

S4 Fig. Comparison of the amount of residual assimilable nitrogen (YAN) at different time points in the fermentation medium for the 6 nutrient conditions set up for the transcriptomic analysis

Measurements were performed at different times during alcoholic fermentation (T1, 20 10^6 cells/mL; T2, 12 g CO₂ produced; T3, 40 g CO₂ produced; T4, 75 g CO₂ produced) for : N- : low nitrogen, 71 mg/L YAN; N-/Erg- : low nitrogen/low ergosterol, 71 mg/L YAN, 1.5 mg/L ergosterol; N+/Ole-: high nitrogen/ low oleic acid, 425 mg/L YAN, 18 mg/L oleic acid; N+/Erg- : high nitrogen/ low ergosterol, 425 mg/L YAN, 1.5 mg/L ergosterol; N+/Pan- : high nitrogen / low pantothenic acid, 425 mg/L YAN, 0.02 mg/L pantothenic acid and N+/Nic- : high nitrogen/ low nicotinic acid, 425 mg/L YAN, 0.08 mg/L nicotinic acid. Yeast assimilable concentration was calculated from ammonium and free amino acid concentrations. Ammonium concentration was determined enzymatically (RBiopharm AGTM, Darmstadt, Germany). The free amino acid content in the must was determined by cation exchange chromatography, with post-column ninhydrin derivatization (Biochrom 30, BiochromTM, Cambridge, UK) as previously described (41). Results are the mean of biological duplicate. Error bars correspond to standard deviation.