
To remove the limitation of determining a linear parametric regression model between x and y, generic nonlinear extensions
to PLS are based on reproducing kernels [82, 83]. The application of this kernel PLS or KPLS algorithm commences by
defining a nonlinear transformation of the predictor variable set x, that is f = ψ(x) in a similar fashion to that discussed for
KFDA. Typically, the dimension of f is significantly larger than that of x and the corresponding space for f is referred to as
the feature space. Instead of regressing x on y, KPLS regresses the transformed variable set f on y using a modified version
of the linear PLS algorithm [82, 83].

The modified PLS algorithm in the feature space relies on the matrix product XXT, XT =
[
x1 x2 . . . xn

]
, which in

the feature space becomes the symmetric and positive semidefinite kernel matrix K(X,X) = φ(X)φT(X), for which kij is the
element in the ith row and the jth column. After removing the mean vector of φ(x), the centered Kernel or Gram matrix then
forms the basis for determining the regression matrix. To derive this relationship, it is important to note that the linear PLS
regression matrix can be computed as B = Q[WTP ]−1WT = Y TT [UTXXTT ]−1UTX, according to [84]. Here, the matrix
T =

[
t1 t2 . . . tn

]
and U =

[
u1 u2 . . . un

]
are matrices storing the values of the t- and u-score variables for each

sample and each projection direction as column and row vectors, respectively. By replacing the data matrix X by φ(X) after
mean centering, the nonlinear regression equation matrix becomes B = Y TT [UTφ(X)φT(X)TT ]−1UTφ(X). The prediction of
a new sample, y �∈ Y and x �∈ X is then ŷ = Y TT [UTφ(X)φT(X)TT ]−1UTφ(X)φT(x) or Y TT [UTK(X,X)TT ]−1UTk(X,x),
where kT(X,x) is a vector of the mean centered elements of the Gaussian kernel function.
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