STAGR- String assembly gRNA cloning

This protocol is for one- step generation of gRNA plasmids with 2-8 expression cassettes.

1. STAGR primer design:

Fig.P1 Scheme of a $6 x S T A g R$ assembly

1. Decide how many gRNA cassettes should be included in one vector, and which promoters and gRNA scaffolds should be used for each of the gRNAs. Design your gRNAs by using your preferred tool (e.g. www.benchling.com).
2. The gRNA sequences are added to the primers for amplification of the STAgR DNA string as overhangs. Sense gRNA sequences are added to the forward primer (which binds to the scaffold/SAM part of the respective STAgR string). The antisense gRNA sequence is added in front of the reverse primer sequences of the specific promoters.

Tab.P1 : Primer Sequences for gRNA scaffolds and promoters.

Forward primer for String and Vector	
scaffold_fwd	GTTTTAGAGCTAGAAATAGCAAGTT
SAM_fwd	GTTTTAGAGCTAGGCCAACATGAGG
Reverse primer for String and Vector	CGGTGTTTCGTCCTTT
hU6_rev	CAAACAAGGCTTTTCTCCAAGG
mU6_rev	CTGGGAAAGAGTGGTCTCATACAGA
hH1_rev	CCGAGGTACCCAAGCGG
h7SK_rev	

The sense gRNA sequence (Fig. P1, green) of the last gRNA and the antisense of the first gRNA (Fig. S1brown) respectively are added to the PCR primers used for amplification of the STAgR vector backbone. The remainder of the primers are used for amplification from the string, thereby attaching the sense and antisense gRNAs so as to use them as overhangs for assembly in the desired order. The first string piece is amplified with a forward primer using the first gRNA (Fig. P1 brown) as an overhang and a reverse primer using the next gRNA in the sequence in the antisense direction (Fig. P1 dark red) as an overhang. The next STAgR pieces are amplified with a forward primer (using the dark red protospacer in Fig. P1) as an overhang and a reverse primer (using the light red protospacer, Fig. P1) as an overhang and so on.

2. PCR amplification

This step generates the Gibson fragments for assembly into the vector backbone. The choice of STAgR DNA string template defines the promoter and gRNA scaffold for each gRNA in the assembled vector.

Set up every string and vector reaction as follows:
10μ I Phusion HF buffer
$1 \mu \mathrm{l} 10 \mathrm{mM}$ dNTPs
$0,25 \mu$ I Primer ($100 \mu \mathrm{M}$)
10 ng DNA template
$0,5 \mu \mathrm{l}$ Phusion Polymerase
1,5 μ I DMSO
\rightarrow Add H 2 O to $50 \mu \mathrm{l}$

```
\(98^{\circ} \mathrm{C}\) 10sec
```

$59^{\circ} \mathrm{C} 30 \mathrm{sec}$ (for gRNA Scaffold) $68^{\circ} \mathrm{C} 30 \mathrm{sec}$ (for SAM loop)
$72^{\circ} \mathrm{C}$ 30sec (inserts) / 1.30 min (vector) x38
$72^{\circ} \mathrm{C} 10 \mathrm{~min}$
$4^{\circ} \mathrm{C} \quad \infty$

To incorporate the gRNA scaffold, use "STAgR_Neo" as a template for the vector PCR, if the SAM Scaffold is the desired gRNA scaffold use "pcSAM_helper". Analyze the amplified fragments on a 1\% agarose gel (Fig. P2). Digest the vector reaction with Dpnl as follows:
$44,5 \mu \mathrm{I}$ PCR reaction
$5 \mu \mathrm{l}$ 10x Cutsmart Buffer
$0,5 \mu \mathrm{l}$ Dpnl (10 units, NEB)
Incubate at $37^{\circ} \mathrm{C}, 30 \mathrm{~min}-1 \mathrm{~h}$

Fig. P2: STAgR PCR of different string fragment (lanes 1-5) and a circular amplification of a vector (lane 6)
1.4 Clean up STAgR pieces with AMPure XP Beads or any column-based reaction clean-up kit.

1.5 Determine DNA concentrations

3. Gibson Assembly Reaction

This step assembles the pieces previously generated by PCR into a vector with multiple gRNA expression cassettes in a single step.

All amplified gRNA expression cassettes are used in equimolar amounts.
3.1 Set up the following reactions on ice (include a no insert control):

Tab. P2 : Composition of STAgR Reaction

	$2 x$ STAgR	$3-8 x$ STAgR
Recommended DNA Ratio	vector:insert 1:1	vector:insert = 1:3
Total Amount of DNA	$0.03-0.2$ pmol	$0.2-0.5 \mathrm{pmol}$
Gibson Assembly MasterMix $(1,5 \mathrm{x})$	$7,5 \mu \mathrm{l}$	$7,5 \mu \mathrm{l}$
Total Volume	$10 \mu \mathrm{l}^{*}$	$10 \mu \mathrm{l}^{*}$

*Total volume can be increased to $20 \mu \mathrm{l}$. The amount of Gibson Assembly Master Mix then has to be doubled as well.
3.2 Incubate samples in a thermocycler at $50^{\circ} \mathrm{C}$ for 45 to 60 minutes. Store samples on ice or at $-20^{\circ} \mathrm{C}$ for subsequent transformation.
3.3 Directly transform half of the mix into chemically competent bacteria. Do not forget two plasmid controls, one where you directly transform the same amount of vector you put into the Gibson reaction and one actual Gibson reaction only with the vector and without any inserts.
3.4. After recovery, plate the transformed bacteria onto agar plates containing Ampicillin $(100 \mu \mathrm{~g} / \mathrm{ml})$ and incubate overnight at $37^{\circ} \mathrm{C}$.

4. Colony PCR

The aim of this step is to identify bacterial colonies that harbour plasmids with the correct number of assembled gRNAs. The primers used bind outside the gRNA expression cassettes and the size of the amplicon thus corresponds to the number of gRNA expression cassettes in the vector.

StAgR_seq_fwd2: ACTGGATCCGGTACCAAGG
StAgR_seq_rev: TTACGGTTCCTGGCCTTTTG
4.1 Analyze at least 24 bacterial colonies. For each PCR reaction, pre-aliquot the appropriate number of vials with 100μ I LB medium with Ampicillin ($100 \mu \mathrm{~g} / \mathrm{ml}$).
4.2 Set up a PCR master mix (10 μ l per reaction):

For 10 reactions:
$10 \mu \mathrm{l}$ Taq buffer
$2 \mu \mathrm{l} 10 \mathrm{mM}$ dNTPs
$0,5 \mu \mathrm{I}$ Primer (100mM)

0,5 $\mu \mathrm{I}$ Taq Polymerase
\rightarrow Add $\mathrm{H}_{2} \mathrm{O}$ to $100 \mu \mathrm{l}$
4.2 Aliquot the PCR master mix into microcentrifuge tubes
4.3. Using a sterile pipette tip, pick a colony from the agar plate and insert the tip into one aliquot of the PCR master mix. Swirl the tip around gently to ensure some of the bacteria are transferred to the master mix, before transferring the tip to the corresponding aliquot of LB medium, to be cultured at $37^{\circ} \mathrm{C}$ for later use.
4.4. Run the PCR reactions using the following program:

PCR Programm Colony PCR:
$94^{\circ} \mathrm{C} 5 \min$
$94^{\circ} \mathrm{C} 30 \mathrm{sec}$
$55^{\circ} \mathrm{C} 30 \mathrm{sec}$
$72^{\circ} \mathrm{C} 2 \mathrm{~min}$ x38
$72^{\circ} \mathrm{C} 10 \mathrm{~min}$
$4^{\circ} \mathrm{C} \quad \infty$

Primer:

StAgR_seq_fwd2: ACTGGATCCGGTACCAAGG
StAgR_seq_rev: TTACGGTTCCTGGCCTTTTG
4.5 Analyze the PCR amplicons on a 1% agarose gel.

Fig. P3: Colony PCR of a 4xSTAgR reaction using hU6 promoters and canonical gRNA scaffold. 24 bacterial colonies were analyzed, of which 6 showed the estimated band of a $4 \times$ STAgR cassette (1596 bp). Vectors with two gRNA expression cassettes yield a 823 bp amplicon, a band at 458 bp corresponds to a single gRNA cassette being present in the vector.

Amplicon sizes vary according the promoter and gRNA Stem loop used.

Tab. P3 Sizes of promoters and scaffolds

hU6	265 bp
hH1	225 bp
mU6	316 bp
H7SK	245 bp
gRNA scaffold	83 bp
SAMloop + gRNA scaffold	143 bp

4.4 From the results of the colony PCR identify the cultures harbouring the correct vectors and inoculate a $2,5 \mathrm{ml}$ overnight LB culture (with $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin). Incubate for 12 h at $37^{\circ} \mathrm{C}$

4.5 Extract plasmid DNA.

4.6 Sequence the plasmids using the following primers. StAgR_seq_fwd1 (GAGTTAGGGGCGGGACTATG), StAgR_seq_fwd2 (ACTGGATCCGGTACCAAGG) and StAgR_seq_rev (TTACGGTTCCTGGCCTTTTG)

```
Appendix
Forward primer for String and Vector:
scaffold_fwd NNNNNNNNNNNNNNNNNNNNGTTTTAGAGCTAGAAATAGCAAGTT
SAM_fwd
NNNNNNNNNNNNNNNNNNNNGTTTTAGAGCTAGGCCAACATGAGG
Reverse primer for Sting and Vector:
    hU6 rev NNNNNNNNNNNNNNNNNNNNCGGTGTTTCGTCCTTT
    mU6_rev NNNNNNNNNNNNNNNNNNNNCAAACAAGGCTTTTCTCCAAGG
    hH1_rev NNNNNNNNNNNNNNNNNNNNCTGGGAAAGAGTGGTCTCATACAGA
    h7SK rev NNNNNNNNNNNNNNNNNNNNCCGAGGTACCCAAGCGG
gRNA Scaffold
GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGG
TGCTTTTTTT
SAM loop
GTTTTAGAGCTAGGCCAACATGAGGATCACCCATGTCTGCAGGGCCTAGCAAGTTAAAATAAGGCTAGTCCGT
TATCAACTTGGCCAACATGAGGATCACCCATGTCTGCAGGGCCAAGTGGCACCGAGTCGGTGCTTTTTTT
h7SK
CTGCAGTATTTAGCATGCCCCACCCATCTGCAAGGCATTCTGGATAGTGTCAAAACAGCCGGAAATCAAGTCC GTTTATCTCAAACTTTAGCATTTTGGGAATAAATGATATTTGCTATGCTGGTTAAATTAGATTTTAGTTAAATTTC CTGCTGAAGCTCTAGTACGATAAGCAACTTGACCTAAGTGTAAAGTTGAGACTTCCTTCAGGTTTATATAGCTT GTGCGCCGCTTGGGTACCTCGG
GGCTCCATGGGTTCGCCGCGTGTTCGATATATTTGGACTTCCTTCAGAGTTGAAATGTGAATCCAGTTCAACGA ATAGCATGATCTCGAAGTCGTCCTTTAAATTGATTTTAGATTAAATTGGTCGTATCGTTTATAGTAAATAAGGGT TTTACGATTTCAAACTCTATTTGCCTGAACTAAAGGCCGACAAAACTGTGATAGGTCTTACGGAACGTCTACCC ACCCCGTACGATTTATGACGTC
hU6
AAGGTCGGGCAGGAAGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAG AGATAATTAGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTT CTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTC GATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCG
```

GCCACAAAGCAGGAAAGGTGTTCTATATATTTCGGTTCTTTAGCTTTATGAAAGTTCAATGCCATTCGTATACTA TCAGGTAAAATTTTGTATTAAAATTTTGACGTTTGATGGGTTCTTTAATAATGAAAGATGCAGTGCATAAAACA TGATTATAGAAACACAAATGTCAGTTTAATTAAGATTAATAGAGAGATTGTCGGAACATAGCATATACGTTTAT ACTTCCTTAGTACCCTTTATCCGGGAGAAGGACGGGCTGGAA
hH1

GAACGCTGACGTCATCAACCCGCTCCAAGGAATCGCGGGCCCAGTGTCACTAGGCGGGAACACCCAGCGCGC GTGCGCCCTGGCAGGAAGATGGCTGTGAGGGACAGGGGAGTGGCGCCCTGCAATATTTGCATGTCGCTATGT GTTCTGGGAAATCACCATAAACGTGAAATGTCTTTGGATTTGGGAATCTTATAAGTTCTGTATGAGACCACTCT TTCCCAG

GACCCTTTCTCACCAGAGTATGTCTTGAATATTCTAAGGGTTTAGGTTTCTGTAAAGTGCAAATACCACTAAAG GGTCTTGTGTATCGCTGTACGTTTATAACGTCCCGCGGTGAGGGGACAGGGAGTGTCGGTAGAAGGACGGTC CCGCGTGCGCGCGACCCACAAGGGCGGATCACTGTGACCCGGGCGCTAAGGAACCTCGCCCAACTACTGCAG TCGCAAG
mU6

GATCCGACGCCGCCATCTCTAGGCCCGCGCCGGCCCCCTCGCACAGACTTGTGGGAGAAGCTCGGCTACTCCC CTGCCCCGGTTAATTTGCATATAATATTTCCTAGTAACTATAGAGGCTTAATGTGCGATAAAAGACAGATAATC TGTTCTTTTTAATACTAGCTACATTTTACATGATAGGCTTGGATTTCTATAAGAGATACAAATACTAAATTATTAT TTTAAAAAACAGCACAAAAGGAAACTCACCCTAACTGTAAAGTAATTGTGTGTTTTGAGACTATAAATATCCCT TGGAGAAAAGCCTTGTTTG

GTTTGTTCCGAAAAGAGGTTCCCTATAAATATCAGAGTTTTGTGTGTTAATGAAATGTCAATCCCACTCAAAGG AAAACACGACAAAAAATTTTATTATTAAATCATAAACATAGAGAATATCTTTAGGTTCGGATAGTACATTTTAC ATCGATCATAATTTTTCTTGTCTAATAGACAGAAAATAGCGTGTAATTCGGAGATATCAATGATCCTTTATAATA TACGTTTAATTGGCCCCGTCCCCTCATCGGCTCGAAGAGGGTGTTCAGACACGCTCCCCCGGCCGCGCCCGGA TCTCTACCGCCGCAGCCTAG

ML3636_gRNA

TTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAA CAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACAC TAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGA TCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAG GATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATT TTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAA AGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCT ATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCC CCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGG AAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCT AGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTC GTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCA AAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTT ATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACC AAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGC CACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCG CTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTT TCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAAT

ACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAA TGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCGATAAGA TACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGC TATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTGGGGTGGGCGAAGAACTCCAGCATGAGATCC CCGCGCTGGAGGATCATCCAGCCGGCGTCCCGGAAAACGATTCCGAAGCCCAACCTTTCATAGAAGGCGGCG GTGGAATCGAAATCTCGTGATGGCAGGTTGGGCGTCGCTTGGTCGGTCATTTCGAACCCCAGAGTCCCGCTCA GAAGAACTCGTCAAGAAGGCGATAGAAGGCGATGCGCTGCGAATCGGGAGCGGCGATACCGTAAAGCACGA GGAAGCGGTCAGCCCATTCGCCGCCAAGCTCTTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCG GTCCGCCACACCCAGCCGGCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAG CAGGCATCGCCATGGGTCACGACGAGATCCTCGCCGTCGGGCATGCGCGCCTTGAGCCTGGCGAACAGTTCG GCTGGCGCGAGCCCCTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGC TCGCTCGATGCGATGTTTCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCATT GCATCAGCCATGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCACTTCGC CCAATAGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGC CAGCCACGATAGCCGCGCTGCCTCGTCCTGCAGTTCATTCAGGGCACCGGACAGGTCGGTCTTGACAAAAAGA ACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGCCCAGTCA TAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAATCCATCTTGTTCAATCATGCGAAACG ATCCTCATCCTGTCTCTTGATCAGATCCGAAAATGGATATACAAGCTCCCGGGAGCTTTTTGCAAAAGCCTAGG ССТССАAAAAAGCCTCCTCACTACTTCTGGAATAGCTCAGAGGCAGAGGCGGCCTCGGCCTCTGCATAAATAA AAAAAATTAGTCAGCCATGGGGCGGAGAATGGGCGGAACTGGGCGGAGTTAGGGGCGGGATGGGCGGAGT TAGGGGCGGGACTATGGTTGCTGACTAATTGAGATGCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCTGGG GACTTTCCACACCTGGTTGCTGACTAATTGAGATGCACTGTACAAAAAAGCAGGCTTTAAAGGAACCAATTCA GTCGACTGGATCCGGTACCAAGGTCGGGCAGGAAGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATAC GATACAAGGCTGTTAGAGAGATAATTAGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTG ACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTAC CGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGGTTTTAGAGCTA GAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTAA GCTTGGGCCGCTCGAGGTACCTCTCTACATATGACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTA AAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAG TCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCT CCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGC TCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCA GCCCGACCGCTGCGCC

