The objective function for determining the weight vectors for x and y is the covariance criterion $E\left\{\left(w^{\mathrm{T}} x\right)\left(v^{\mathrm{T}} y\right)\right\}$, where $E\{\cdot\}$ is the expectation operator. Denoting $t=w^{\mathrm{T}} x$ and $u=v^{\mathrm{T}} y$ as score variables, the covariance criterion between t and u becomes $E\{t u\}$, where the weight vectors are constraint to be of unit length [67]. Prior to the determination of subsequent pairs of weight vectors, the information that is encapsulated in t is subtracted, or deflated, from x and y. This yields the deflation procedure $x=x t p^{T}$ and $y=y t q^{T}$, where the loading vectors are $p=E\{x t\} / E\left\{t^{2}\right\}$ and $q=E\{y t\} / E\left\{t^{2}\right\}$. Stacking the weight and loading vectors as columns to form the matrices $W=\left[\begin{array}{llll}w_{1} & w_{2} & \ldots & w_{n}\end{array}\right], V=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$, $P=\left[\begin{array}{llll}p_{1} & p_{2} & \ldots & p_{n}\end{array}\right]$ and $Q=\left[\begin{array}{llll}q_{1} & q_{2} & \ldots & q n\end{array}\right]$, the parametric regression matrix is given by $B=Q\left[W^{\mathrm{T}} P\right]^{-1} W^{\mathrm{T}}$. Note that $R^{\mathrm{T}}=\left[W^{\mathrm{T}} P\right]^{-1} W^{\mathrm{T}}$ can be directly determined from the PLS algorithm $[66,67]$ and hence $B=Q R^{\mathrm{T}}$.

References

[66] Kruger U, Xie L. Advances in statistical monitoring of complex multivariate processes: with applications in industrial process control. John Wiley \& Sons; 2012
[67] H oskuldsson A. PLS regression methods. Journal of Chemometrics. 1988;2(3):211-228

