
Statistical analysis of observables

In this work we are interested in describing how pedestrian group behaviour is influenced
by some intrinsic features, such as purpose, relation, gender, age or height. Each feature
(or factor) may be divided in k categories (e.g., in the case of relation k = 4 and the
categories are colleagues, couples, family and friends). Each group is coded as belonging
to a specific category, so that each category has Nk

g groups. As described in Materials

and methods, for each group i ∈ Nk
g we can measure the value of observable o every

500 ms. We may call these measurements oki,j with j = 1, . . . , nk
i (i.e. we have nk

i

measurements, or events, corresponding to group i in category k).
We believe that the largest amount of quantitative information regarding the de-

pendence of group behaviour on intrinsic features is included in the overall probability
distributions functions concerning all Nk =

∑

i∈Nk
g
nk
i measurements of a given observ-

able, as shown for example in Fig 2 in the main text, since from the analysis of these
figures we can understand what is the probability of having a given value for each ob-
servable in each category.

It is nevertheless useful to extract some quantitative information, such as average
values and standard deviations, from these distributions. Furthermore, although the
purpose of this paper is not to provide a “p value statistical independence label” to
each feature, to compare such average values it is customary and useful to compute,
along with other statistical indicators such as effect size and determination coefficient,
the standard error of each distribution and to perform the related analysis of variance
(ANOVA). The computation of these latter statistical quantities is nevertheless based
on an assumption of statistical independence of the data, an assumption that clearly
does not hold for all our Nk observations1.

Average values, standard deviations and standard errors

We thus proceed in the following way, justified by having a similar number of observation
for each group2. For each observable o we compute the average over group i

Ok
i =

∑nk
i

j=1
oki,j

nk
i

, (1)

and then provide its average value in the category k as

< O >k ±εk, (2)

1As an extreme case, we can imagine that for a given k we were following a single group (Nk
g = 1) for

one hour (nk
1 = 7200). We will have then, if we ignore measurement noise, a perfect information regarding

the behaviour of that group in that hour and, under the strong assumption of time independence in the
group behaviour, a good statistics about the behaviour of that particular group. We still do not have any
information about how group behaviour changes between groups in the category, since that information
depends on the number of groups analysed, Nk

g . Furthermore, since in general we track a given group
only for the few seconds it needs to cross the corridor, the observations oi,j at fixed i are also strongly
time correlated.

2An average of 49 observations with a standard deviation of 22 over 1168 groups. We nevertheless
exclude from the following analysis groups that provided less than 10 observation points.
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where < O > and the standard error ε are given by

< O >k=

∑Nk
g

i=1
Ok

i

Nk
g

, (3)

εk =
σk

√

Nk
g

, (4)

and the standard deviation is

σk =

√

√

√

√

∑Nk
g

i=1
(Ok

i )
2

Nk
g

− < O >2

k. (5)

As a rule of thumb, we may say that o assumes a different value between categories
k and j if

| < O >k − < O >j | ≫ 2max(εk, εk). (6)

Analysis of variance

This rule of thumb is obviously related to the ANOVA analysis reported in the text.
The ANOVA analysis proceeds as follows. We define nc as the number of categories for
a given feature,

N =
nc
∑

k=1

Nk
g , (7)

as the total number of groups, and the overall average of the observable as

< O >=

∑nc

k=1
< O >k Nk

g

N
. (8)

We then define the distance between < O > and < O >k as

dk =< O > − < O >k, (9)

and the degrees of freedom

γ1 = nc − 1, γ2 = N − nc. (10)

The F factor is then defined as

F =

(

∑nc

k=1
d2kN

k
g

)

(
∑nc

k=1
σ2

kN
k
g

)

γ2

γ1
. (11)

This result is reported in our tables as Fγ1,γ2 , along with the celebrated p value, that pro-
vides the probability, under the hypothesis of independence of data, that the difference
between the distributions is due to chance3

p = 1−

∫ F

0

fγ1,γ1(x)dx. (12)

3See for example R. Ash, Statistical Inference, a Concise Course, Dover 2011, citation [47] in the
main text.
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The f distribution has to be computed numerically4, but a value F ≫ 1 assures a small
p value.

Let us see how this relates to the rule of thumb for standard errors. Let us assume
we have two categories with the same number of groups for category

N1

g = N2

g = Ng. (13)

We clearly have

< O >=
< O >1 + < O >2

2
, (14)

|d1| = |d2| =
| < O >1 − < O >2 |

2
, (15)

and

F =
| < O >1 − < O >2 |

2

σ2
1
+ σ2

2

(Ng − 1). (16)

Using5

σ2

i

Ng − 1
≈ ε2i , (17)

we get the expression

F ≈
| < O >1 − < O >2 |

2

ε2
1
+ ε2

2

>
| < O >1 − < O >2 |

2

(2max(ε1, ε2))2
, (18)

so that the rule of thumb eq. 6 corresponds to have an high F value and thus a low p

value.

Coefficient of determination

Eq. 11 says that the F factor is high if the σk are smaller than the dk, i.e. if the
variation inside the categories are smaller than outside the category, and if the total
number of observation is high. Due to the large number of data points, the F values in
the “Statistical analysis of overall probability distributions” sections (where we use all
the observable measurement instead of group averages) are always very high, and the
corresponding p values very low, but the hypothesis of statistical independence of data
underlying the usual interpretation of p is obviously not valid. There are nevertheless
some statistical estimators that do not depend dramatically on the number of observa-
tions, and that will thus have a similar value either if performed using all the data points
or if performed using only group averages.

4We used the algorithms proposed by citation [48] in the main text, W. Press, S. Teukolsky, W.
Vetterling, B. Flannery, Numerical Recipes in C, Second edition, Cambridge University Press, 1992, and
in detail the gamma function routine of page 214, the incomplete beta function routine of page 228, and
the F test routine of page 619, adapted by us to a single tail test.

5The actual definition of the standard error uses
√

Ng − 1 but the numbers shown in the tables use

the approximate definition
√

Ng. For Ng ≈ 100 or more, as it is usually the case in this work, the
difference is at most 5%.
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One such estimator is the coefficient of determination

R2 = 1−

∑

i,k(o
k
i− < O >k)

2

∑

i,k(o
k
i− < O >)2

, (19)

which can also be computed as from the F factor as

R2 =
Fγ1

Fγ1 + γ2
, (20)

and provides an estimate of how much of the variance in the data is “explained” by the
category averages.

Effect size

The R2 coefficient may attain low values if two or more category distribution functions
are very similar, as it usually the case in our work. To point out the presence of at
least one distribution that is clearly different from the others we may use the following
definition of the effect size δ. We first define6

δk,l =
< O >k − < O >l

σ
, σ =

√

(ñk − 1)σ2

k + (ñl − 1)σ2

l

ñk + ñl − 2
, (21)

where ñk, ñl are the number of points used for computing the averages and standard
deviations7, and then we consider the maximum pairwise effect size

δ = max
k,l

|δk,l|. (22)

While a p value tells us about the significance of the statistical difference between two
distributions, the difference may be often so small that if can be verified only if a large
amount of data are collected. But if we have also δ ≈ 1, then the two distributions are
different enough to be distinguished also using a relatively reduced amount of data.

Multi-factor cross analysis

We refrain from applying the machinery of two way or n way ANOVA to our data, since
our ecological data set is extremely unbalanced, and it is unbalanced for the very reason
that our “factors” are not independent variables8.

It is nevertheless useful to analyse the interplay between the different features, and
we do that in the “Accounting for other effects” appendix by performing a statistical

6J. Cohen, Statistical power analysis for the behavioural sciences, Second edition, Routledge, 1988,
citation [49] in the main text

7I.e., ñk = N
k
g if we are using group averages, ñk = N

k if we are using overall distributions.
8For example, since the average height of females is two standard deviations lower than the male

one (http://www.mext.go.jp/b menu/toukei/001/022/2004/002.pdf, citation [42] in the main text, in
Japanese), the high range height groups will be entirely composed of males, not to mention more extreme
cases, such as the conditional probability of having a children in a group of colleagues, which is arguably
zero.
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analysis similar to the one described above of a given feature A while keeping fixed the
value of another feature B to a category k.9 Sometimes this analysis is performed on
a reduced number of groups, and thus the corresponding p value may be high. This
does not imply that the analysis is valueless, at least in our opinion, since it provides
new information. The F and p values are, in this situation, useful to compare different
observables on the given condition. As an example, table 20 in appendix S3 tells us that
x has a stronger variation between relation categories for fixed gender than r, and so on.
Furthermore, in these situations, an analysis of statistical indicators that do not depend
critically on the number of observations, such as the effect size, is particularly valuable.

9For the fixed category feature B, we use also the external feature of pedestrian crowd density. Since
the same group may contribute to different densities, when operating at a fixed density we use for group
averages all groups that contribute with at least 5 data points (instead of the usual 10) to the observable
distribution for that density value.
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