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1 Extended definitions and derivations

1.1 Posterior over center of mass

The posterior over center of mass is represented by Eq. 4 in the main text, where we defined the mixing
weights, means and variances as:
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where ρm is the noisy measurement of log disks ratio, σ2
ρ the noise variance, and µ
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are,

respectively, mean and variance of the i-th mixture component of the prior over log disks ratios (for
i = 1, 2, 3).
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1.2 Posterior distribution of estimated center of mass

The horizontal location of the center of mass s of two D-dimensional spheres with radii r1 and r2,
separated by a distance `, is given by:
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)
, (S1)

with respect to the midpoint of the target line. From Eq. S1, the relationship between the log ratio of
the radii of two spherical objects in a D-dimensional space and their center of mass, s, can be represented
by the mapping fD:
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whose inverse is f−1D (s) = 1
D log [(`/2 + s)/(`/2− s)]. We assume that the observer uses the mapping

fD from Eq. S2 with some fixed value of D > 0, although not necessarily the correct value D = 2 for
two-dimensional disks, nor we restrict D to be an integer.

Combining Eqs. 4 of the main text with Eq. S2, the posterior distribution of the location of the
estimated center of mass takes the form:
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(S3)

where in the second passage we have performed the change of variable ρ′ = fD(ρ).
The posterior in Eq. S3 is not a mixture of Gaussian distributions due to the nonlinear relationship

in the argument of the Gaussian function. To allow efficient computation of optimal behavior we can
approximate each mixture component with a Gaussian:

qpost(s|ρm) ≈ 1

Z
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where m
(i)
post and s

(i)
post are respectively the mean and SD of the mixture components in Eq. S3 (computed

numerically, function trapz in MATLAB).
The ‘Gaussianized’ components in Eq. S4 are a very good approximation of their counterparts in Eq.

S3 for the parameters in our task, as measured by an average Kullback-Leibler divergence of (3.1± 0.7) ·
10−3 nats (mean ± SD across all posteriors in the task). This amounts to roughly the KL divergence
between two Gaussians with same variance and whose difference in means is one-twelfth of their SD. The
approximation we chose works better than a Laplace approximation [1], which yields worse values for the
KL divergence of (7.8± 1.8) · 10−3 nats.
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1.3 Optimal target after adjustment with inverted Gaussian loss

Combining Eqs. 5 and 8 of the main text with inverted Gaussian loss functions for both error and
adjustment,
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we obtain the final expression for the ‘optimal’ target after adjustment,
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(S5)

where we have collected all scaling factors in α̃ ≡ αZσadj/σerr, by using the property that the arg min is
invariant to rescaling of its argument by a constant.

In order to find s∗pre (Eq. 6 in the main text) and subsequently the ‘optimal’ final position s∗ (Eq.
S5), we used gmm1max, a fast numerical algorithm for finding the mode of a mixture of Gaussians [2, 3],
implemented in the gmm1 package for MATLAB (https://github.com/lacerbi/gmm1), as both equations
have no known analytical solution.

2 Model fitting

Using Eq. 9 in the main text for the probability of response in a given trial, we estimated the model
parameters for each subject by maximizing the (log) likelihood of the data:

logL(θ) =

N∑
i=1

log
[
Pr∗

(
r(i)|ρ(i), b(i);θ

)]
, (S6)

where N = 576 is the total number of trials and we have assumed conditional independence between trials.
We modified Eq. 9 in the main text with a tiny probability ε to improve robustness of the inference:

Pr∗ (r|ρ, b;θ) = (1− ε) Pr (r |ρ, b;θ ) + ε, (S7)

where ε = 1.5 ·10−5 is the value of the pdf of a normal distribution five SDs away from the mean. Eq. S7
allows for a very small lapse rate that prevents a few outliers in a subject’s dataset from having a large
effect on the log likelihood of the data in Eq. S6.

Maximum likelihood fits were obtained via the Nelder-Mead simplex method (fminsearch in MAT-
LAB), with ten randomized starting points per dataset. The log likelihood landscapes proved to be
relatively simple, with almost all optimization runs converging to the same optimum within each dataset.

https://github.com/lacerbi/gmm1
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3 Alternative observer models

3.1 Quadratic error loss

As an alternative model of loss for the error term in Eq. 7 of the main text, we considered a quadratic
loss function: Lquad(r − s) = (r − s)2. In this case, the ‘optimal’ target (Eq. 8 in the main text, and see
also Eq. S5 for comparison) takes the form:

s∗(ρm, x0) = arg min
ŝ

[
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∫ `/2

−`/2
qpost(s|ρm) (ŝ− s)2 ds

]
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]
,

(S8)

where mpost is the mean of the full posterior in Eqs. S3 and S4. For example, for a quadratic adjustment
loss, Eq. S8 reduces to a simple analytical solution: s∗(ρm, r̃) = (mpost + αr̃)/(1 + α). However, for
any shape of the adjustment loss, Eq. S8 predicts that the optimal target, and therefore the amount of
correction to a perturbation, does not depend on the variance (i. e., on the uncertainty) of the posterior
distribution [4]. This prediction is at odds with the patterns observed in the experiment, so the quadratic
loss model of the error is unable to account for the key feature of our data.

3.2 Power-law adjustment loss

To explore alternative models of adjustment cost in Eq. 7 of the main text, we assume an inverted
Gaussian for the error combined with a power function for the adjustment loss. A power function with
power ν > 0 includes several common models of loss as specific cases (absolute, sub-quadratic, quadratic)
and therefore represents a valid alternative to the inverted Gaussian [5]. For this case, the ‘optimal’
target is:
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We compared the performances of the observer models with power loss and inverted Gaussian loss in
terms of (log) maximum likelihood. We do not need to consider a term for complexity as the two models
have the same number of parameters. The performance of the two models was largely similar, with a
nonsignificant advantage of the inverted Gaussian model (0.7 ± 1.6 difference in average log likelihood;
t-test t(15) = 0.44, p > .60, d = 0.11). An analogous lack of empirical difference between the inverted
Gaussian loss and the power loss was reported in a previous study [5]. The choice between the two
functions must therefore be driven by other considerations, such as mathematical tractability (e. g., in
our case the inverted Gaussian loss allows to write the expected loss in closed form, see Eq. S5).

3.3 Miscalibrated observer model

Finally, we examined the predictions for an observer model built from a different set of assumptions. For
this model, we hypothesized that the source of the lack of correction is not effort, but a miscalibration of
the perceived position of the cursor. Even though in our task the visual feedback of the cursor location
during the adjustment phase is unambiguous, subject’s perception may be systematically altered by
proprioceptive feedback according to the relative reliability of vision and proprioception (see [6, 7]). In
particular, the posterior distribution of cursor position r for visual cue xvis and proprioceptive cue position
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xprop is given by [8]:
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where σ2
vis and σ2

prop are the (subjective) variances of visual and proprioceptive noise. Noting that in our
setup xprop ≈ xvis − b, where b is the visual perturbation applied in the trial, we can rewrite Eq. S10 as:

qcursor (r |xvis, xprop ) ∝ N

(
r

∣∣∣∣∣xvis − b σ2
vis

σ2
vis + σ2

prop

,
σ2
visσ

2
prop

σ2
vis + σ2

prop

)
≡ N

(
r
∣∣xvis − µcursor, σ

2
cursor

)
,

(S11)

where we have defined µcursor and σcursor for notational convenience. We assume now that, according to
BDT, the observer places the visual cursor so as to match the ‘optimal’ visual cursor location x∗vis that
minimizes the expected loss of the task:

x∗vis(ρm) = arg min
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where the subjective error in the loss function is computed with respect to the unknown exact cursor
position r, whose distribution is inferred via cue combination (Eq. S11). The posterior over target
locations, qpost (s |ρm ), is defined by the mixture of Gaussians of Eq. S4. For the sake of argument, let
us consider the case in which the posterior is mainly represented by a single Gaussian component with
mean mpost and variance s2post (both depend on ρm). This is a reasonable approximation in most of the
trials as our observers’ sensory noise on the estimation of the disks’ (log) ratio, σρ, is much smaller than
the separation between components of the prior over (log) ratios (0.063 � 0.405, see main text). Using
a single Gaussian in Eq. S12 we obtain:
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(S13)

where we used the definition of µcursor from Eq. S11. Similarly to the quadratic error loss model, the
solution in Eq. S13 does not depend on the variance of the posterior s2post, meaning that for the majority
of trials the observer model does not present the features that we observe in our data. Still, for trials
with multimodal posteriors, the solution of Eq. S12 might depend on the uncertainty in the trial. If so,
albeit unlikely, these trials alone might be enough to produce the effect that we observe in our data. We,
therefore, analyzed the behavior that this observer model would predict for our observers for a range
of reasonable values of the parameters σvis and σprop from 0.1 cm to 2.5 cm [6]. For all combinations
of parameters and for all subjects we did not find any sign of interaction between trial uncertainty and
residual error, confirming the results of our first approximation (Eq. S13). In conclusion, subjects’
perception of the perturbed cursor position may be altered by proprioceptive feedback, but this effect
alone cannot account for the uncertainty-dependent modulation of the residual error.
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4 Debriefing questionnaire

Participants were presented with a short debriefing questionnaire at the end of the test session. The
questionnaire asked:

1. Did you notice any difference between trials in which you received performance feedback and trials
in which you did not receive performance feedback? [Yes / No]

2. Did you notice any discrepancy between location of the cursor and position of your fingertip in one
or more trials during this session? [Yes / No]

If the answer was ‘Yes’ to any question, subjects could write a short explanation. Out of 16 subjects, one
did not fill in the questionnaire; 13 subjects answered ‘No’ to the 1st question; and 15 subjects answered
‘No’ to the 2nd question. One of the participants who had answered ‘Yes’ to the 1st question wrote that
“After two/three trials with feedback it was harder”. Participants reacted with surprise when they were
explained the experimental manipulation, after they had completed the questionnaire. Overall, we take
these results as evidence that subjects were unaware of cursor displacement or of any other difference
between trials with or without performance feedback.
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