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Abstract

System biology provides the basis to understand the behavioral properties of complex biological organisms
at different levels of abstraction. Traditionally, the analysis of systems biology based models of various diseases
has been carried out by paper-and-pencil based proofs and simulations. However, these methods cannot
provide accurate analysis, which is a serious drawback for the safety-critical domain of human medicine. In
order to overcome these limitations, we propose a framework to formally analyze biological networks and
pathways. In particular, we formalize the notion of reaction kinetics in higher-order logic and formally verify
some of the commonly used reaction based models of biological networks using the HOL Light theorem
prover. Furthermore, we have ported our earlier formalization of Zsyntax, i.e., a deductive language for
reasoning about biological networks and pathways, from HOL4 to the HOL Light theorem prover to make it
compatible with the above-mentioned formalization of reaction kinetics. To illustrate the usefulness of the
proposed framework, we present the formal analysis of three case studies, i.e., the pathway leading to TP53
Phosphorylation, the pathway leading to the death of cancer stem cells and the tumor growth based on cancer
stem cells, which is used for the prognosis and future drug designs to treat cancer patients.
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1 Introduction

The discovery and designing of effective drugs for infectious and chronic biological diseases, like cancer and
cerebral malaria, require a deep understanding of behaviorial and structural characteristics of involved biological
entities (e.g., cells, molecules and enzymes). Traditional approaches, which rely on verbal and personal intuitions
without concrete logical explanations of biological phenomena, often fail to provide a complete understanding of
the behavior of such diseases, mainly due to the underlying complex interactions of molecules connected through
a chain of reactions. Systems biology [1] overcomes these limitations by integrating mathematical modeling and
high-speed computing machines in the understanding of biological processes and thus provides the ability to
predict the effect of potential drugs for the treatment of chronic diseases. System biology is extensively used to
construct models of biological processes in the form of networks or pathways, such as protein-protein interaction
networks and signaling pathways [2]. The analysis of these biological networks, usually referred to as biological
regulatory networks (BRNs) or gene regulatory networks (GRNs) [3], is primarily based on the principles of
molecular biology and plays a vital role in investigating the treatment of various human infectious diseases and
future drug design targets. For example, the analysis of BRNs has been recently used to predict treatment
decisions for sepsis patients [4].

Traditionally, biologists analyze biological organisms (or different diseases) using wet-lab experiments [5, 6].
These experiments, despite being very slow and expensive, do not ensure accurate results due to the inability to
accurately characterize the complex biological processes in an experimental setting. One of the alternatives for
deducing molecular reactions include paper-and-pencil proof methods (e.g. using Boolean modeling [7] or kinetic
logic [8]). But the manual proofs in paper-and-pencil proof methods, become quite tedious for large systems,
where the calculation of unknown parameters takes several hundred proof steps, and are thus prone to human
errors. Other alternatives to the above-mentioned methods are computer-based techniques (e.g. Petri nets [9]
and model checking [10]) for analyzing molecular biology problems. Petri nets is a graph based technique [11]
for analyzing system properties. In model checking, a system is modeled in the form of state space or automata
and the intended properties of the system are verified in a model checker by a rigorous state exploration of the
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system model. The computer-based methods have shown very promising results in many applications of molecular
biology [12, 13]. However, the graph or state based nature of the models in these methods allow us to describe
some specific areas of molecular biology only [14]. Moreover, the inherent state-space explosion problem of model
checking [15] limits the scope of its success only to systems where the biological entities can acquire a small set
of possible levels.

Theorem proving [16] is a widely used formal methods technique that allows to construct a computer-based
mathematical model of the given system and then verify its properties using deductive reasoning. The foremost
requirement for conducting the theorem proving based analysis of any system is to formalize the mathematical or
logical foundations required to model and analyze that system in an appropriate logic. There have been several
attempts to formalize the foundations of molecular biology. For example, the earliest axiomatization even dates
back to 1937 [17] and other efforts related to the formalization of biology are presented by Zanardo et al.[18] and
Rizzotti et al. [19]. But these formalizations are paper-and-pencil based and thus cannot be utilized to formally
reason about molecular biology problems within a theorem prover integration. Recent formalizations of molecular
biology, based on K -Calculus [20] and π-Calculus [21], also include some formal reasoning support for biological
systems. Another interesting approach is to model signal transduction pathways using the pathway logic [22],
which is based on rewriting logic. But, the understanding and utilization of these techniques is generally very
cumbersome for a working biologist [23].

Zsyntax [14] is another recently proposed formal language that supports modeling and logical deductions
about any biological process. The main strength of Zsyntax is its biologist-centered nature as its operators and
inference rules have been designed in such a way that they are easily understandable by the biologists. However,
Zsyntax does not support specifying the temporal information associated with biological processes. Reaction
kinetics [24] caters for this limitation by providing the basis to understand the time evolution of molecular
populations involved in a biological network. This approach is based on the set of first-order ordinary differential
equations (ODEs) also called reaction rate equations (RREs). Most of these equations are non-linear in nature
and difficult to analyze but provide very useful insights which can be used for prognosis and drug predictions.
Traditionally, logical deductions about biological processes, expressed in Zsyntax, are done manually based on the
paper-and-pencil based approach. Similarly, the analysis of RREs is performed by either paper-and-pencil based
proofs or numerical simulation. However, both methods suffer from the inherent incompleteness of numerical
methods and error-proneness of manual proofs. We believe that these issues cannot be ignored considering the
critical nature of this analysis due to the involvement of human lives. Moreover, biological experiments based on
erroneous parameters derived by above-mentioned approaches can result in the loss of time and money due to
the slow nature of wet-lab experiments and the cost associated with the chemicals and measurement equipments.

In this report, we propose to develop a formal reasoning support for system biology to analyze complex
biological systems within the sound core of a theorem prover and thus provide accurate analysis results in this
safety-critical domain. In our recent work [25], we developed a formal deduction framework for reasoning about
molecular reactions by formalizing the Zsyntax language in the HOL4 theorem prover [26] . In particular, we
formalized the logical operators and inference rules of Zsyntax in higher-order logic. We then built upon these
formal definitions to verify two key behavioral properties of Zsyntax based molecular pathways [27, 28] . However,
it was not possible to reason about biological models based on reaction kinetics due to the unavailability of the
formal notions of reaction rate equations (a set of coupled differential equations) in higher-order logic. In order
to broader the horizons of formal reasoning about system biology, this report presents a formalization of reaction
kinetics along with the development of formal models of generic biological pathways without the restriction on the
number of molecules and corresponding interconnections. Furthermore, we formalize the transformation, which
is used to convert biological reactions into a set of coupled differential equations. This step requires multivariate
calculus (e.g., vector derivative, matrices, etc.) formalization in higher-order logic, which is not available in
HOL4 and therefore we have chosen to leverage upon the rich multivariable libraries of the HOL Light theorem
prover [29] to formalize the above mentioned notions and verify the reactions kinetics of some generic molecular
reactions. To make the formalization of Zsyntax[25] consistent with the formalization of reaction kinetics in HOL
Light, we ported all of the HOL4 formalization of Zsyntax to HOL Light as part of our current work.

The rest of the report is organized as follows: Section 2 presents the theorem proving based proposed frame-
work to formally reason about the system biology. Section 3 provides an introduction to the preliminaries of
Zsyntax, reaction kinetics and higher-order-logic theorem proving. We present the formalization of Zsyntax along
with the verification of important properties in Section 4. This is followed by the formalization of reaction ki-
netics and the verification of some general reaction rate equations based models in Section 5. The illustration of
our proposed framework is presented in Section 6, where we describe the formal analysis of a molecular reaction
representing the TP53 Phosphorylation, a molecular reaction representing the pathway leading to the death of
cancer stem cells and the verification of a tumor growth model based on cancer stem cells. Finally, we conclude
our work and highlight some future directions in Section 7.
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2 Proposed Framework

The proposed theorem proving based formal reasoning framework for system biology, depicted in Figure 1, allows
to formally deduce the complete pathway from any given time instance and model and analyze the ordinary
differential equations (ODEs) corresponding to a kinetic model for any molecular reaction. For this purpose, the
framework builds upon the existing higher-order-logic formalizations of Lists, Pairs, Vectors, and Calculus.

Reaction Kinetics

Zsyntax

HOL Theories
 List
 Pair
 Vector
 Calculus

Zsyntax Operators 
and Rules

Supporting Theorems 
(DELET, zsyn_EVF etc)

Framework for 
Pathways 
Deduction
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ODE based Kinetic 
Model of Reactions

List of 
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Rates of the 
Reactions
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Verified Solution of 
Reaction Kinetic Model

TheoremsTheorems

Higher-order Logic

Stoichiometric 
Matrix

Figure 1: Proposed Framework

The two main rectangles in the higher-order logic block present the foundational formalizations developed to
facilitate the formal reasoning about the Zsyntax based pathway deduction and the reaction kinetics. In order
to perform the Zsyntax based molecular pathway deduction, we first formalize the functions representing the
logical operators and inference rules of Zsyntax in higher-order logic and verify some supporting theorems from
this formalization. This formalization can then be used along with a list of molecules and a list of Empirically
Valid Formulae (EVFs) to formally deduce the pathway for the given list of molecules and provide the result as
a formally verified theorem using HOL Light. Similarly, we have formalized the flux vectors and stoichiometric
matrices in higher-order-logic. These foundations can be used along with a given list of species and the rate of
the reactions to develop a corresponding ODEs based kinetic reactions model. The solution to this ODE can
then be formally verified as a theorem by building upon the existing formalization of Calculus theories.

The distinguishing characteristics of the proposed framework include the usage of deductive reasoning to
derive the deduced pathways and solutions of the reaction kinetic models. Thus, all theorems are guaranteed to
be correct and explicitly contain all the required assumptions.

3 Preliminaries

In this section, we provide a brief introduction to Zsyntax, reaction kinetics and higher-order-logic theorem
proving. The main intent is to review the main concepts and notations used in this report.

3.1 Zsyntax

Zsyntax [14] exploits the analogy between biological processes and logical deduction. Some of the key features of
Zsyntax are: 1) the ability to express molecular reactions in a mathematical way; 2) heuristic nature, i.e., if the
conclusion of a reaction is known, then one can deduce the missing data from the initialization data; 3) computer
implementable semantics. Zsyntax consists of the following three operators:

Z-Interaction: The interaction of two molecules is expressed by the Z-Interaction (∗) operator. In biological
reactions, Z-interaction is not associative.
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Z-Conjunction: The aggregate of same or different molecules (not necessarily interacting with each other) is
formed using the Z-Conjunction (&) operator. Z-Conjunction is fully associative.

Z-Conditional: A path from A to B under the condition C is expressed using the Z-Conditional (→) operator
as: A→ B if there is a C that allows it.

Zsyntax supports four inference rules, given in Table 1, that play a vital role in deducing the outcomes of
biological reactions:

Table 1: Zsyntax Inference Rules
Inference Rules Definition

Elimination of Z-conditional(→E) if C ` (A→ B) and (D ` A) then (C&D ` B)
Introduction of Z-conditional(→I) C&A ` B then C ` (A→ B)
Elimination of Z-conjunction(&E) C ` (A&B) then (C ` A) and (C ` B)
Introduction of Z-conjunction(&I) (C ` A) and (D ` B) then (C&D) ` (A&B)

Besides the regular formulas that can be derived based on the above-mentioned operators and inference rules,
Zsyntax also makes use of Empirically Valid Formulae (EVF). These EVFs basically represent the non-logical
axioms of molecular biology and are assumed to be validated empirically in the lab.

It has been shown that any biological reaction can be mapped and their final outcomes can be derived using
the above-mentioned three operators and four inference rules [14]. For example, consider a scenario in which
three molecules A, B and C react with each other to yield another molecule Z. This can be represented as a
Zsyntax theorem as follows:

A & B & C ` Z

The Z-Conjunction operator & is used to represent the given aggregate of molecules and then the inference rules
from Table 1 are applied on these molecules along with some EVFs (chemical reactions verified in laboratories)
to obtain the final product Z. For the above example, these EVFs could be:

A * B → X and X * C → Z

which means that A will react with B to yield X and X in return will react with C to yield the final product Z.

3.2 Reaction Kinetics

Reaction kinetics [30] is the study of rates at which biological processes interact with each other and how the
corresponding processes are affected by these reactions. The rate of a reaction provides the information about
the evolution of the concentration of the species (e.g., molecules) over time. A process is basically a chain of
reactions, called pathway, and the investigation about the rate of a process implies the rate of these pathways.
Generally, biological reactions can be either irreversible (unidirectional) or reversible (bidirectional).

In order to analyze a biological process, we need to know its kinetic reaction based model, which comprises a
set of m species, X = {X1, X2, X3, . . . , Xm} and a set of n reactions, R = {R1, R2, R3, . . . , Rn}.

An irreversible reaction Rj , {1 ≤ j ≤ n} can generally be written as follows:

Rj : s1,jX1 + s2,jX2 + . . .+ sm,jXm
kj−→ ś1,jX1 + ś2,jX2 + . . .+ śm,jXm (1)

Similarly, a reversible reaction Rj , {1 ≤ j ≤ n} can be described as follows:

Rj : s1,jX1 + s2,jX2 + . . .+ sm,jXm

kj
f

�
kj

r
ś1,jX1 + ś2,jX2 + . . .+ śm,jXm (2)

The coefficients s1,j , s2,j , . . . , sm,j , ś1,j , ś2,j , . . . , śm,j are the non-negative integers and represent the stoichiome-
tries of the species taking part in the reaction. The non-negative integer kj is the kinetic rate constant of the

irreversible reaction. The non-negative integers kj
f and kj

r are the forward and reverse kinetic rate constants of
the reversible reaction [31].
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A reversible reaction can be divided into two irreversible reactions with the forward kinetic rate constant as
the kinetic rate constant of the first reaction and the reverse kinetic rate constant as the kinetic rate constant of
the second reaction as given below:

Rj
(1) : s1,jX1 + s2,jX2 + . . .+ sm,jXm

kj
f

−→ ś1,jX1 + ś2,jX2 + . . .+ śm,jXm

Rj
(2) : ś1,jX1 + ś2,jX2 + . . .+ śm,jXm

kj
r

−→ s1,jX1 + s2,jX2 + . . .+ sm,jXm

The dynamic behaviour of the biochemical systems is described by the set of ordinary differential equations
(ODEs) as a counterpart to the above mentioned reaction based models. The evolution of the system is captured
by analyzing the change in the concentration of the species (i.e., time derivatives). Mathematically, this can be
described as follows:

d[Xi]

dt
=

n∑
j=1

ni,jvj (3)

where ni,j is the stoichiometric coefficient of the molecular species Xi in reaction Rj (i.e., ni,j = śi,j − si,j). The
parameter vj represents the flux of the reaction Rj .

For all the reactions from 1 to n, it becomes a flux vector as v = (v1, v2, . . . , vn)T and the system of ODEs
can be written in the vectorial form as follows:

d[X]

dt
= Nv (4)

where [X] = (X1X2, . . . , Xn)T is vector of the concentration of all of the species participating in the reaction and
N is the stoichiometric matrix of order m× n.

For example, consider the following simple example with two reactions:

A
k
−→B A+ 2B

kf

�
kr

C

The first reaction is irreversible with reaction kinetic rate constant k and the second is a reversible reaction with
kf and kr as the forward and reverse reaction kinetic rate constants, respectively. The vector for the concentration
of species is ([A], [B], [C])T and the flux vector is v = (v1, v2)T , where v1 is the flux of first reaction and v2 is the
flux of second reaction. The above reaction model can be written as follows:

A+ 0B + 0C
k
−→ 0A+B + 0C A+ 2B + 0C

kf

�
kr

0A+ 0B + C

Now we can derive the stoichiometric matrix for above reaction as follows:

N =

0− 1 0− 1
1− 0 0− 2
0− 0 1− 0

 =

−1 −1
1 −2
0 1


The ODE model for the above reaction model is given as follows:

d[A]
dt

d[B]
dt

d[C]
dt

 =


−1 −1

1 −2

0 1

 .
 v1

v2

 (5)

The flux of a reaction can be computed by the law of mass action [24], which states that the rate (also called
flux) of a reaction is proportional to the concentration of the reactant raised its stoichiometry. The stoichiometry
of A is 1 in the first reaction and thus the rate for the irreversible reaction is v1 = k[A]

The reversible reaction can be written as two irreversible reactions, so the rate/flux of the above reversible
reaction is obtained by taking the differences of the fluxes of the two irreversible reactions as follows:

v = vf − vr = kf [A][B]2 − krC (6)

where vf and vr represent the forward reaction rate and the reverse reaction rate, respectively, of the given
reversible reaction. From the above description, it is clear that an ODE model of the biochemical system explains
the concentration of the species which varies over time as a function of reaction flux which further depends on
the kinetics of the reaction.
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3.3 Higher-order-Logic Theorem Proving and HOL Light Theorem Prover

Theorem proving is concerned with the construction of mathematical proofs by a computer program using axioms
and hypothesis. Theorem proving systems are widely used in software and hardware verification [32, 33, 34]. For
example, hardware designer can prove different properties of a digital circuit by using some predicates to model
the circuits model. Similarly, a mathematician can prove the transitivity property for real numbers using the
axioms of real number theory. The language of these mathematical theorems or conjectures is logic, which
can be propositional logic, first-order logic or higher-order logic depending upon the expressibility requirement.
For example, the use of higher-order logic is advantageous over first-order logic in terms of the availability of
additional quantifiers and its high expressiveness.

A theorem prover is a software in which formal reasoning about the correctness of mathematical theorems
can be conducted with as much accuracy as pencil-and-paper, but with the precise control of the computer which
ensures that no mathematical mistake is involved. For example, a theorem prover does not allow us to conclude
that “x

x = 1” unless it is first proved or assumed that x 6= 0. This is achieved by defining a precise syntax of the
mathematical sentences that can be input in the software. The designer of the theorem prover also provides some
axioms and inference rules which are the only ways to prove a sentence correct. This purely deductive aspect
provides the guarantee that every sentence proved in the system is true (in particular, there is no approximation
like in computer algebra systems). When a mathematical or physical theory is expressed inside a theorem prover,
we say that it is formalized.

Based on the decidability or undecidability of the underlying logic, theorem proving can be done automatically
or interactively. Propositional logic is decidable and thus the sentences expressed in this logic can be automatically
verified whereas higher-order logic is undecidable and thus the theorem proving about sentences, expressed in
higher-order logic, have to be verified by providing guidance from its user in an interactive way.

HOL Light [29] is an interactive theorem proving environment for the construction of mathematical proofs
in higher-order logic. A theorem is a formalized statement that may be an axiom or could be deduced from
already verified theorems by an inference rule. A theorem consists of a finite set Ω of Boolean terms called the
assumptions and a Boolean term S called the conclusion. For example, “∀x.x 6= 0⇒ x

x = 1” represents a theorem
in HOL Light. A HOL Light theory consists of a set of types, constants, definitions, axioms and theorems. HOL
Light theories are organized in a hierarchical fashion and theories can inherit the types, constants, definitions
and theorems of other theories as their parents. In this report, we make use of the HOL Light theories of
Boolean variables, real numbers, transcendental functions, lists and multivariate analysis. In fact, one of the
primary motivations of selecting the HOL Light theorem prover for our work was to benefit from these built-in
mathematical theories. The proofs in HOL Light are based on the concept of a tactic that breaks goals into
simple subgoals. There are many automatic proof procedures and proof assistants [35] available in HOL Light
which help the user in directing the proof to the end.

Table 2 provides the mathematical interpretations of some frequently used HOL Light symbols and functions
used in this report.

4 Formalization of Zsyntax

We model the molecules as variables of arbitrary data types (α) in our formalization of Zsyntax [28]. A list
of molecules (α list) represents the Z-Interaction or a molecular reaction among the elements of the list. The
Z-Conjunction operator forms a collection of non-reacting molecules and can now be formalized as a list of list
of molecules (α list list). This data type allows us to apply the Z-Conjunction operator between individual
molecules (a list with a single element) or multiple interacting molecules (a list with multiple elements). The
Z-Conditional operator is used to update the status of molecules, i.e., generate a new set of molecules based on the
available EVFs. Each EVF is modeled in our formalization as a pair (α list # α list list) where the first element
is a list of molecules (α list) indicating the reacting molecules and the second element is a list of list of molecules
(α list list) indicating the resulting set of molecules after the reaction between the molecules of the first element
of the pair has taken place. A collection of EVFs is represented as a list of EVFs ((α list # α list list)list) in
our formalization.

The elimination of Z-Conditional rule is the same as the elimination of implication rule (Modus Ponens) in
propositional logic and thus it can be directly handled by the theorem prover simplification and rewriting rules.
Similarly, the introduction of Z-Conditional rule can also be inferred from the rules of propositional logic and
can be handled by the theorem prover without the introduction of a new inference rule. The elimination of the
Z-Conjunction rule allows us to infer the presence of a single molecule from an aggregate of inferred molecules.
This rule is usually applied at the end of the reaction to check if the desired molecule has been obtained. Based
on our data types, described above, this rule can be formalized by a function that returns a particular molecule
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Table 2: HOL Light Symbols and Functions

HOL Symbol Standard Symbol Meaning

/\ and Logical and

\/ or Logical or

∼ not Logical negation

T true Logical true value

F false Logical false value

==> −→ Implication

<=> = Equality in Boolean domain

!x.t ∀x.t for all x : t

λx.t λx.t Function that maps x to t(x)

HD L head Head element of list L

TL L tail Tail of list L

EL n L element nth element of list L

MEM a L member True if a is a member of list L

LENGTH L length Length of list L

CONS CONS Adds a new element to the top of the list

APPEND Append Merges two lists

FST fst (a, b) = a First component of a pair

SND snd (a, b) = b Second component of a pair

num {0, 1, 2, . . .} Positive Integers data type

real All Real numbers Real data type

suc n (n+ 1) Successor of natural number

exp x ex Exponential function (real-valued)

sqrt x
√
x Square root function

abs x |x| Absolute function

&a N→ R Typecasting from Integers to Reals

A**B [A][B] Matrix-Matrix or Matrix-Vector multiplication

from a list of molecules:

Definition 4.1. Elimination of Z-Conjunction Rule
` ∀ l x. zsyn conjun elimin l x = if MEM x l then [x] else l

The function zsyn conjun elimin has the data type (α list→ α→ α list). The above function returns the
given element as a single element in a list if it is a member of the given list. Otherwise, it returns the argument
list as it is.

The introduction of Z-Conjunction rule along with Z-Interaction allows us to perform a reaction between any
of the available molecules during the experiment. Based on our data types, this rule is equivalent to the append
operation of lists.

Definition 4.2. Introduction of Z-Conjunction and Z-Interaction
` ∀ l x y. zsyn conjun intro l x y = CONS (FLAT [EL x l; EL y l]) l

The above definition has the data type (α list list → num → num → α list list). The functions FLAT and
EL are used to flatten a list of lists to a single list and return a particular element of a list, respectively. Thus,
the function zsyn conjun intro takes a list l and appends the list of two of its elements x and y on its head.
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Based on the laws of stoichiometry [14], the reacting molecules using the Z-Conjunction operator have to be
deleted from the aggregate of molecules. The following function represents this behavior in our formalization:

Definition 4.3. Reactants Deletion
` ∀ l x y. zsyn delet l x y = if x > y

then delet (delet l x) y else delet (delet l y) x

Here the function delet l x deletes the element at index x of the list l and returns the updated list as
follows:

Definition 4.4. Element Deletion
` ∀ l. delet l 0 = TL l ∧ ∀ l y. delet l (y + 1) = CONS (HD l) (delet (TL l) y)

Thus, the function zsyn delet l x y deletes the x th and yth elements of the given list l. We delete the higher
indexed element before the lower one in order to make sure that the first element deletion does not effect the
index of the second element that is required to be deleted. The above data types and definitions can be used
to formalize any molecular pathway (which is expressible using Zsyntax) and reason about its correctness within
the sound core of the higher-order logic theorem prover.

Our main objective is to develop a framework that accepts a list of initial molecules and possible EVFs and
allows the user to formally deduce the final outcomes of the corresponding biological experiment. In this regard,
we first develop a function that compares a particular combination of molecules with all the EVFs and upon
finding a match introduces the newly formed molecule in the initial list and deletes the consumed instances.

Definition 4.5. EVF Matching
` ∀ l e x y.

zsyn EVF l e 0 x y =

if FST (EL 0 e) = HD l

then (T,zsyn delet (APPEND (TL l) (SND (EL 0 e))) x y

else (F,TL l) ∧
∀ l e p x y.

zsyn EVF l e (p + 1) x y =

if FST (EL (p + 1) e) = HD l

then (T,zsyn delet (APPEND (TL l) (SND (EL (p + 1) e))) x y

else zsyn EVF l e p x y

The data type of the function zsyn EVF is: (α list list → (α list # α list list) list → num → num →
num → bool # α list list). The function LENGTH returns the length of a list. The function zsyn EVF takes a
list of molecules l and recursively checks its head, or the top most element, against all elements of the EVF list
e. If there is no match, then the function returns a pair with its first element being false (F), indicating that
no match occurred, and the second element equals the tail of the input list l. Otherwise, if a match is found
then the function removes the head of initial list l with the second element of the EVF pair is added to the end
of this modified list and deletes the matched elements from the initial list as these elements have already been
consumed. This modified list is then returned along with a true (T) value, which acts as a flag to indicate an
element replacement.

Next, in order to deduce the final outcome of the experiment, we have to call the function zsyn EVF recursively
by placing all the possible combinations of the given molecules at the head of list l one by one. This can be done
as follows:

Definition 4.6. Recursive Function to model the argument y in Definition 4.5
` ∀ l e x. zsyn recurs1 l e x 0 =

zsyn EVF (zsyn conjun intro l x 0) e (LENGTH e - 1) x 0 ∧
∀ l e x y. zsyn recurs1 l e x (y + 1) =

if FST (zsyn EVF (zsyn conjun intro l x (y + 1)) e (LENGTH e - 1) x (y + 1)) ⇔ T

then zsyn EVF (zsyn conjun intro l x (y + 1)) e (LENGTH e - 1) x (y + 1)

else zsyn recurs1 l e x y
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Definition 4.7. Recursive Function to model the argument x in Definition 4.5
` ∀ l e y. zsyn recurs2 l e 0 y =

if FST (zsyn recurs1 l e 0 y) ⇔ T

then (T,SND (zsyn recurs1 l e 0 y))

else (F,SND (zsyn recurs1 l e 0 y)) ∧
∀ l e x y. zsyn recurs2 l e (x + 1) y =

if FST (zsyn recurs1 l e (x + 1) y) ⇔ T

then (T,SND (zsyn recurs1 l e (x + 1) y))

else zsyn recurs2 l e x (LENGTH l - 1)

Both the above functions have the same data type, i.e, (α list list → (α list #α list list) list → num →
num → num → bool # α list list). The function zsyn recurs1 calls the function zsyn EVF after appending
the combination of molecules indexed by variables x and y using the introduction of Z-Conjunction rule. Thus,
the new combination is always placed on the top of the list, which is passed as the variable l to the function
zsyn EVF. Moreover, we provide the length of the EVF list (LENGTH e - 1) as the variable p of the function
zsyn EVF so that the new combination is compared to all the entries of the EVF list. It is also important to
note that the function zsyn recurs1 terminates as soon as a match in the EVF list is found. This function also
returns a flag indicating the status of this match as the first element of its output pair. The second function
zsyn recurs2 checks this flag and if it is found to be true (meaning that a match in the EVF list is found)
then it terminates by returning the output list of the function zsyn recurs1. Otherwise, it continues with all
the remaining values of the variable x recursively. In the first case, i.e., when a match is found, the above two
functions have to be called all over again with the new list. These iterations will continue until there is no match
found in the execution of functions zsyn recurs1 and zsyn recurs2. This overall behaviour can be modelled
by the following recursive function:

Definition 4.8. Final Recursion Function for Zsyntax
` ∀ l e x y. zsyn deduct recurs l e x y 0 = (T,l) ∧
∀ l e x y q. zsyn deduct recurs l e x y (q + 1) =

if FST (zsyn recurs2 l e x y) ⇔ T

then zsyn deduct recurs (SND (zsyn recurs2 l e x y)) e

(LENGTH (SND (zsyn recurs2 l e x y)) - 1) (LENGTH (SND (zsyn recurs2 l e x y)) - 1) q

else (T,SND (zsyn recurs2 l e (LENGTH l - 1) (LENGTH l - 1)))

The function zsyn deduct recurs also has the same data type as the above mentioned recursion functions.
The variable of recursion in this function should be assigned a value that is greater than the total number of
EVFs so that the application of none of the EVF is missed to guarantee correct operation. Similarly, the variables
x and y above should be assigned the values of (LENGTH l - 1) to ensure that all the combinations of the list
l are checked against the elements of the list of EVFs. Thus, the final deduction function for Zsyntax can be
expressed in HOL Light as follows:

Definition 4.9. Final Deduction Function for Zsyntax
` ∀ l e. zsyn deduct l e = SND (zsyn deduct recurs l e (LENGTH l - 1) (LENGTH l - 1) LENGTH e)

The data type of function zsyn deduct is (α list list → (α list # α list list)list → α list list). It accepts
the initial list of molecules and the list of valid EVFs and returns a list of final outcomes of the experiment under
the given conditions. Next, the output of the function zsyn deduct has to be checked if the desired molecule is
present in the list. This can be done by using the elimination of the Z-Conjunction rule given in Definition 4.1.

The formal definitions, presented in this section, allow us to recursively check all the possible combinations
of the initial molecules against the first elements of given EVFs. In case of a match, the corresponding EVF is
applied by replacing the reacting molecules with their outcome in the molecule list and the process restarts again
to find other possible matches from the new list of molecules. This process terminates when no more molecules
are found to be reacting with each other and at this point we will have the list of post-reaction molecules. The
desired result can then be obtained from these molecules using the elimination of Z-Conjunction rule, given in
Definition 4.1. The main benefit of the development, presented in this section, is that it facilitates automated
reasoning about the molecular biological experiments within the sound core of a theorem prover.
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4.1 Formal Verification of Zsyntax Properties

In order to ensure the correctness and soundness of our definitions, we use them to verify a couple of properties
representing the most important characteristics of molecular reactions. The first property deals with the case
when there is no combination of reacting molecules in the list of molecules and in this case we verify that after the
Zsyntax based experiment execution both the pre and post-experiment lists of molecules are the same. The second
property captures the behavior of the scenario when the given list of molecules contains only one set of reacting
molecules and in this case we verify that after the Zsyntax based experiment execution the post-experiment list of
molecules contains the products of the reacting molecules minus its reactants along with the remaining molecules
provided initially. We represent these scenarios as formally specified properties in higher-order logic using our
formal definitions, given in the previous section. These properties are then formally verified in higher-order logic
theorem prover.

4.1.1 Scenario 1: No Reaction

We verify the following theorem for the first scenario:

Theorem 4.1. Non-Reacting Molecules
` ∀ e l.

A1: ∼(NULL e) ∧ A2: ∼(NULL l) ∧
A3: (∀ a x y. MEM a e ∧ x < LENGTH l ∧ y < LENGTH l

⇒ ∼MEM (FST a) [HD (zsyn conjun intro l x y)])

⇒ zsyn deduct l e = l

The variables e and l represent the lists of EVFs and molecules, respectively. The first two assumptions (A1-
A2) ensure that both of these lists have to be non-empty, which are the pre-conditions for a molecular reaction
to take place. The next assumption (A3) in the assumption list of Theorem 4.1 represents the formalization
of the no-reaction-possibility condition as according to this condition no first element of any pair in the list of
EVFs e is a member of the head of the list formed by the function zsyn conjun intro, which picks the elements
corresponding to the two given indices (that range over the complete length of the list of molecules l) and appends
them as a flattened single element on the given list l. This constraint is quantified for all variables a, x and
y and thus ensures that no combination of molecules in the list l matches any one of the first elements of the
EVF list e. Thus, under this constraint, no reaction can take place for the given lists l and e. The conclusion
of Theorem 4.1 represents the scenario that the output of our formalization of Zsyntax based reaction would not
make any change in the given molecule list L and thus verifies that under the no-reaction-possibility condition
our formalization also did not update the molecule list.

The verification of this theorem is interactively done by ensuring the no-update scenario for all molecule
manipulation functions, i.e., zsyn EVF, zsyn recurs1, zsyn recurs2 and zsyn deduct recurs, under the no-
reaction-possibility condition [25]. For example, the corresponding theorem for zsyn EVF function is as follows:

Theorem 4.2. No Update for List of EVFs
` ∀ e l x y p.

A1: ∼(NULL e) ∧ A2: ∼(NULL l) ∧ A3: x < LENGTH l ∧ A4: y < LENGTH l ∧
A5: p < LENGTH e ∧ A6: (∀ a. MEM a e ⇒ ∼MEM (FST a) [HD l])

⇒ zsyn EVF l e p x y = (F,TL l)

The assumptions (A1-A5) of above theorem ensure that both lists l and e are not empty and the arguments
of the function zsyn EVF are bounded by the LENGTH of l and e. The last assumption (A6) in the assumption
list models the no-reaction-possibility condition in the context of the function zsyn EVF. The conclusion of the
theorem states that no update takes place under the given conditions by ensuring that the function zsyn EVF

returns a pair with the first element being F (False), representing no match, and the second element being equal
to TL l, which is actually equal to the original list l since an element was appended on head of l by the parent
function.

4.1.2 Scenario 2: Single Reaction

The second scenario complements the first scenario and caters for the case when a reaction is possible and we
verify that the molecules list is indeed updated based on the outcomes of that reaction. In order to be able to
track the reaction and the corresponding update, we limit ourselves to only one reaction in this scenario but since
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we verify a generic theorem (universally quantified) for all possibilities our result can be extended to cater for
multiple reactions as well. The theorem corresponding to this scenario 2 is as follows:

Theorem 4.3. Molecule List Update in Case of a Reaction
` ∀ e l z x’ y’.

A1: ∼ NULL e ∧ A2: ∼ NULL (SND (EL z e)) ∧ A3: 1 < LENGTH l ∧
A4: x’ 6= y’ ∧ A5: x’ < LENGTH l ∧ A6: y’ < LENGTH l ∧ A7: z < LENGTH e ∧
A8: ALL DISTINCT (APPEND L (SND (EL z e))) ∧
A9: (∀ a b. a 6= b ⇒ FST (EL a e) 6= FST (EL b e)) ∧
A10: (∀ k x y. x < LENGTH k ∧ y < LENGTH k ∧

(∀ j. MEM j k ⇒ MEM j l ∨ ∃ q. MEM q e ∧ MEM j (SND q)) ⇒
if (EL x k = EL x’ l) ∧ (EL y k = EL y’ l)

then HD (zsyn conjun intro k x y) = FST (EL z e)

else ∀ a. MEM a e ⇒ FST a 6= HD (zsyn conjun intro k x y))

⇒ zsyn deduct l e = zsyn delet (APPEND l (SND (EL z e))) x’ y’

The first two assumptions (A1-A2) ensure that neither the list e, i.e., the list of EVFs, nor the second element
of the pair at index z of the list e is empty. Similarly, the third assumption (A3) ensures that the list l, i.e., the
list of initial molecules, contains at least two elements. These constraints ensure that we can have at least one
reaction with the resultant being available at index z of the EVF list. The next four assumptions (A4-A7) ensure
that the indices x’ and y’ are distinct and these along with the index z fall within the range of elements of their
respective lists of molecules l or EVFs e. According to the next assumption (A8), i.e., ALL DISTINCT (APPEND

l (SND (EL z e))), all elements of the list l and the resulting molecules of the EVF at index z are distinct, i.e.,
no molecule can be found two or more times in the initial list l or the post-reaction list e. The next assumption
(A9), i.e., (∀ a b. a 6= b ⇒ FST (EL a e) 6= FST (EL b e)), guarantees that all first elements of the pairs
in list e are also distinct. Note that this is different from the previous condition since the list e contains pairs as
elements and the uniqueness of the pairs does not ensure the uniqueness of its first elements. The final condition
(A10) models the scenario where there is only one pair of reactants present in the reaction. According to the
assumptions of this implication condition, the variable k is used to represent a list that only has elements from
list l or the second elements of the pairs in list e. Thus, it models the molecules list in a live experiment.
Moreover, the variables x and y represent the indices of the list k and thus they must have a value less than the
total elements in the list k (since the first element is indexed 0 in the HOL Light formalization of lists). Now, if
the indices x and y become equal to x’ and y’, respectively, then the head element of the zsyn conjun intro

k x y would be equal to FST of EL z e. Otherwise, for all other values of indices x and y, no combination of
molecules obtained by HD(zsyn conjun intro k x y) would be equal to the first element of any pair of the list
e. Thus, the if case ensures that the variables x’ and y’ point to the reacting molecules in the list of molecules
l and the variable z points to their corresponding resultant molecule in the EVF list. Moreover, the else case
ensures that there is only one set of reacting molecules in the list l. The conclusion of the theorem formally
describes the scenario when the resulting element, available at the location z of the EVF list, is appended to the
list of molecules while the elements available at the indices x’ and y’ of l are removed during the execution of
the function zsyn deduct on the given lists l and e.

The proof of Theorem 4.3 is again based on verifying sub-goals corresponding to this scenario for all the sub-
functions, i.e., zsyn EVF, zsyn recurs1, zsyn recurs2 and zsyn deduct recurs. The formal reasoning for all
of these proofs involved various properties of the delet function for a list element and some of the key theorems
developed for this purpose in our development are given in Table 3.

The formalization described in this section consumed about 500 man hours and approximately 2000 lines of
code, mainly due to the undecidable nature of higher-order logic. However, this effort raises the confidence level
on the correctness of our formalization of Zsyntax . This fact distinguishes our work from all the other formal
methods based techniques used in the context of BRNs, where the deduction rules are applied without being
formally checked. Moreover, our formally verified theorems can also be used in the formal analysis of molecular
pathways. As the assumptions of these theorems provide very useful insights about the constraints under which
a reaction or no reaction would take place.

5 Formalization of Reaction Kinetics

In this section, we present the higher-order-logic formalization of the reaction kinetics described in Section 3.
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Table 3: Formally Verified Properties of the delet Function

Signature Theorem

delet ASSOC THM ` ∀ l e x. x < LENGTH l

⇒ delet (APPEND l e) x = APPEND (delet l x) e

delet LENGTH THM ` ∀ l e x. x < LENGTH l

⇒ LENGTH (delet l x) = LENGTH l− 1

delet EL THM ` ∀ l x y. x < y ∧ y < LENGTH l ∧ 1 < LENGTH l

⇒ EL x l = EL x (delet l y)

delet DISTINCT THM ` ∀ l y. y < LENGTH l ∧ ALL DISTINCT l

⇒ ALL DISTINCT (delet l y)

delet MEM THM ` ∀ l a x. x < LENGTH l ∧ MEM a (delet l x)

⇒ MEM a l

delet NOT MEM THM ` ∀ l x. ALL DISTINCT l ∧ x < LENGTH l

⇒∼ MEM (EL x l) (delet l x)

5.1 Generalized Model Formulation

In reaction kinetic based modeling, a biological pathway or a network is represented by a set of biochemical
reactions, which can be classified as reversible and irreversible. We can formally define this fact by an inductive
enumerating data-type in HOL Light as follows:

Definition 5.1. Reaction Type
define type "reaction type = irreversible | reversible"

A general model of the biological reaction consists of a list of reactants, a list of products and corresponding
kinetic rate constants (forward and reverse). We model a biological entity as a pair (N, R), where the first
element represents the stoichiometry and second element is the concentration of the molecule. For example,
2A in a reaction can be represented as (2,A). We formally model a biological reaction as the following type
abbreviation:

Definition 5.2. Biological Reaction
new type abbrev "bio reaction",

:(reaction type × ((num × real)list × (num × real)list × (real × real)))

In the above definition, a biological reaction is a pair whose first element represents type of the reaction reaction

type (Definition 5.1) and the second element is itself a 3-tuple. The first element (num× real)list of the 3-
tuple is a list of the reactants represented in the form of a pair in which the first element of the pair represents
the stoichiometry and second element is the concentration of a single reactant. Similarly, the second element
(num× real)list of the 3-tuple is a list of the products of the reaction represented in the same format as
reactants. Finally, the third element of the 3-tuple is also a pair (real× real), which represents the kinetic rate
constants of the reaction. In the case of irreversible reaction, the first element of this pair is the kinetic rate
constant of the reaction and second element is zero. Whereas, in the case of the reversible reaction, the first
element is the forward kinetic rate constant and the second element represents the reverse kinetic rate constant
of the reaction.

In order to obtain an ODE model from a reaction based model of a biological system, we need to find out the
flux vector and the stoichiometric matrix. We first formalize the flux vector of the overall reaction which can be
computed by the law of mass action as described in Section 3. This requires the concentration of each molecule
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to be transformed in the exponent form where the concentration of a molecule is represented as the base and the
corresponding stoichiometry as the exponent. We define the following functions to perform this task.

Definition 5.3. Product of the Concentrations
` ∀ h t. flux irr [ ] = &1 ∧

flux irr (CONS h t) =

if FST h = 0

then flux irr t

else SND h pow FST h * flux irr t

The function flux irr accepts a list of reactants in the form of pair and returns a real number which is the
product of the concentration raised the stoichiometry of all the reactants in the reaction.

The flux of an irreversible reaction is given by the following definition below:

Definition 5.4. Flux of an Irreversible Reaction
` ∀ products list rate reactants list.

gen flux irreversible reactants list products list rate =

rate ∗ flux irr reactants list

The function gen flux irreversible has the type ((num× real) list→ (num× real) list→ real→ real)
and takes a list of reactants, a list of products and the first element of the kinetic rate constant pair and returns
the flux of an irreversible reaction.

The function for the flux of reversible reaction (Equation 6) is given as follows:

Definition 5.5. Flux of a Reversible Reaction
` ∀ rate 1 reactants list rate 2 products list.

gen flux reversible reactants list products list rate 1 rate 2 =

rate 1 ∗ flux irr reactants list - rate 2 ∗ flux irr products list

Next, we combine the above definitions into one uniform definition as follows:

Definition 5.6. Flux of a Single Reaction
` ∀ t R P k1 k2.

flux sing (t,R,P,k1,k2) =

if t = irreversible

then gen flux irreversible R P k1

else gen flux reversible R P k1 k2

The type of the function flux sing is (bio reaction→ real). It takes an element of data type (bio reaction)
and output the value of flux of that reaction. In this function, there is a condition on the type of the reaction,
i.e., if it is irreversible, then this function will return the flux of irreversible reaction, otherwise it will return the
flux of the reversible reaction.

A general biological pathway has a chain of reversible and irreversible reactions in any arbitrary sequence.
We can obtain the flux vector for a chain of reactions of biological system by the following HOL Light function:

Definition 5.7. Flux Vector
` ∀ M. flux M = vector (MAP flux sing M)

The function flux accepts a list of reactions (bio reaction list) and returns a vector (Rn) containing the
fluxes of all the reactions, where n is the length of the list M. Here, the HOL Light function MAP is used to map
the function flux sing on every element of the list M.

Our next step is to formalize the notion of stoichiometric matrix which indeed is a collection of column vectors.
Each column of the stoichiometric matrix can be defined as follows:
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Definition 5.8. Column of the Stoichiometric Matrix
` ∀ h t h2 h1 t1 t2.

stioch mat column [ ] [ ] = [ ] ∧
stioch mat column (CONS h t) [ ] = [ ] ∧
stioch mat column [ ] (CONS h t) = [ ] ∧
stioch mat column (CONS h1 t1) (CONS h2 t2) =

CONS (&(FST h2) - &(FST h1)) (stioch mat column t1 t2)

The above function has a data type of ((num × real) list → (num × real) list → real list). The function
stioch mat column accepts a list of the reactants and a list of products and returns a list containing the corre-
sponding column of the stoichiometric matrix. In order to obtain a single entry, the stoichiometry of the product
is subtracted from the stoichiometry of the reactant.

Definition 5.9. Vector of the Stoichiometric Matrix Column
` ∀ t k1 k2 R P. st matrix sing (t,R,P,k1,k2) = vector (stioch mat column R P)

The function st matrix sing takes a biological reaction (bio reaction) and returns a vector (Rm), which
corresponds to the column of the stoichiometric matrix.

Finally, we can obtain the stoichiometric matrix (in transposed form) by applying the above function to the
list of biological reactions, as defined in the following definition:

Definition 5.10. Stoichiometric Matrix
` ∀ M. st matrix M = vector (MAP st matrix sing M)

The definition st matrix takes a list of biological reaction (bio reaction) and returns a matrix having n

rows and m columns, where n and m are the number of reactions and number of the species, respectively. The
function MAP applies the definition st matrix sing on every element of the list M. Further, the stoichiometric
matrix can be obtained by taking the transpose of the function st matrix.

Next, we define a helper function that maps a real derivative over each function of the list.

Definition 5.11. Derivative of a List of Functions
` ∀ h t x.

map real deriv [ ] x = [ ] ∧
map real deriv (CONS h t) x = APPEND [real derivative h x] (map real deriv t x)

The above function accepts a list (real list) containing the concentrations of all the species taking part in
the reaction. It uses a HOL Light function real derivative, which represents the real-valued derivative of a
function and maps it over the each element of the list (real list). We use map real deriv to define a function
which takes a list of the concentrations of the species and returns a vector with each element represented in the
form of a real-valued derivative.

Definition 5.12. Derivative of a Vector
` ∀ L t. entities deriv vec L t = vector (map real deriv L t)

We can utilize this infrastructure to model arbitrary biological networks consisting of any number of reactions.
For example, a biological network consisting of list of E biological species and M biological reactions can be
represented by the following general kinetic model:

((entities_deriv_vec E t):real^m) = transp((st_matrix M):real^m^n) ** flux M

5.2 Properties of Reaction Kinetics Based Modeling

We used the formalization of the reaction kinetics to verify the generic models of biological reactions, such
as irreversible consecutive reactions, reversible and irreversible mixed reactions. The main ideal is to express
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the given biological network as a kinetic model and verify that the given solution (mathematical expression)
of each biological entity satisfies the resulting set of coupled differential equations. This verification is quite
important as such expressions are used to predict the outcomes of various drugs and understand the evolution of
different molecules. In the following, we present some commonly used reaction schemes, their formal modeling
and verification process in HOL Light.

5.2.1 The Irreversible Consecutive Reactions

We consider a general irreversible consecutive reaction scheme as shown in Figure 2. This configuration represents
two irreversible reactions. In the first reaction, A is the reactant and B is the product whereas k1 represents the
kinetic rate constant of the reaction. Similarly, in the second reaction, B is the reactant, C is the product and k2
is its kinetic rate constant. We formally model this reaction scheme in HOL Light as follows:

A B C

Figure 2: The Irreversible Consecutive Reactions

Definition 5.13. The Irreversible Consecutive Reaction
` ∀ k1 A B C t k2.

rea sch 01 A B C k1 k2 t =

[irreversible,[1,A t; 0,B t; 0,C t],[0,A t; 1,B t; 0,C t],k1,&0;

irreversible,[0,A t; 1,B t; 0,C t],[0,A t; 0,B t; 1,C t],k2,&0]

where the function rea sch 01 accepts the concentrations of the species A, B, C, the kinetic rate constants k1,

k2, a real-valued time variable t and returns a list of two irreversible biological reactions (bio reaction).
Our next step is to verify the solution of the kinetic model of the above reaction scheme:

Theorem 5.1. Solution of the ODE model of Reaction Scheme 01
` ∀ A B C t k1 k2.

A1: &0 < k1 ∧ A2: &0 < k2 ∧ A3: ∼(k2 - k1 = &0) ∧
A4: A (&0) = A0 ∧ A5: B (&0) = &0 ∧ A6: C (&0) = &0 ∧
A7: (∀ t. A t = A0 ∗ exp (--k1 ∗ t)) ∧
A8: (∀ t. B t = A0 ∗ k1 / (k2 - k1) ∗ (exp (--k1 ∗ t) - exp (--k2 ∗ t))) ∧
A9: (∀ t. C t = A0 ∗ (&1 - k2 / (k2 - k1) ∗ exp (--k1 ∗ t) - k1 / (k1 - k2)

∗ exp (--k2 ∗ t)))

⇒ entities deriv vec [A; B; C] t =

transp (st matrix (rea sch 01 A B C k1 k2 t)) ∗∗
flux (rea sch 01 A B C k1 k2 t)

where ∗∗ represents the matrix-vector multiplication. The HOL Light function transp accepts a matrix of any
order and returns the correspnding transpose of that matrix. The first two assumptions (A1-A2) ensure that
the kinetic rate constants of all the reactions are non-negative. The assumption (A3), i.e., ∼(k2 - k1 = &0),
guarantees that the denominators of the expressions of B t and C t are not zero in order to avoid singularities.
The next three conditions (A4-A6) are the initial concentrations of the species. Finally, the last three assumptions
(A7-A9) are the concentrations of the species A, B and C at any time t. These are the solutions of the ODE
model. The conclusion of the theorem describes the kinetic model for the given reaction.

We start the proof process by rewriting the left-hand-side using the following lemma which results in a vector
containing the derivatives of all the species.
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Lemma 5.1. Entities Derivative Vector
` ∀ A B C k1 k2 t.

entities deriv vec [A; B; C] t =

vector [real derivative A t; real derivative B t; real derivative C t]

The above lemma can easily be proved by using a simplifier KINETIC SIMP, which we developed by using the
rewriting and inference rules of HOL Light to automate some parts of the formal reasoning process.

Next, we need to compute the stoichiometric matrix on the right-hand-side of Theorem 5.1, which we derive
in the following lemma.

Lemma 5.2. Stoichiometric Matrix
` ∀ A B C k1 k2 t.

transp (st matrix (rea sch 01 A B C k1 k2 t)) =

vector [vector [&0 - &1; &0 - &0]; vector [&1 - &0; &0 - &1]; vector [&0 - &0; &1 - &0]]

The left-hand-side of the Lemma 5.2 consists of the function st matrix, which accepts a list rea sch 01 of the
biological reactions and returns the transpose of the stoichiometric matrix. We prove this theorem automatically
by KINETIC SIMP.

Next, we derive the flux vector from the function flux (rea sch 01 A B C k1 k2 t) on the right-hand-side
of the conclusion of the Theorem 5.1, as follows:

Lemma 5.3. Flux Vector
` ∀ A B C k1 k2 t.

flux (rea sch 01 A B C k1 k2 t) = vector [k1 ∗ A t; k2 ∗ B t]

At this point, we multiply the stoichiometric matrix with the flux vector, along with some arithmetic reasoning,
to obtain three differential equations. We discharge this last subgoal with the help of following important lemma:

Lemma 5.4. Solution of the ODEs
` ∀ A B C t k1 k2.

A1: &0 < k1 ∧ A2: &0 < k2 ∧ A3: ∼(k2 - k1 = &0) ∧
A4: A (&0) = A0 ∧ A5: B (&0) = &0 ∧ A6: C (&0) = &0 ∧
A7: (∀ t. A t = A0 ∗ exp (--k1 ∗ t)) ∧
A8: (∀ t. B t = A0 ∗ k1 / (k2 - k1) ∗ (exp (--k1 ∗ t) - exp (--k2 ∗ t))) ∧
A9: (∀ t. C t = A0 ∗ (&1 - k2 / (k2 - k1) ∗ exp (--k1 ∗ t) - k1 / (k1 - k2)

∗ exp (--k2 ∗ t)))

⇒ real derivative (λ t. A t) t = --k1 ∗ A t ∧
real derivative (λ t. B t) t = k1 ∗ A t - k2 ∗ B t ∧
real derivative (λ t. C t) t = k2 ∗ B t

The proof of this lemma is based on some properties of the real-valued derivatives available in the HOL Light
library along with some real analysis. We also utilized DIFF TAC, which is a very powerful tactic and helps to
automatically prove the real-valued derivatives of arbitrary and difficult functions.

5.2.2 The Consecutive Reactions with the Second Step being Reversible

The second reaction scheme consists of the consecutive reactions with the second step being reversible as shown
in Figure 3. In the irreversible reaction, A and B are the reactant and product, respectively, whereas k1 is the
kinetic rate constant of the reaction. Since any reversible reaction can be written as two irreversible reactions,
so the first irreversible reaction has B, C and the forward kinetic reaction constant k2 as the reactant, product
and the kinetic rate constant, respectively. Similarly, the parameters C, B and k3 are the reactant, product and
kinetic rate constant of the second irreversible reaction, respectively. We formally model this scheme as follows:
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A B C

Figure 3: The Consecutive Reactions with the Second Step being Reversible

Definition 5.14. The Consecutive Reactions with the Second Step Being Reversible
` ∀ k1 A B C t k2 k3.

rea sch 02 A B C k1 k2 k3 t =

[irreversible,[1,A t; 0,B t; 0,C t],[0,A t; 1,B t; 0,C t],k1,&0;

reversible,[0,A t; 1,B t; 0,C t],[0,A t; 0,B t; 1,C t],k2,k3]

where the function rea sch 02 accepts the concentrations of the species A, B, C, the kinetic rate constants k1,

k2, k3, a real-valued time variable t and returns the list of biological reactions (bio reaction).
We verify the solution of the ODE model using the following theorem:

Theorem 5.2. Solution of the ODE model of Reaction Scheme 02
` ∀ A B C t k1 k2 k3.

A1: &0 < k1 ∧ A2: &0 < k2 ∧ A3: &0 < k3 ∧
A4: A (&0) = A0 ∧ A5: B (&0) = &0 ∧ A6: C (&0) = &0 ∧
A7: r1 = k1 ∧ A8: r2 = k2 + k3 ∧ A9: ∼(r1 = r2) ∧
A10: (∀ t. A t = A0 ∗ exp (--k1 ∗ t)) ∧
A11: (∀ t. B t = k1 ∗ A0 ∗ (k3 / (r1 ∗ r2) + (r2 - k3) / (r2 ∗ (r1 - r2)) ∗ exp (--r2 ∗ t)

+ (k3 - r1) / (r1 ∗ (r1 - r2)) ∗ exp (--r1 ∗ t))) ∧
A12: (∀ t. C t = k1 ∗ k2 ∗ A0 ∗ (&1 / (r1 ∗ r2) + &1 / (r1 ∗ (r1 - r2)) ∗ exp (--r1 ∗ t)

- &1 / (r2 ∗ (r1 - r2)) ∗ exp (--r2 ∗ t)))

⇒ entities deriv vec [A; B; C] t =

transp (st matrix (rea sch 02 A B C k1 k2 k3 t)) ∗∗
flux (rea sch 02 A B C k1 k2 k3 t)

The first three assumptions (A1-A3) of Theorem 5.2 guarantees the non-negativity of the kinetic rate constants
of the reactions. The next three assumptions (A4-A6) are the initial concentrations of the species participating
in the reaction. The assumptions (A7) and (A8) are introduced to simplify the expressions for the concentrations
of the species. The next assumption (A9) jointly with the first three assumptions (A1-A3) ensures that the
denominators of the expressions for B t and C t are not zero in order to avoid singularities. The last three
assumptions (A10-A12) are the concentrations of the species A, B and C at any time t. These are the solutions of
the system of ODEs modeling the biological reactions. The conclusion of the theorem presents the ODE model
for the given reaction scheme which is a vector equation. The verification process of this theorem is similar to
the one of Theorem 5.1, and more details can be found in the source code of our formalization [36].

5.2.3 The Consecutive Reactions with First Step as a Reversible Reaction

In this scheme, the first reaction is reversible and the second reaction is irreversible as shown in Figure 4. The
reversible reaction can be equivalently written as two irreversible reactions with k1 and k2 as their kinetic rate
constants. In the first irreversible reaction, A and B are the reactant and product, respectively, whereas in the
second reaction, B and A are the reactant and product, respectively. For the second step, B, C and k3 are the
reactant, product and kinetic rate constant, respectively. The corresponding formal definition is given as follows:
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A B C

Figure 4: The Consecutive Reactions with First Step as a Reversible Reaction

Definition 5.15. The Consecutive Reactions with First Step as a Reversible Reaction
` ∀ k1 k2 A B C t k3.

rea sch 03 A B C k1 k2 k3 t =

[reversible,[1,A t; 0,B t; 0,C t],[0,A t; 1,B t; 0,C t],k1,k2;

irreversible,[0,A t; 1,B t; 0,C t],[0,A t; 0,B t; 1,C t],k3,&0]

The function rea sch 03 takes the concentrations of the species A, B, C, the kinetic rate constants k1, k2,

k3 and the time variable t and returns the corresponding list of biological reactions (bio reaction).
The solution of the ODE model of this reaction scheme is given by the following theorem:

Theorem 5.3. Solution of the ODE model of Reaction Scheme 03
` ∀ A B C t k1 k2 k3.

A1: &0 < k1 ∧ A2: &0 < k2 ∧ A3: &0 < k3 ∧
A4: A (&0) = A0 ∧ A5: B (&0) = &0 ∧ A6: C (&0) = &0 ∧
A7: r1 ∗ r2 = k1 ∗ k3 ∧ A8: r1 + r2 = k1 + k2 + k3 ∧
A9: ∼(r1 = &0) ∧ A10: ∼(r2 = &0) ∧ A11: ∼(r1 = r2) ∧
A12: (∀ t. A t = A0 / (r2 - r1) ∗ ((k2 + k3 - r1) ∗ exp (--r1 ∗ t) - (k2 + k3 - r2)

∗ exp (--r2 ∗ t))) ∧
A13: (∀ t. B t = (A0 ∗ k1) / (r2 - r1) ∗ (exp (--r1 ∗ t) - exp (--r2 ∗ t))) ∧
A14: (∀ t. C t = A0 ∗ (&1 + (k1 ∗ k3) / (r1 ∗ (r1 - r2)) ∗ exp (--r1 ∗ t)

+ (k1 ∗ k3) / (r2 ∗ (r2 - r1)) ∗ exp (--r2 ∗ t)))

⇒ entities deriv vec [A; B; C] t =

transp (st matrix (rea sch 03 A B C k1 k2 k3 t)) ∗∗
flux (rea sch 03 A B C k1 k2 k3 t)

The first three assumptions (A1-A3) of the above theorem ensure that the kinetic rate constants of the
reactions are non-negative. The next three assumptions (A4-A6) are the initial concentrations of the species
participating in the reaction. The assumptions (A7) and (A8) are introduced to simplify the expressions for the
concentrations of the species. The next three assumptions (A9-A11) guarantee that the denominators of the
expressions for A t, B t and C t are non-zero. The last three assumptions (A12-A14) are the concentrations of
the species A, B and C at time t, representing the solutions of the system of the corresponding ODEs. We verify
this theorem using the same steps used for the verification of Theorems 5.1 and 5.2.

5.2.4 The Consecutive Reactions with a Reversible Step

In this reaction scheme, we consider the consecutive reactions with one reversible and one irreversible reaction
step as shown in Figure 5. We formalize this two step biological reaction scheme as follows:

Definition 5.16. The Consecutive Reactions with a Reversible Step
` ∀ k1 k2 A B C t k3.

rea sch 04 A B C k1 k2 k3 t =

[reversible,[1,A t; 0,B t; 0,C t],[0,A t; 1,B t; 0,C t],k1,k2;

irreversible,[1,A t; 0,B t; 0,C t],[0,A t; 0,B t; 1,C t],k3,&0]
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Figure 5: The Consecutive Reactions with a Reversible Step

The above definition accepts the concentrations of the species A, B, C, the kinetic rate constants k1, k2, k3,
the time variable t and returns the list of corresponding biological reactions (bio reaction).

We verify the solution of the ODE model of this reaction as follows:

Theorem 5.4. Solution of the ODE model of Reaction Scheme 04
` ∀ A B C t k1 k2 k3.

A1: &0 < k1 ∧ A2: &0 < k2 ∧ A3: &0 < k3 ∧
A4: A (&0) = A0 ∧ A5: B (&0) = &0 ∧ A6: C (&0) = &0 ∧
A7: r1 ∗ r2 = k2 ∗ k3 ∧ A8: r1 + r2 = k1 + k2 + k3 ∧
A9: ∼(r1 = &0) ∧ A10: ∼(r2 = &0) ∧ A11: ∼(r1 = r2) ∧
A12: (∀ t. A t = A0 ∗ ((k2 - r1) / (r2 - r1) ∗ exp (--r1 ∗ t) - (k2 - r2) / (r2 - r1)

∗ exp (--r2 ∗ t))) ∧
A13: (∀ t. B t = (k1 ∗ A0) / (r2 - r1) ∗ (exp (--r1 ∗ t) - exp (--r2 ∗ t))) ∧
A14: (∀ t. C t = A0 ∗ (&1 + (k3 ∗ (k2 - r1)) / (r1 ∗ (r1 - r2)) ∗ exp (--r1 ∗ t)

+ (k3 ∗ (k2 - r2)) / (r2 ∗ (r2 - r1)) ∗ exp (--r2 ∗ t))) ∧
⇒ entities deriv vec [A; B; C] t

transp (st matrix (rea sch 04 A B C k1 k2 k3 t)) ∗∗
flux (rea sch 04 A B C k1 k2 k3 t)

The detailed proof of this theorem can be found in the source code [36] along with the details about required
lemmas.

This completes our formal verification of some commonly used reaction schemes. The verification of these
solutions requires user interaction but the strength of these theorems lies in the fact that they have been verified
for the arbitrary values of parameters, such as k1 and k2, etc. This is a unique feature of higher-order-logic
theorem proving and is not possible in the case of simulation where such continuous expressions are tested for few
samples of such parameters. Another important aspect is the explicit presence of all the assumptions required
to verify the set of ODEs. For example, such assumptions for the above-mentioned reaction schemes are not
mentioned in [37].

6 Case Studies

In this section, we use our proposed framework to formally reason about three real-world systems biology case
studies: First, we formally analyse the reaction involving the phosphorylation of TP53. Second, we formally
derive the time evolution expressions of different tumor cell types which are used to predict the tumor population
and volume at a given time instant. Third, we take another model for the growth of tumor cells and perform
both the Zsyntax and reaction kinetic based formal analysis using our proposed formalizations presented in the
Sections 4 and 5 of the report.

6.1 TP53 Phosphorylation

TP53 gene encodes p53 protein, which plays a crucial role in regulating the cell cycle of multicellular organisms
and works as a tumour suppressor for preventing cancer [14]. In this section, we show how this pathway involving
TP53 Phosphorylation can be formally verified in HOL Light using our formalization of Zsyntax .
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The theorem representing the reaction of the pathway leading from TP53 to p(TP53) [14] can be described
in classical Zsyntax format as follows:

TP53 & ATP & Kinase ` p(TP53)

Using our formalization, this theorem can be defined in HOL Light as follows:

Theorem 6.1. The reaction of the pathway leading from TP53 to p(TP53)
` DISTINCT [TP53; ATP; Kinase; ADP; pTP53] =⇒

(zsyn conjun elimin (zsyn deduct [[TP53]; [ATP]; [Kinase]]
[[Kinase; ATP], [[ATP; Kinase]];
[ATP; Kinase; TP53], [[Kinase]; [pTP53]; [ADP]]]) [pTP53] = [[pTP53]]

The first list argument of the function zsyn deduct is the initial aggregate (IA) of molecules that are available
for reaction and the second list argument of the function zsyn deduct represents the valid EVFs for this reaction.
The EVFs mentioned in the form of pairs and involving the molecules (ATP, Kinase, etc.) are obtained from wet
lab experiments, as reported in [4]. The DISTINCT function used above makes sure that all molecule variables (from
initial aggregate and EVFs) used in this theorem represent distinct molecules. Thus, the function zsyn deduct

would deduce the final list of molecules under these particular conditions. The function zsyn conjun elimin

will return the molecule pTP53 if it is present in the post-reaction list of molecules, as previously described.
Figure 6 shows the pathway leading to p(TP53) in a step-wise manner. The blue-coloured circles show the

chemical interactions and green colour represents the desired product in the pathway, whereas each rectangle
shows total number of molecules in the reaction at a given time. It is obvious from the figure that whenever
a reaction yields a product, the reactants get consumed (no longer remain in the list) hence satisfying the
stoichiometry of a reaction.

TP53

TP53

ADP

(Kinase * ATP) * TP53

Kinase * ATP

ATP Kinase

pTP53 Kinase

Figure 6: Reaction Representing the TP53 Phosphorylation

As part of this work, we also developed a simplifier Z SYNTAX SIMP [36] that simplifies the proof with a single
iteration of the function zsyn deduct recurs and works very efficiently with the proofs involving our functions.
The proof steps can be completely automated and the proof can be done in one step as well. However, we have
kept the reasoning process manual purposefully as this way users can observe the status of the reaction at every
iteration, which is a very useful feature to get an insight of what is happening inside a reaction. Each application
of Z SYNTAX SIMP on the reaction, depicted in Figure 6, would result in moving from a state n to n+ 1.

Our HOL Light proof script is available for download [36], and thus can be used for further developments and
analysis of different molecular pathways. It is important to note that formalizing Zsyntax and then verifying its
properties was a very tedious effort. However, it took only 6 lines of code to define and verify the theorem related
to the above case study in HOL Light, which clearly illustrates the usefulness of our foundational work.

We have shown that our formalization is capable of modeling molecular reactions using Zsyntax inference
rules, i.e., given a set of possible EVFs, our formalism can derive a final aggregate B from an initial aggregate
A automatically. In case of a failure to deduce B, the proposed method still provides the biologist with all the
intermediate steps so that one can examine the reaction in detail and figure out the possible cause of failure.
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6.2 Formal Analysis of Tumor Growth based on Cancer Stem Cells (CSC)

In the literature of biology, there is much evidence which supports the hypothesis that malignant tumors (cancers)
are originally initiated by different tumor cells, which have similar physiological characterises as of normal stem
cells in human body. This hypothesis is widely known as Cancer Stem Cell (CSC) hypothesis [38] and explains
that the cancer cell exhibit the ability to self-renewal and can also produce different types of differentiated
cells. The mathematical and computational modeling of cancers can provide an in-depth understanding and the
prediction of required parameters to shape the clinical research and experiments. This can result in an efficient
planning and therapeutic strategies for the accurate patient prognosis. In this report, we consider a kinetic model
of cancer based on the Cancer Stem Cell (CSC) hypothesis, which was recently proposed in [39]. In this model,
four types of events are considered: 1) CSC self-renewal; 2) maturation of CSCs into P cells; 3) differentiation to
D cells; and 4) death of all cell subtypes. All of these type of reactions are driven by different rate constants as
shown in Figure 7.
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P M

CSC

CSC

CSC

PCSC P

D D

CSC
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Reaction 3

CSC P1 P2 P3 D

k3k2k1

Reaction 2Reaction 1

k4 k5

Reaction 4 Reaction 5

k6

Reaction 6

k7

Reaction 7

Reaction 8

k8

Figure 7: Model for the Tumor Growth [39]

In the following, we provide the possible reactions in the considered model of cancer.

1. Expansion of CSCs can be accomplished through symmetric division, where one CSC can produce two
CSCs.

CSC
k1−−→ 2 CSC

2. A CSC can undergo asymmetric division (whereby one CSC gives rise to another CSC and a more differen-
tiated progenitor (P) cell). This P cell possesses intermediate properties between CSCs and differentiated
(D) cells.

CSC
k2−−→ CSC + P

3. The CSCs can also differentiate to P cells by symmetric division.

CSC
k3−−→ 2 P
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4. The P cells can either self-renew, with a decreased capacity compared to CSCs, or they can differentiate to
D cells.

P
k4−−→ 2 P

P
k5−−→ 2 D

5. All cellular subtypes can undergo cell death.

CSC
k6−−→ M

P
k7−−→ M

D
k8−−→ M

In order to reduce the complexity of the resulting model, only three subtypes of cells are considered: CSCs,
transit amplifying progenitor cells (P), and terminally differentiated cells (D) as shown in Figure 7. This as-
sumption is consistent with several experimental reports [39]. Our main objective is to derive the mathematical
expressions, which characterize the time evolution of CSC, P and D. Concretely, such values of these cells should
satisfy the set of differential equations that arise in the kinetic model of the proposed tumor growth. Once the
expressions of all cell types are known, the total number of tumor cell (N) in the human body can be computed
by the formula given as follows:

N(t) = CSC(t) + P (t) +D(t) (7)

Furthermore, the tumor volume (V ) can be calculated, considering that the effective volume contribution of
a spherically shaped cell in a spherical tumor (i.e., 4.18× 10−6mm3/cell), as follows:

V (t) = 4.18× 106N(t) (8)

We formally model the tumor growth model in HOL Light as follows:

Definition 6.1. Tumor Growth Model
` ∀ CSC P D M k1 k2 k3 k4 k5 k6 k7 k8 t.

tumor growth model CSC P D M k1 k2 k3 k4 k5 k6 k7 k8 t =

[(irreversible,([(1,CSC t);(0,P t);(0,D t);(0,M t)],

[(2,CSC t);(0,P t);(0,D t);(0,M t)],(k1,&0))) ;
(irreversible,([(1,CSC t);(0,P t);(0,D t);(0,M t)],

[(1,CSC t);(1,P t);(0,D t);(0,M t)],(k2,&0))) ;
(irreversible,([(1,CSC t);(0,P t);(0,D t);(0,M t)],

[(0,CSC t);(2,P t);(0,D t);(0,M t)],(k3,&0))) ;
(irreversible,([(0,CSC t);(1,P t);(0,D t);(0,M t)],

[(0,CSC t);(2,P t);(0,D t);(0,M t)],(k4,&0))) ;
(irreversible,([(0,CSC t);(1,P t);(0,D t);(0,M t)],

[(0,CSC t);(0,P t);(2,D t);(0,M t)],(k5,&0))) ;
(irreversible,([(1,CSC t);(0,P t);(0,D t);(0,M t)],

[(0,CSC t);(0,P t);(0,D t);(1,M t)],(k6,&0))) ;
(irreversible,([(0,CSC t);(1,P t);(0,D t);(0,M t)],

[(0,CSC t);(0,P t);(0,D t);(1,M t)],(k7,&0))) ;
(irreversible,([(0,CSC t);(0,P t);(1,D t);(0,M t)],

[(0,CSC t);(0,P t);(0,D t);(1,M t)],(k8,&0))) ]

where the function tumor growth model takes the concentrations of the cell subtypes CSC, P, D and M along with
eight kinetic reaction rate constants k1, k2, k3, k4, k5, k6, k7, k8 and real-valued time t and returns the
corresponding list of bio-chemical reactions involved in the overall tumor growth model.

Our next step is to formally verify the time evolution expressions for CSC, P and D that satisfy the general
kinetic model. We formally represent this requirement in the following important theorem:
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Theorem 6.2. Time Evolution Verification of Tumor Growth Model
` ∀ k1 k2 k3 k4 k5 k6 k7 CSC P D M t k8.

A1: ∼((--k1 + k3 + k4 - k5 + k6 - k7)

∗ (--k1 + k3 + k6 - k8)

∗ (--k4 + k5 + k7 - k8) = &0) ∧
A2: ∼(k1 - k3 - k4 + k5 - k6 + k7 = &0) ∧
A3: (∀ t. CSC t = exp ((k1 - k3 - k6) ∗ t)) ∧
A4: (∀ t. P t = ((exp ((k1 - k3 - k6) ∗ t)

- exp ((k4 - k5 - k7) ∗ t)) ∗ (k2 + &2 ∗ k3)) /

(k1 - k3 - k4 + k5 - k6 + k7)) ∧
A5: (∀ t. D t = (&2 ∗ exp (--k8 ∗ t) ∗ (k2 + &2 ∗ k3) ∗ k5 ∗

((-- &1 + exp ((k4 - k5 - k7 + k8) ∗ t)) ∗
k1 + k3 + k4 - k5 + k6 - k7 +

exp ((k1 - k3 - k6 + k8) ∗ t)

∗ (--k4 + k5 + k7 - k8) +

exp ((k4 - k5 - k7 + k8) ∗ t)

∗ (--k3 - k6 + k8))) /

((--k1 + k3 + k4 - k5 + k6 - k7) ∗
(--k1 + k3 + k6 - k8) ∗ (--k4 + k5 + k7 - k8))) ∧

A6: real derivative M t = k6 ∗ CSC t + k7 ∗ P t + k8 ∗ D t

⇒ entities deriv vec [CSC; P; D; M] t =

transp (st matrix (tumor growth model CSC P D M k1 k2 k3 k4 k5 k6 k7 k8 t)) ∗∗
flux (tumor growth model CSC P D M k1 k2 k3 k4 k5 k6 k7 k8 t)

where the first two assumptions (A1-A2) ensure that the time evolution expressions of P and D do not contain any
singularity (i.e., the value at the expression becomes undefined). The next three assumptions (A3-A5) provide
the time evolution expressions for CSC, P and D. The last assumption (A6) is provided to discharge the subgoal
characterizing the time-evolution of M (dead cells), which is of no interest and does not impact the overall analysis
as confirmed by experimental evidences [39]. Finally, the conclusion of the Theorem 6.2 is the equivalent reaction
kinetic model of the CSC based tumor growth model.

We start the proof process by rewriting the definitions of entities deriv vec, st matrix and flux in the
conclusion of Theorem 6.2. After simplifying the subgoal using the tactic KINETIC SIMP alongside the substitution
of the transpose of the 8× 4 matrix, we reach the following subgoal:

real derivative CSC t = (k1 - k3 - k6) ∗ CSC t ∧
real derivative P t = (k2 + &2 ∗ k3) ∗ CSC t + (k4 - k5 - k7) ∗ P t ∧
real derivative D t = &2 ∗ k5 ∗ P t - k8 ∗ D t

We verify the above subgoal with the help of three lemmas involving the real-derivative of CSC, P and D. Here,
we only mention one of them which is quite complex and critical in the verification (more details can be found
in the source code [36]).

Lemma 6.1. Real Derivative Lemma
` ∀ k1 k2 k3 k4 k5 k6 k7 k8 t.

A1: ∼((--k1 + k3 + k4 - k5 + k6 - k7) ∗ (--k1 + k3 + k6 - k8) ∗ (--k4 + k5 + k7 - k8) = &0) ∧
A2: ∼(k1 - k3 - k4 + k5 - k6 + k7 = &0) ⇒
real derivative (λ t. (&2 * exp (--k8 ∗ t) ∗ (k2 + &2 ∗ k3) ∗ k5 ∗ ((-- &1 +

exp ((k4 - k5 - k7 + k8) ∗ t)) ∗ k1 + k3 + k4 - k5 + k6 - k7 +

exp ((k1 - k3 - k6 + k8) ∗ t) ∗ (--k4 + k5 + k7 - k8) +

exp ((k4 - k5 - k7 + k8) ∗ t) ∗ (--k3 - k6 + k8))) /

((--k1 + k3 + k4 - k5 + k6 - k7) ∗ (--k1 + k3 + k6 - k8) ∗
(--k4 + k5 + k7 - k8))) t =

&2 ∗ k5 ∗((exp ((k1 - k3 - k6) ∗ t) - exp ((k4 - k5 - k7) ∗ t)) ∗
(k2 + &2 ∗ k3)) /(k1 - k3 - k4 + k5 - k6 + k7) -

k8 ∗ (&2 ∗ exp (--k8 ∗ t) ∗ (k2 + &2 ∗ k3) ∗ k5 ∗
((-- &1 + exp ((k4 - k5 - k7 + k8) ∗ t)) ∗ k1 + k3 + k4 - k5 + k6 - k7 +

exp ((k1 - k3 - k6 + k8) ∗ t) ∗ (--k4 + k5 + k7 - k8) +

exp ((k4 - k5 - k7 + k8) ∗ t) ∗ (--k3 - k6 + k8))) /

((--k1 + k3 + k4 - k5 + k6 - k7) ∗ (--k1 + k3 + k6 - k8) ∗ (--k4 + k5 + k7 - k8))
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The formal verification of the time-evolution of tumor cell types CSC, P and D in Theorem 6.2 can easily
be used to derive the total population and volume of tumor cells using Equations (7) and (8). The derived
time-evolution expression can also be used to understand how the overall tumor growth model works. Moreover,
the potential drugs are usually designed using the variation of the kinetic rate constants to achieve the desired
behavior of the overall tumor growth model. On similar lines, the variation of these parameters are used to plan
efficient therapeutic strategies for cancer patients.

6.3 Combined Zsyntax and Reaction Kinetic based Formal Analysis of the Tumor
Growth Model

In this section, we consider another model for the growth of tumor cells and formally analyze it using both of
our Zsyntax and Reaction kinetics formalizations, presented in Sections 4 and 5 of the report.

6.3.1 Pathway Leading to Death of CSC

The pathway leading to death of CSC is shown in Figure 8. The green-colored circle represents the desired
product, whereas, the blued-colored circles describe the chemical interactions in the pathway.

CSC

P

P

CSC * P

P

M

Figure 8: Reaction Representing the Pathway Leading to CSC Death

We use our formalization of Zsyntax to deduce this pathway. In the iclassical Zsyntax format, the reaction
of the pathway leading from CSC to its death can be represented by a theorem as CSC & P ` M. Based on our
formalization, it can be defined as follows:

Theorem 6.3. The Reaction of the Pathway Leading from CSC to its Death (M)
` DISTINCT [CSC; P; M] =⇒

(zsyn conjun elimin (zsyn deduct [[CSC]; [P]]

[[CSC], [[CSC; P]];

[CSC; P], [[M]]]) [M] = [[M]]

In the above theorem, the first list argument of the function zsyn deduct represents the IA of molecules that
are present at the start of the reaction, whereas the second argument is the list of valid EVFs for this reaction
specified in the form of pairs and include the molecules (CSC, P, etc.). We use the HOL Light function DISTINCT

to ensure that all molecule variables (from IA and EVFs) used in this theorem represent distinct molecules.
Thus, the final list of molecules are deduced under these particular conditions using the function zsyn deduct.
Finally, if the molecule M is present in the post-reaction list of molecules, it will be obtained after the application
of the function zsyn conjun elimin. We use the simplifier Z SYNTAX SIMP [36] to formally verify Theorem 6.3
automatically.

6.3.2 Reaction Kinetic based Formal Analysis of a Tumor Growth based on CSC

We perform the reaction kinetic based formal analysis of a tumor growth model, which is shown in Fig 9. In this
model, two types of events are considered: 1) maturation of CSCs into P cells; 2) death of all cell subtypes. All
of these types of reactions are driven by different rate constants as shown in Fig 9.

In the following, we provide the possible reactions in the considered tumor growth model:
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Figure 9: Reaction Representing the Pathway Leading to CSC Death

1. A CSC can undergo asymmetric division (whereby one CSC gives rise to another CSC and a more differ-

entiated P cell), i.e., CSC
k1−−→ CSC + P.

2. All cellular subtypes can undergo cell death (M), i.e., CSC
k2−−→ M, P

k3−−→ M.

In order to reduce the complexity of the resulting model, only two subtypes of cells are considered: CSCs
and transit amplifying progenitor cells (P) as shown in Fig 9. Our main objective is to derive the mathematical
expressions, which characterize the time evolution of CSC and P. Concretely, the values of these cells should
satisfy the set of differential equations that arise in the kinetic model of the proposed tumor growth. Once the
expressions of all cell types are known, the total number of tumor cells (N) in the human body can be computed
by the formula as given below:

N(t) = CSC(t) + P (t) (9)

We formalize the tumor growth model in HOL Light as follows:

Definition 6.2. A Tumor Growth Model
` ∀ CSC P M k1 k2 k3 t.

tumor growth rk model CSC P M k1 k2 k3 t =

[(irreversible,([(1,CSC t);(0,P t);(0,M t)],[(1,CSC t);(1,P t); ;(0,M t)],(k1,&0))) ;
(irreversible,([(1,CSC t);(0,P t);(0,M t)],[(0,CSC t);(0,P t);(1,M t)],(k2,&0))) ;

(irreversible,([(0,CSC t);(1,P t);(0,M t)],[(0,CSC t);(0,P t);(1,M t)],(k3,&0)))]

where the function tumor growth rk model takes the concentrations of the cell subtypes CSC, P and M along with
three kinetic reaction rate constants k1, k2, k3 and real-valued time t and returns the corresponding list of
bio-chemical reactions involved in the overall tumor growth model.

Our next step is to formally verify the time evolution expressions for CSC and P that satisfy the general kinetic
model. We formally represent this requirement in the following important theorem:

Theorem 6.4. Time Evolution Verification of a Tumor Growth Model
` ∀ k1 k2 k3 CSC P M t.

A1: ∼(k3 - k2 = &0) ∧
A2: (∀t. CSC t = exp (--k2 ∗ t)) ∧
A3: (∀t. P t = ((k3 - k2 - k1) ∗ exp (--k3 ∗ t) + k1 ∗ exp (--k2 ∗ t)) / (k3 - k2)) ∧

A4: real derivative M t = k2 ∗ CSC t + k3 ∗ P t

⇒ entities deriv vec [CSC; P; M] t =

transp (st matrix (tumor growth rk model CSC P M k1 k2 k3 t))

∗ ∗ flux (tumor growth rk model CSC P M k1 k2 k3 t))

where the first assumption (A1) ensures that the time evolution expression of P does not contain any singularity.
The next two assumptions (A2-A3) provide the time evolution expressions for CSC and P, respectively. The last
assumption (A4) is provided to discharge the subgoal characterizing the time-evolution of M (dead cells), which
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is of no interest and does not impact the overall analysis as confirmed by experimental evidences [39]. Finally,
the conclusion of Theorem 6.4 is the equivalent reaction kinetic (ODE) model of the CSC based tumor growth
model.

We start the proof process by rewriting the definitions of entities deriv vec, st matrix and flux in the
conclusion of Theorem 6.4. After simplifying the subgoal using the tactic KINETIC SIMP alongside the substitution
of the transpose of the 3× 3 matrix, we reach the following subgoal:

real derivative CSC t = --k2 ∗ CSC t ∧
real derivative P t = k1 ∗ CSC t - k3 ∗ P t

We verify the above subgoal with the help of two lemmas involving the real-derivative of CSC and P. Here, we
only mention one of them which is quite complex and critical in the verification (more details can be found in
the source code [36]).

Lemma 6.2. Real Derivative Lemma
` ∀ k1 k2 k3 t.

A: ∼(k3 - k2 = &0) ⇒
real derivative (λ t. ((k3 - k2 - k1) ∗ exp (--k3 ∗ t) + k1 ∗ exp (--k2 ∗ t)) / (k3 - k2)) t =

k1 ∗ exp (--k2 ∗ t) - k3 ∗
((k3 - k2 - k1) ∗ exp (--k3 ∗ t) + k1 ∗ exp (--k2 ∗ t)) / (k3 - k2)

The formal verification of the time-evolution of tumor cell types CSC and P in Theorem 6.4 can easily be
used to derive the total population using Equation 9. The derived time-evolution expression can also be used to
understand how the overall tumor growth model works.

This completes our formal verification of the three real-world case studies within the sound core of a theorem
prover. The distinguishing feature of our framework is the ability to deductively reason about biological systems
using both Zsyntax and reaction kinetics, which has become the norm in modern biological studies. Even though
the reasoning in a higher-order-logic theorem prover requires significant user interaction, but we have spent efforts
to provide the effective automation where possible. For example, the reasoning about Zsyntax based analysis
is automatic as the user does not need to think about the proof steps and which EVFs to apply. Similarly,
we developed a simplifier, called KINETIC SIMP, for the reaction kinetics based analysis to reduce the manual
reasoning interaction with the theorem prover. However, the most useful benefit of the proposed approach is its
accuracy as the theorems are being verified in a formal way using a sound theorem prover. Thus, there is no risk
of human error or wrong application of EVFs or simplifications. Finally, due to the computer-based analysis, the
proposed approach is much more scalable than the paper-and-pencil based analysis presented in [14, 39]. To the
best of our knowledge, our work is the first one to leverage theorem proving to formalize reaction kinetics and
Zsyntax which can be considered as a significant step forward towards a long standing goal of applying formal
methods in general and theorem proving in particular to various disciplines of science and engineering. Our
source code is available for download at [36], and can be used by other biologists and computer scientists for
further applications and experimentation.

7 Conclusions

Most of the existing formal verification research related to molecular biology has been focussed on using model
checking. However, the inherent state-space explosion problem of model checking limits the scope of this success
only to systems where the biological entities can acquire a small set of possible levels. Moreover, the underlying
differential equations describing the reaction kinetics are solved using numerical approaches [40], which compro-
mises the precision of the analysis. As a complementary approach, the primary focus of the current report is on
using a theorem prover for reasoning about system biology. To this aim, we have developed a framework based on
the Zsyntax and reaction kinetics to formally reason about system biology. We consider the concentration of the
species of the biological systems as a continuous variable, whereas, that considered in [40] was a discrete, abstract
variable. We formally verified properties of Zsyntax and the reaction kinetics of commonly used biological path-
ways. The practical utilization and effectiveness of the proposed development has been shown by presenting the
automatic analysis of the reactions representing the TP53 phosphorylation, death of CSC and reaction kinetics
based analysis of tumor growth models.

In future, we plan to conduct the sensitivity and steady state analysis [24] of biological networks that is mainly
based on reaction kinetics. We also plan to integrate Laplace [41] and Fourier [42] transforms formalization in
our framework that can assist in finding analytical solutions of the complicated ODEs.
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