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1. Frisk, Miller, and Fogarty (2001) length at maturity 

Frisk, Miller, and Fogarty [1] quantified the relationship between body size (total length) and 

length at maturity and age at maturity for 150 elasmobranch species including requiem sharks. 

Length at maturity Lm was significantly related to maximum length Lmax 

 

𝐿" = 0.70	𝐿"() + 3.29.                                        (1.1) 

 

The linear relationship between Lm and Lmax is particularly strong for individuals with Lmax < 200 

cm, which includes C. amblyrhynchos. 

 

2. Francis (1988) growth model 

The Francis [2] formulation of the von Bertalanffy growth function (VBGF) for tag-recapture 

data describes the expected growth from a fish of initial length L over some time period Δ𝑇: 
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where 𝑔<	and 𝑔= are the mean annual growth increments of a species at reference lengths 𝛼 and 

𝛽 (which should be chosen to include a substantial proportion of by the tagging data within their 

range). We set Δ𝑇=1 and standardized growth to an annual timestep. Parameters 𝑔<	and 𝑔= can 

be used to estimate the conventional parameters 𝐿@ and k of the VBGF by the equations 
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𝐿@ = 	 =A37	<A1
A37	A1

;                                                                                            (2.2) 

             

𝑘 = 	−𝐿𝑛 1 +	A37	A1
<7=

.                                                                                          (2.3)     

 

The Francis model is flexible in that it allows the addition of additional parameters. Assuming 

that the growth of a shark of length L over some time period is normally distributed with mean 𝜇 

and standard deviation 𝜎, then growth variability can be described using a single parameter v 

where 

 

𝜎 = 𝑣	𝜇.                           (2.4) 

 

If this mean-variance relationship results in inadequate model fit, then additional parameters can 

be introduced [2], but this was not necessary for our data. Outliers can also bias growth model 

parameters, but may represent true values that should not necessarily be discarded. The 

contamination probability p can be added to ensure that extreme data points have minimal effect 

on growth parameters (as long as outliers are somewhat rare). Finally, mean m and standard 

deviation s of measurement error in ∆𝐿 can be modeled, and the log likelihood function can be 

rewritten as 

 

𝜆 = 	 𝑙𝑜𝑔 1 − 𝑝 𝜆M + 𝑝/𝑅P
MQ6 ,                           (2.5) 

 

where 𝜆M = exp 7V.W ∆XY7	ZY7" [/(]Y
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R is the range of observed growth increments 𝛥𝐿M and the likelihood is summed over all 

observed growth increments. We estimated the model using the grotag function with limited 

memory, bound-constrained BFGS maximization in the fishmethods package [3] to find the set 

of parameters that maximizes 𝜆. 

 

3. Jolly-Seber annual survival (𝝓) 

Royle and Dorazio [4] formulated the Jolly-Seber (JS) for capture-recapture data as a restricted 

dynamic occupancy model where individuals can be in one of three states: “not yet entered”, 

“alive”, “dead” [5]. Transitions between these states are determined by the ecological processes 

entry and survival, which are estimated. We were interested in the probability of annual survival 

𝜙, and so we estimated a model with an annual time step where the state of an individual i in the 

first year is 

 

𝑧M,6	~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛾6),                    (3.1) 

 

where	𝛾 is the probability that a “not yet entered” individual enters the population, and 𝑧M,q = 1 if 

an individual is “alive” and present, and 𝑧M,q = 0 if an individual is “dead” or has “not yet 

entered” the population [5]. Subsequent states of each individual are determined by survival for 

live individuals already in the population (𝑧M,q = 1) or by recruitment to the population for a new 

individual (𝑧M,q = 0) such that 

 

𝑧M,q86	|	𝑧M,q, … , 𝑧M,6	~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑧M,q𝜙M,q + 	𝛾q86 (1 − 𝑧M,t)q
tQ6 ,                     (3.2) 
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where 𝜙M,q is the probability of survival for individual i between year t and t + 1. The observation 

process conditions on the above state process as 

 

𝑦M,q	|	𝑧M,q	~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧M,q𝑝M,q),                        (3.3) 

 

where p is the probability of capture. We used a Bayesian analysis and specified uniform priors 

U(0,1) for all estimated parameters (𝜙, 𝛾, p) to express our ignorance about their values [5]. The 

model was formulated in the JAGS language with Markov chain Monte Carlo (MCMC) 

sampling available in the R package rjags [6].  

 

4. Hoenig (1983) total mortality (Z) 

The Hoenig [7] method of estimating total mortality (Z) is parameterized around the observed 

relationship between longevity (Tmax) and mortality. The equation takes the form 

 

𝐿𝑛 𝑍 = 	𝑎 + 𝑏	𝐿𝑛(𝑇"()),                                                                          (4.1) 

 

where a and b are fitted parameters, and Tmax is the maximum observed age in the catch. The 

equation is parameterized separately for teleost fishes (a = 1.46, b = -1.01) and cetaceans (a = 

0.941, b = -0.873), both of which have been used for sharks [8,9]. We assumed that Z was equal 

to natural mortality M given the absence of fishing at Palmyra. Tmax was estimated as the time 

required to attain >99% of 𝑇𝐿@ as Tmax = 5∙Ln(2)∙k-1 [61], using the k estimate from equation 2.3.  
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