
Supplementary

1 General Optimality Results for Classifiers
We introduce here some general results that can be used for many categories of classi-
fier.

Let X be a metric space with a measure µ(x) , F = {f : .X → R} the set of real
function or real classifier on X, let G : F → R be a functional on F and let S ⊂ F be
a set.

Consider the following optimization problem

P : G∗ = max
f∈F

G(f) s.t. f ∈ S

A relaxation of P has the following form

PR : G∗R = max
f∈F

GR(f) s.t. f ∈ SR

where GR : F → R be a functional on F with GR ≥ G on S and S ⊂ SR ⊂ F .

Lemma 1. (Relaxation lemma

i) G∗R ≥ G∗.
ii) If PR is infeasible, then so is P.
iii) If the problem PR has an optimal solution f∗R ∈ S for whichGR(f∗R) = G(f∗R),

then (f∗R) is an optimal solution to P as well.

Proof. i) By definition of the maximum, GR(f∗R) > GR(f) ∀ f ∈ SR. In particu-
lar GR(f∗R) > GR(f) ∀ f ∈ S and more particularly GR(f∗R) > G(f) ∀ f ∈
S. So GR(f∗R) > G(f∗) ∀ f ∈ S and G∗R ≥ G∗.

ii) if SR is empty then S is also empty
iii) Note that G(f∗R) = GR(f

∗
R) ≥ GR(f) ≥ G(f)∀ f ∈ S.

Lemma 2. (Optimality conditions)

Assume S is a convex set and G is Freshet derivative, i.e differentiable.
i) If f∗ is a local minimum of P then < ∇G(f∗), f∗ − f > ≥ 0 ∀f ∈ S
ii) if G is concave then condition i) is necessary and sufficient, and f∗ is a global

maximum

Proof. i) SinceG is differentiable and S is convex, condition i) is exactly the first order
optimality condition.

ii) condition i) is the necessary and sufficient conditions optimality condition for a
convex problem.i.e the objective function is concave for a maximization problem and
the admissible set is convex.

We denote by Θ = {f : X → [0, 1]}, i.e. the set of all classifiers. We consider the
optimization problem

PL : f∗ = argmax
f∈F

G(f) s.t. f ∈ Θ
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Lemma 3. (Optimal classifier condition)
The optimal solution of PL verifies

ˆ

x∈X

[∇G(f∗)]x (f
∗(x)µ(x)dx ≥

ˆ

x∈X

[∇G(f∗)]x (f(x)µ(x)dx ∀f ∈ Θ

Proof. It is evident that Θ is convex. By applying lemma (Optimality conditions), the
optimal solution of PL verifies

< ∇G(f∗), f∗ − f > ≥ 0 ∀f ∈ Θ

Thus ˆ

x∈X

[∇G(f∗)]x (f
∗(x)dx ≥

ˆ

x∈X

[∇G(f∗)]x (f(x)dx ∀f ∈ Θ

Theorem 4. (Optimal classifier solution)
The optimal solution f∗ of PL verifies:

sign ([∇G(f∗)]x) = f(x∗), almost everywhere

where

sign(t) =

{
1 t ≥ 0

0 t < 0

Proof. We will prove by contradiction. Suppose that

sign ([∇G(f∗)]x) 6= f ∗ (x),

So there exists S+, S− ⊂ X two sets in X such that:
a)

([∇G(f∗)]x) > 0, sign ([∇G(f∗)]x) = 1 and f∗(x) < 1,∀x ∈ S+

b)

([∇G(f∗)]x) < 0, sign ([∇G(f∗)]x) = 0 and f∗(x) > 0,∀x ∈ S−

Lemma (Optimality conditions) can be applied for f=sign ([∇G(f∗)]x) because
sign ([∇G(f∗)]x) ∈ Θ

Thusˆ

x∈X

[∇G(f∗)]x (f
∗(x)µ(x)dx ≥

ˆ

x∈X

[∇G(f∗)]x sign ([∇G(f∗)]x)µ(x)dx
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So ˆ

x∈X

[∇G(f∗)]x (f
∗(x)− sign ([∇G(f∗)]x)µ(x)dx ≥ 0

We will split the above integral into three parts as follows:´
x∈XrS+tS−

[∇G(f∗)]x ((f∗(x)− sign ([∇G(f∗)]x))µ(x)dx
+
´
x∈S+

[∇G(f∗)]x ((f∗(x)− sign ([∇G(f∗)]x))µ(x)dx
+
´
x∈S−

[∇G(f∗)]x ((f∗(x)− sign ([∇G(f∗)]x))µ(x)dx ≥ 0

-The first integral is null because for every x ∈ XrS+ t S−, sign ([∇G(f∗)]x) =
f(x∗),

-each element of the second integral is negative because [∇G(f∗)] > 0, f∗(x) <
sign ([∇G(f∗)]x)). So the value of this integral is not greater than 0

-each element of the second integral is negative because [∇G(f∗)] < 0, f∗(x) >
sign ([∇G(f∗)]x)). So the value of this integral is also not greater than 0.

Thus the sum of the two last integrals is positive however the value of each one is
negative. Hence the value of each one is null.

Concerning the second integral, each term is negative and the value is null. So
necessary the set S+ is a zero measure set, i.e. µ(S+) = 0.

Similarly, we prove that the set S− is a zero measure set, ie µ(S−) = 0. Since the
measure µ(x) is additive and S+ and S− are disjoint, we have µ(S+tS−) = 0.Finally
we conclude that

sign ([∇G(f∗)]x) = f(x∗), almost everywhere

We denote by Θ01 = {f : X → {0, 1}, i.e. the set of all binary classifiers. We
consider the optimization problem

P01 : f∗ = argmax
f∈F

G(f) s.t. f ∈ Θ01

Lemma 5. (Optimal binary classifier solution)

The optimal solution f∗ of P01 verifies:

sign ([∇G(f∗)]x) = f(x∗) almost everywhere

Proof. Problem PL is a relaxation of P01 because the feasible set of PL extends
that of P01. By lemma (relaxation) and since the optimal solution of PL is binary,
we conclude that the optimal solution of PL is also an optimal solution of P01. So
argmaxf∈F G(f) s.t. f ∈ Θ01 = sign ([∇G(f∗)]x)

2 MCC Metric
(from wikipedia) The Matthews correlation coefficient is used in machine learning as
a measure of the quality of binary (two-class) classifications, introduced by biochemist
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Brian W. Matthews in 1975.[1] It takes into account true and false positives and neg-
atives and is generally regarded as a balanced measure which can be used even if the
classes are of very different sizes.

MCC =
TP · TN − FP · FN√

(TP + FP )(FP + FN)(TN + FP )(TN + FN)

Using the chosen notation the MCC metric can be simplified as follow

L(f) =MCC =
TP − γπ√

γ(1− γ)π(1− π)

2.1 Optimal MCC classifier
In order to define the optimal classifier, without loss of generality we look for the
Frechet derivative of L(f) =MCC2

[∇L(f)]x = 2(TP−γπ)µ(x)
π(1−π)γ(1−γ)

[
ηx − TP+γ(π−2TP )

2γ(1−γ)

]
i) if TP > γπ then the optimal classifier takes the form θ∗(x) = sign(ηx − δ∗)
ii) if TP < γπ then the optimal classifier takes the form θ∗(x) = sign(δ∗ − ηx)

where δ∗ =
TP + γ(π − 2TP )

2γ(1− γ)

Proof. Both results are derived from lemma 5 (Optimal binary classifier solution) .

2.2 Consistency for the MCC metric
We will write the MCC metric as a function of (TPR, TNR, π) . We note that TP =
πTPR and γ = πTPR+ (1− π)(1− TNR)

So TP − γπ = πTPR− γπ = π(TPR− γ)
= π(1− π)(TPR+ TNR− 1)
Thus

MCC =

√
π(1− π)(TPR+ TNR− 1)√

(πTPR+ (1− π)(1− TNR))
√
(π(1− TPR) + (1− π)TNR

So MCC = ψ(TPR, TPN, π) where

ψ(u, v, p) = (u+ v − 1)

√
p(1− p)

[pu+ (1− p)(1− v)][p(1− u) + (1− p)v]

We note that ψ(u, v, p) is continuous in each argument.
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1. Suppose Assumption A (AA for short) is valid for the data, ie P (ηx ≺ c|y = 1)

and P (ηx ≺ c|y = 0) are continuous for c = δ∗ = TP+γ(π−2TP )
2γ(1−γ) . We note that

AA is verified if the random variables (ηx|y = 1) and (ηx|y = 0) are continuous.

2. According to the work of Narasimhan et al. [1], under Assumption A, algorithm
1 is consistent since the optimal classifier is threshold and the function ψ(u, v, p)
is continuous
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