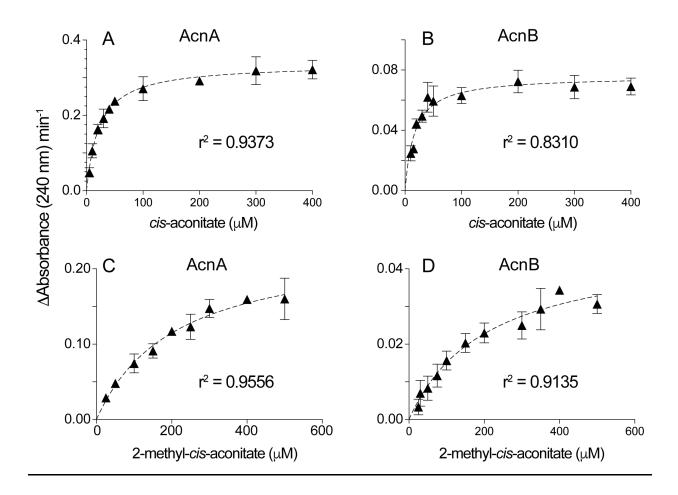
The PrpF protein of *Shewanella oneidensis* MR-1 catalyzes the isomerization of 2-methyl-*cis*-aconitate during the catabolism of propionate via the AcnD-dependent 2-methylcitric acid cycle

Christopher J. Rocco^{1,#a}, Karl M. Wetterhorn², Graeme S. Garvey^{2,#b}, Ivan Rayment², and Jorge C. Escalante-Semerena^{5*}

¹Department of Bacteriology¹, University of Wisconsin, Madison, WI 53706 USA

²Department of Biochemistry, University of Wisconsin, Madison, WI 53706 USA

3Department of Microbiology, University of Georgia, Athens, GA 30602 USA


^{#a}Present Address: Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43210

^{#b}Present address: Monsanto Vegetable Seeds, Woodland, CA 95695

Running title: PrpF is a 2-methyl-cis-aconitate isomerase

*Corresponding author E-mail: jcescala@uga.edu

Figure S1. Kinetics of aconitase product formation. Reaction mixtures contained aconitase A (AcnA) and aconitase B (AcnB) with *cis*-aconitate (Panel A: AcnA; Panel B: AcnB) or 2-methyl-*cis*-aconitate (Panel C: AcnA; Panel D: AcnB) as substrate. Product formation (either isocitrate from *cis*-aconitate; 2-methylisocitrate from 2-methy-*cis*-aconitate) was monitored as a decrease in absorbance at 240 nm over time (min; *y*-axes) as a function of substrate concentration ($\frac{1}{2}$ M; *x* axes). The increase in the rate at which A₂₄₀ decreased is what is plotted. Detailed assay conditions are described under Materials and Methods.

