The objective function for determining the weight vectors for x and y is the covariance criterion $E\{(w^T x)(v^T y)\}$, where $E\{\cdot\}$ is the expectation operator. Denoting $t = w^T x$ and $u = v^T y$ as score variables, the covariance criterion between t and u becomes $E\{tu\}$, where the weight vectors are constraint to be of unit length [67]. Prior to the determination of subsequent pairs of weight vectors, the information that is encapsulated in t is subtracted, or deflated, from x and y. This yields the deflation procedure $x = xtp^T$ and $y = ytq^T$, where the loading vectors are $p = E\{xt\}/E\{t^2\}$ and $q = E\{yt\}/E\{t^2\}$. Stacking the weight and loading vectors as columns to form the matrices $W = [w_1 \ w_2 \ \dots \ w_n], V = [v_1 \ v_2 \ \dots \ v_n], P = [p_1 \ p_2 \ \dots \ p_n]$ and $Q = [q_1 \ q_2 \ \dots \ qn]$, the parametric regression matrix is given by $B = Q[W^T P]^{-1}W^T$. Note that $R^T = [W^T P]^{-1}W^T$ can be directly determined from the PLS algorithm [66, 67] and hence $B = QR^T$.

References

- [66] Kruger U, Xie L. Advances in statistical monitoring of complex multivariate processes: with applications in industrial process control. John Wiley & Sons; 2012
- [67] Hoskuldsson A. PLS regression methods. Journal of Chemometrics. 1988;2(3):211-228