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Stimuli

Although comparative studies of primate cognition very often use photographic
stimuli, systematic analyses of the stimuli are rarely undertaken. This is unfor-
tunate, because skepticism about surprising results often relies on speculation
about stimulus characteristics that might have been used as discriminative cues.
A subject might, for example, identify pictures of birds solely on the basis of
blue backdrops (i.e. the sky). Analysis can determine whether bird stimuli
contain disproportionate amounts of blue.

Our analysis of stimulus images focuses on low-level features (e.g. color,
image entropy). This approach has the advantage of being automatic and repli-
cable. The overarching question that these analyses seek to inform is this: “To
what extent are low-level properties sufficient to categorize stimuli correctly?”
More diverse stimuli in each grouping means more difficulty specifying criteria
for category inclusion. At the same time, the more each of the categories re-
sembles the others overall, the more difficult it is to specify criteria for category
exclusion.

The stimuli used in this study were selected in a fashion that differs from
the conventions used in typical psychophysical experiments. Rather than select
stimuli according to strict inclusion criteria, or modifying images before use (e.g.,
turning them grayscale or giving them uniform spectra), we included images
solely on the basis of the question, “Is this a picture of X?” For example, our
photographs of people included both extreme close-ups of faces and wide-angle
views of crowds. In cases of other animals, some part of the head was usually
visible, but not necessarily from any particular angle, and the photos included
pictures of packs or flocks of animals in some cases. Additionally, we also
included both color and black-and-white images.
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Figure 1: Exemplars of the stimuli drawn from the works of four painters, used
with monkeys and humans.
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The photographic stimulus sets were birds (3111 images), cats (1114 images),
flowers (3033 images), and people (2853 images). The painting stimulus sets
were derived from works by Daĺı (400 images), Gérôme (406 images), Monet
(400 images), and van Gogh (400 images).

Figures 1 depict a representative set of exemplars for each of the painting
categories. For reasons associated with image and likeness rights, exemplars
from the photographic categories are not included. However, representative
images may be obtained from the Caltech-UCSD Birds 200 Dataset (Welinder
et al., 2010) for the ‘birds’ category, from the Oxford-IIIT Pet Dataset (Parkhi
et al., 2012) for the ‘cats’ category, from the Oxford 102 Category Flower Dataset
(Nilsback and Zisserman, 2008) for the ‘flowers’ category, and from the Caltech
256 Dataset (Griffin et al., 2007) for the ‘people’ category. Subjects with prior
experience using the SimChain paradigm were not previously exposed to any of
the images in each of the categorical image banks.

Stimulus Analysis: Pixel Entropy

Prior research has shown that primates possess the ability to discriminate stim-
uli based on visual entropy Flemming et al. (2013); Wasserman et al. (2001),
an ability also demonstrated in pigeons Young and Wasserman (2002). Because
the entropy estimation can be done mechanically by simple systems, doing so
falls considerably short of the criteria for a ”categorical representation.” Conse-
quently, an analysis of pixel entropies gives an idea of whether the sets of stimuli
differ sufficiently to be discriminated on that basis.

Here, pixel entropy is taken to be the Shannon entropy Jensen et al. (2013),
computed over all possible combinations of red, blue, and green intensities:

H =

255∑
r=0

255∑
g=0

255∑
b=0

p (r, g, b) ˙log2 (p (r, g, b)) (1)

The maximum possible entropy H that a bitmap image could possibly dis-
play is 24, provided each of the 256 × 256 × 256 pixel values appears equally.
However, such an entropy would require a 4096× 4096 pixel image, much larger
than our stimuli. Because our stimuli were only 200 × 200 pixels in size, the
highest possible entropy that a color stimulus could possess was 15.29 bits.
Grayscale images had a maximum entropy of 8 bits.

Figures 2 and 3 show kernel density estimates of the distributions of pixel
entropies displayed in the photographic and painterly categories, respectively,
as well as each distribution’s quartiles. In general, stimuli tended to show high
entropies of between 12 and 14 bits, such that a 13-bit image could easily belong
to any of the categories. However, the photographic stimuli show clear distribu-
tional differences. For example, many more of the images of birds have entropies
below twelve than the other stimuli, while the images of flowers routinely have
higher entropies than the other stimuli.

The painting stimuli tend to have higher entropies overall than the photo-
graphic stimuli. Here, too, however, there are notable similarities. Daĺı and
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Figure 2: Kernel density estimates of pixel entropy in the four photographic
categories. The median image is indicated by the solid blue line, while the first
and third quartiles are indicated by the blue dashed lines.
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Figure 3: Kernel density estimates of pixel entropy in the four photographic
categories. The median image is indicated by the solid blue line, while the first
and third quartiles are indicated by the blue dashed lines.
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Gérôme both resemble one another closely, as do Monet and van Gogh, but
these two clusters appear distinct from one another. Importantly, however, be-
cause stimuli in each of these pairings are distributed so similarly, it would be
very difficult for subjects to distinguish each group precisely on the basis of
pixel entropy alone.

We do not rule out the possibility that pixel entropy facilitated identification
in some fashion. This analysis is merely intended to demonstrate that pixel
entropy alone would not have been sufficient to precisely classify each stimulus.

Stimulus Analysis: HSV Histograms

Another method by which images can be compared is on their HSV distribu-
tions. Just as each image may be represented as a collection of pixels that have
values of red, blue, and green, each pixel may also be represented by the or-
thogonal dimensions of hue, saturation, and value (the last corresponding to the
luminosity of the pixel). HSV histograms are often more subjectively informa-
tive than RGB histograms, as they are better at revealing effects such as tint,
brightness, and color intensity Lee et al. (2005).

For this analysis, the histograms of hue, saturation, and value were obtained
for each stimulus. Then, these stimuli were sorted the position of the peak in
each distribution. This yields a 3D map of frequencies across stimuli, in which
each row represents a single stimulus and each column represents a particular
index in the histogram.

Figure 4 plots this multi-image histogram as a heat map for the hues of
all photographic stimuli. In addition to the histograms for each individual
image, Figure 4 also plots the marginal frequencies across all stimuli in each
category. Here, we can see quite clearly that the different categories reliably
have properties that can be used to distinguish one category from the next.
Pictures of birds very frequently have green and cyan elements (because of
leaves or sky), and flowers have a greater representation of yellow and purple.
Photographs of people tend to be more reddish, while cats tend to be more
orange.

Note that the apparently ”blank bands” visible in these heat maps are black-
and-white images. Since a black-and-white image cannot reasonable be de-
scribed as having a particular hue, the frequency distribution for those images
were uniform.

Figure 5 plots the histogram for saturation of photographic stimuli, and
here, too, patterns of differ visibly. Photographs of flowers are typically highly
saturated, while photos of cats and birds tend to have low saturation. However,
an examination of the distributions of individual stimuli suggest that there is an
overall level of heterogeny in most cases, as evidenced by the lack of consistent
vertical bands in the heat maps.

Figure 6 plots the histogram for value (i.e. brightness) of photographic
stimuli, showing clear differences. Flowers and people tend to be spread across
the range, while birds and cats tend to cluster toward the center. As in the case
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Figure 4: Hue histograms for each photographic stimulus category, sorted by
peak frequency. The histogram at the bottom depicts the marginal frequency
across all images.
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Figure 5: Saturation histograms for each photographic stimulus category, sorted
by peak frequency. The histogram at the bottom depicts the marginal frequency
across all images.
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Figure 6: Value histograms for each photographic stimulus category, sorted by
peak frequency. The histogram at the bottom depicts the marginal frequency
across all images.
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of saturation, there is a great deal of variation across stimuli, such that these
would not be strongly selective signals.

Figure 7 plots the histogram for hue of the painting stimuli, and a much
greater degree of uniformity is observed here than in the photographic stimuli.
In all cases, painters favored colors in the orange-yellow and cyan ranges. This
similarity across painters, combined with the heterogeny of the images (in which
many had no blue to them at all) ensures that hue could not be used as a reliable
cue for differentiating between painters.

Figure 8 plots the histogram for saturation of the painting stimuli. Here,
heterogeny dominated, with all painters having images that were spread across
the full range of saturations. While there were some differences (Daĺı tended
to be the most likely to have highly saturated colors, for example), the spread
across the range prevented saturation from being a reliable cue.

Figure 9 plots the histogram for value of the painting stimuli. As in the case
of saturation, the painters were highly heterogeneous, tending to favor interme-
diary values. This is unsurprising, as artists routinely avoid using pure white
and pure black, instead favoring intermediate values that give an impression of
contrast Escher (1989).

Human Learning Model Parameters

Parameter estimation for SimChain learning is complicated by two features of
the model. The first (a problem in all non-linear regression regimes) is that the
four learning parameters covary with one another. For example, if the twist
parameter v is doubled, this has the effect of shifting the entire distribution to
the left, forcing the peak parameter m to reduce its value accordingly.

The second problem is that when performance is close to either the floor or
the ceiling, it becomes impossible to differentiate between values for the other
parameters. For example, if the learning rate is close to zero, then the twist and
peak parameters could have an enormous range of values without substantively
impacting the shape of the learning curve.

Although Stan (Carpenter et al., 2015) is capable of robust inference regard-
ing multi-level non-linear models, it cannot provide precise information about
undecidable parameter values. This can be seen in Figure 10, which displays
the learning parameters using photographic categories (top row) and painting
categories (bottom row). In both cases, the peak parameter m and the twist
parameter v showed poor convergence, as a consequence of both parameter co-
variance and parameter undecidability when learning rates were low.

A clearer picture emerged in the case of a model of the learning rates, de-
picted in Figure 11, which showed much more stable convergence. In general,
reaction times were initially slower for early list items than for late list items, as
shown by the downward trend in the intercept parameters k. Participants also
tended to respond more rapidly as time passed, as evidenced by distributions
of slope parameters b tending to be less than zero.
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Figure 7: Hue histograms for each painterly stimulus category, sorted by peak
frequency. The histogram at the bottom depicts the marginal frequency across
all images.
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Figure 8: Saturation histograms for each painterly stimulus category, sorted by
peak frequency. The histogram at the bottom depicts the marginal frequency
across all images.
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Figure 9: Value histograms for each painterly stimulus category, sorted by peak
frequency. The histogram at the bottom depicts the marginal frequency across
all images.
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Figure 10: Estimated population distributions for human performance on the
Category Chain. Gray violin plots represent the posterior population distri-
bution for each parameter, whereas white violin plots represent the credible
interval for the mean of those distributions. Top Row. Learning rate parame-
ters during phase 1, using photographic stimuli. Bottom Row. Learning rate
parameters during phase 2, using painting stimuli.
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Figure 11: Estimated population distributions for linear models of reaction times
on the Category Chain. Gray violin plots represent the posterior population
distribution for each parameter, whereas white violin plots represent the credible
interval for the mean of those distributions. Top Row. Reaction time model
for phase 1, using photographic stimuli. Bottom Row. Reaction time model
for phase 2, using painting stimuli.
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