analysis of ternary complexes of Escherichia coli RNA polymerase. Deoxyribonuclease I footprinting of defined complexes. Journal of molecular biology 225(2):239-250.
[bookmark: _ENREF_27]27.	Straney DC & Crothers DM (1987) A stressed intermediate in the formation of stably initiated RNA chains at the Escherichia coli lac UV5 promoter. Journal of molecular biology 193(2):267-278.
[bookmark: _ENREF_28]28.	Metzger W, Schickor P, & Heumann H (1989) A cinematographic view of Escherichia coli RNA polymerase translocation. The EMBO journal 8(9):2745-2754.
[bookmark: _ENREF_29]29.	Zhilina E, Esyunina D, Brodolin K, & Kulbachinskiy A (2012) Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during sigma-dependent pausing. Nucleic acids research 40(7):3078-3091.
[bookmark: _ENREF_30]30.	Carpousis AJ & Gralla JD (1985) Interaction of RNA polymerase with lacUV5 promoter DNA during mRNA initiation and elongation. Footprinting, methylation, and rifampicin-sensitivity changes accompanying transcription initiation. Journal of molecular biology 183(2):165-177.
[bookmark: _ENREF_31]31.	Wade JT & Struhl K (2004) Association of RNA polymerase with transcribed regions in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 101(51):17777-17782.
[bookmark: _ENREF_32]32.	Wade JT & Struhl K (2008) The transition from transcriptional initiation to elongation. Current opinion in genetics & development 18(2):130-136.
[bookmark: _ENREF_33]33.	Gries TJ, Kontur WS, Capp MW, Saecker RM, & Record MT, Jr. (2010) One-step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex. Proceedings of the National Academy of Sciences of the United States of America 107(23):10418-10423.
[bookmark: _ENREF_34]34.	Saecker RM, et al. (2002) Kinetic studies and structural models of the association of E. coli σ70 RNA polymerase with the lambdaP(R) promoter: large scale conformational changes in forming the kinetically significant intermediates. Journal of molecular biology 319(3):649-671.
[bookmark: _ENREF_35]35.	Tsodikov OV, Craig ML, Saecker RM, & Record MT, Jr. (1998) Quantitative analysis of multiple-hit footprinting studies to characterize DNA conformational changes in protein-DNA complexes: application to DNA opening by Esigma70 RNA polymerase. Journal of molecular biology 283(4):757-769.
[bookmark: _ENREF_36]36.	Ring BZ, Yarnell WS, & Roberts JW (1996) Function of E. coli RNA polymerase σ factor σ70 in promoter-proximal pausing. Cell 86(3):485-493.
[bookmark: _ENREF_37]37.	Brodolin K, Zenkin N, Mustaev A, Mamaeva D, & Heumann H (2004) The σ70 subunit of RNA polymerase induces lacUV5 promoter-proximal pausing of transcription. Nature structural & molecular biology 11(6):551-557.
[bookmark: _ENREF_38]38.	Nickels BE, Mukhopadhyay J, Garrity SJ, Ebright RH, & Hochschild A (2004) The σ70 subunit of RNA polymerase mediates a promoter-proximal pause at the lac promoter. Nature structural & molecular biology 11(6):544-550.
[bookmark: _ENREF_39]39.	Deighan P, Pukhrambam C, Nickels BE, & Hochschild A (2011) Initial transcribed region sequences influence the composition and functional properties of the bacterial elongation complex. Genes & development 25(1):77-88.
[bookmark: _ENREF_40]40.	Hatoum A & Roberts J (2008) Prevalence of RNA polymerase stalling at Escherichia coli promoters after open complex formation. Molecular microbiology 68(1):17-28.
[bookmark: _ENREF_41]41.	Tang GQ, Roy R, Bandwar RP, Ha T, & Patel SS (2009) Real-time observation of the transition from transcription initiation to elongation of the RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 106(52):22175-22180.
[bookmark: _ENREF_42]42.	Zheng D, Constantinidou C, Hobman JL, & Minchin SD (2004) Identification of the Crp regulon using in vitro and in vivo transcriptional profiling. Nucleic acids research 32(19):5874-5893.
[bookmark: _ENREF_43]43.	Grainger DC, Hurd D, Harrison M, Holdstock J, & Busby SJ (2005) Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proceedings of the National Academy of Sciences of the United States of America 102(49):17693-17698.
[bookmark: _ENREF_44]44.	Salgado H, et al. (2013) RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic acids research 41(Database issue):D203-213.
[bookmark: _ENREF_45]45.	Browning DF & Busby SJ (2004) The regulation of bacterial transcription initiation. Nature reviews. Microbiology 2(1):57-65.
[bookmark: _ENREF_46]46.	Lee DJ, Minchin SD, & Busby SJ (2012) Activating transcription in bacteria. Annual review of microbiology 66:125-152.
[bookmark: _ENREF_47]47.	Busby S & Ebright RH (1999) Transcription activation by catabolite activator protein (CAP). Journal of molecular biology 293(2):199-213.
[bookmark: _ENREF_48]48.	Lawson CL, et al. (2004) Catabolite activator protein: DNA binding and transcription activation. Current opinion in structural biology 14(1):10-20.
[bookmark: _ENREF_49]49.	Rhodius VA, West DM, Webster CL, Busby SJ, & Savery NJ (1997) Transcription activation at class II CRP-dependent promoters: the role of different activating regions. Nucleic acids research 25(2):326-332.
[bookmark: _ENREF_50]50.	West D, et al. (1993) Interactions between the Escherichia coli cyclic AMP receptor protein and RNA polymerase at class II promoters. Molecular microbiology 10(4):789-797.
[bookmark: _ENREF_51]51.	Rhodius VA & Busby SJ (2000) Transcription activation by the Escherichia coli cyclic AMP receptor protein: determinants within activating region 3. Journal of molecular biology 299(2):295-310.
[bookmark: _ENREF_52]52.	Niu W, Kim Y, Tau G, Heyduk T, & Ebright RH (1996) Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase. Cell 87(6):1123-1134.




SUPPORTING TABLES
S1 Table. List of σ70 promoters classified by peak width
This table contains the identity of the 699 promoters which make up the trimodal distribution in Figure 1 of the manuscript.  The first column is the transcription start site which all of the peak distributions shown in the paper were centered off of.  The second column is genomic strand. The third column is the ID of the transcription unit. The third and fourth columns contain lists of the gene names and gene locus IDs contained within the transcription unit of the corresponding promoter.  The fifth column contains the peak mode.  Mode 1 corresponds to peaks that were 5-20bp in width, Mode 2 corresponds to peaks that were 21-40bp in width, Mode 3 corresponds to peaks that were 41-60bp in width.
SUPPORTING FIGURES
S1 Fig. σ70 ChIP-exo profile on fructose and glucose minimal media. 
(A) The mean 5’ tag density profile is shown for σ70 grown on fructose minimal media for the template (dashed black trace) and the nontemplate strand (solid black trace). Also shown are the peak center positions relative to the TSS (blue bars). 
(B) The mean 5’ tag density profile is shown for σ70 grown on glucose minimal media for the template (dashed black trace) and the nontemplate strand (solid black trace). Also shown are the peak center positions relative to the TSS (blue bars). 
S2 Fig. Crp ChIP-exo on activating and repressing substrates. 
(A) The mean 5’ tag density profile is shown for Crp grown on fructose minimal media (a Crp activating condition) for the template (dashed black trace) and the nontemplate strand (solid black trace). Also shown are the peak center positions (blue bars) and predicted Crp binding sites (gray bars) relative to the TSS. This profile closely resembles the Crp ChIP-exo profile generated on glycerol minimal media. 
(B) The mean 5’ tag density profile is shown for Crp grown on glucose minimal media (a Crp repressing condition) for the template (dashed black trace) and the nontemplate strand (solid black trace). Also shown are the peak center positions (blue bars) and predicted Crp binding sites (gray bars) relative to the TSS. The peak regions detected do not align well to the TSS, a stark divergence from profiles observed on activating carbon sources. 
S3 Fig. Correlation plots of ChIP-exo data generated on Δcrp.
A whole genome correlation plot is shown for the Δcrp ChIP-exo profiles generated using the anti-crp antibody shows poor correlation between biological replicates. 
S4 Fig. Rifampicin treated Crp ChIP-exo profile.   
Crp protected footprints were examined by adding rif to the culture medium prior to harvest capture RNAP holoenzyme at stable intermediates prior to and including the ITC. Crp ChIP-exo distributions are shown for shared peak regions between rif-treated and wild type cultures grown on glycerol. The protected footprint regions mirror those found in the non-rif treated samples.
S5 Fig. Comparison of ChIP-exo profiles for wild type, ΔAr1, ΔAr2, and ΔAr1ΔAr2 mutant strains. 
The mean 5’ tag density profiles are shown for wild type Crp, ΔAr1, ΔAr2, and ΔAr1ΔAr2 mutant strains from top to bottom. This plot shows the systematic los off TSS-centered peak regions with successive perturbation of RNAP holoenzyme/Crp interactions. Ultimately, the ΔAr1ΔAr2 profile does not resemble the profiles obtained under activating conditions that indicated protection of transcription initiation at post-recruitment stable intermediates. 
S6 Fig. Proposed model for Crp family binding interactions at Class I and Class II activating promoters.
Shown is an illustration of Class I and Class II promoter models for Crp binding events.  Initial recruitment involves a relatively short-lived complex consisting of the motif sequence(s), Crp, and RNAP holoenzyme. This complex observed using in vitro footprinting studies are not observed under physiological conditions studied performed using ChIP-exo. Instead, the longer-lived Crp/RNAP holoenzyme complex associated with post recruitment stable intermediates (RPO shown) is observed leaving the motif sequence available for nuclease digestion.  


