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Short reads obtained from sequencing as fastq files were mapped to reference genome GRCh37 using bwa v.0.7.5a software 1. Aligned reads were marked for duplications, and local realignment of small indels was performed utilizing Genome Analysis Tool Kit (GATK) v.3.3.0 2,3 with Mills_and_1000G_gold_standard.indels.b37.sites.vcf and 1000G_phase1.indels.b37.vcf obtained from the GATK resource bundle website (https://www.broadinstitute.org/gatk/download/) as the known indel locations 4. The HaplotypeCaller function of GATK was used to simultaneously call both single nucleotide polymorphisms (SNPs) and indels. An intermediate genomic gVCF file was created for each sample, which was subsequently used for joint genotyping from all 25 patients to obtain the correct genotype likelihood. Quality control of the variants was performed to keep the variants with Quality by Depth (QD) > -2, Mapping Quality (MQ) > 30, Fisher's test for Strand bias (FS) ≤ 40, Mapping Quality Rank Sum Test (MQRankSum) > -12.5, Read Position Rank Sum Test (ReadPosRankSum) > -8, and Depth per Sample (DP) > 8. Annotation was performed using SnpEff v.4.1L software 5. The variants were annotated through SnpEff using the frequency data from the 1000 genome project phase 16, the Exome Aggregation Consortium (ExAC) project 7, and the NHLBI Exome Sequencing project (ESP6500) 8,9. The clinical significance of each variant was based on the ClinVar database (freeze 20140902). The main functional prediction data were annotated through SnpEff using dbNSFP v2.9 as the reference data source 10. Additional information about the variants can be found in the functional annotation database, i.e., the dbNSFP database 10, which has integrated several sources of information, including ClinVar 11. dbNSFP has curated over 89 million non-synonymous single nucleotide variants and splice site variants together with functional prediction from other software, such as SIFT, Polyphen2, MutationTaster, and metaSVM. We used the metaSVM ensemble scores, which aggregate prediction information from other functional prediction software and combine the information to create an ensemble score 12, instead of counting the number of consensus predictions and using the majority of the results to justify the deleteriousness of the variants.
From WES, we identified 111,975 variants and 10,154 small indels among all 25 individuals. After filtering by the 98 candidate gene regions, 868 variants (801 SNPs and 67 indels) were found within the genes previously reported to cause BS, ventricular arrhythmia, or cardiomyopathy. From this list of variants, 274 variants were classified by SNPEff to have a high or moderate impact on the protein function (Supplementary Table 21). The 7 loci with high impacts on the protein function caused frameshift mutation indels (4), stop gain codons (2), and splice donor variants (1). The additional 267 loci were classified as having moderate impact on the gene functions. We chose to discard 774 variants that had low impact or were classified as modifiers.
We further filtered out non-synonymous mutations that may not affect the function of the gene. Several types of functional prediction information were annotated from the dbNSFP database. However, we predicted the role of missense variants with MetaSVM, which integrated the functional predictions from other popular prediction algorithms 12. Variants predicted to be tolerable by metaSVM were filtered out. Examples of the excluded variants are rs1805124 in SCN5A and rs12720449 in KCNQ1. These two variants were found in 5 and 7 patients, respectively. The frequencies of rs1805124 were relatively common in the 1000 Genomes Project, ExAC, and ESP6500 databases (all exceeding 20%). rs12720449 was relatively uncommon, with an allele frequency of less than 5% in all of the public databases mentioned. Both rs1805124 and rs12720449 were predicted to be tolerable; therefore, both variants were excluded from the final results. Using metaSVM to exclude tolerable variants, 41 variants remained either predicted to be damaging or with no known prediction score from metaSVM. 
The ClinVar database (Update 12/05/2017) was used to further filter out 9 variants classified as benign or likely benign (https://www.ncbi.nlm.nih.gov/clinvar/docs/clinsig/). Out of 274 variants with high or moderate impact functional classification, 196 variants were reported as benign or likely benign (129148), uncertain significance (4023), and unknown or other significant (1668), or presented with conflicting evidence (37) variants in their ClinVar classification (Supplementary Figure 1). Two variants, rs200371894 in MAP2K2 and rs3729712 in TNNI3, were reported to be likely benign in ClinVar, and were excluded from the final report. However, these two variants were predicted to be deleterious by metaSVM algorithm. We further checked to see the frequencies of these variants in the general population as the next step.



Finally, the frequencies of the remaining variants were updated from the 1000 Genomes Project Phase 3 data and from the GO-ESP database, directly queried from NCBI’s dbSNP database. We identified 4 common variants reported with an allele frequency greater than 10%, which were excluded. Although these variants were predicted to be deleterious with an in silico prediction algorithm, we chose to exclude them from the list of potentially causal variants in SUDS as the prevalence of SUDS in the general population is rare. Supplementary Figure 1 summarizes the main results from our variant filtration algorithm.
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