A Supplementary Methods

A. 1 Calculation of the Evoked Response

Denote the subjects with $i=\{1, \ldots, 19\}$ the sources with $j_{i}=\left\{1, \ldots, N_{i_{j}}\right\}$ where $N_{i_{j}}$ denotes the subject-specific number of sources, the task type with $k \in\{$ standard, hard, easy\}, the number of task repetitions with $l_{k}=\left\{1, \ldots, L_{k}\right\}$ where L_{k} is the total number of analyzed trials in each task type, and the time relative to the onset of the fourth tone in milliseconds with $t=\left\{\ldots,-\frac{1}{2.4}, 0, \frac{1}{2.4}, \ldots\right\}$. Suppressing the double subscripts, we then compute

$$
E R P_{i j k t}=\frac{1}{N_{i k}^{\text {correct }}} \sum_{l=1}^{L_{k}} x_{i j k l t} \mathbb{1}_{\text {correct }}
$$

where $N_{i k}^{\text {correct }}$ is the task- and subject-specific number of correctly detected trials. $x_{i j k l t}$ denotes the MEG source time series as well as the 2 EEG sensor time series, and $\mathbb{1}_{\text {correct }}$ is an indicator function that takes the value 1 if the tone was correctly detected and 0 otherwise. For this analysis, we used the short trial length $t=[-100,+1000] \mathrm{ms}$.

To project the difference between conditions $k=\{$ hard, easy $\}$ on the cortical surface, we computed the difference of the low-pass filtered, absolute values to the standard condition, $E R P_{i j k t}^{\mathrm{diff}}=\left|E R P_{i j k t}^{\mathrm{filt}}\right|-\left|E R P_{i j, \text { standard }, t}^{\mathrm{filt}}\right|$. The data were then standardized with respect to the baseline period, $t=[-100,0] m s$, by subtracting the mean $\overline{E R P_{i j k}}=\frac{1}{240} \sum_{t=-100}^{0} E R P_{i j k_{d i f f} t}^{\text {diff }}$ and dividing by the corresponding standard deviation, for $k \in\{$ hard, easy $\}$. Denote the normalized ERP with $E R P_{i j k t}^{\text {diffnorm }}$.

A. $2 d^{\prime}$ and bias

d^{\prime} is calculated from each individual subject based on the performance according to the following (Macmillan and Creelman, 2005):
$d^{\prime}=z(H)-z(F)$
z is the inverse of the normal distribution, H the hit rate and F the false alarm rate. d^{\prime} was
calculated for the hard versus standard trials. Therefore the hit and false alarm rate were calculated as follows:
$H=\sum_{l=1}^{L_{\text {hard }}} \mathbb{1}_{\text {correct }} / L_{\text {hard }}$
$F=\sum_{l=1}^{L_{\text {standard }}} \mathbb{1}_{\text {incorrect }} / L_{\text {standard }}$
In addition the bias c was determined for the behavioral data:
$c=-\frac{1}{2}[z(H)+z(F)]$.

