This multivariate technique determines linear combinations of an *m*-variate set of random variables that possess a mean of zero that has a maximum variance, i.e.  $t_j = p_{1j}x_1 + p_{2j}x_2 + \cdots + p_{ij}x_i + \cdots + p_{mj}x_m = \sum_{i=1}^m p_{ij}x_i = p_j^T x$  and  $E\{t_j^2\}$  is a maximum. By setting the vector  $p_j$  to be of unit length, the PCA objective function is  $J(p_j) = E\{p_j^T x x^T p_j\} - \lambda_j (p_j^T p_j - 1)$ (Kruger and Xie, 2012). As  $E\{p_j^T x x^T p_j\} = p_j^T E\{x x^T\} p_j = p_j^T S_{xx} p_j$ , where  $S_{xx}$  is the covariance matrix of the random vector x, the maximum of  $J(p_j)$  is given by the eigenvector associated with the *j*th largest eigenvector of  $S_{xx}$  [66]. The orthogonal projection of a sample onto the direction vector  $p_j$  is given by  $(p_j^T x) p_j$  and the orthogonal distance of the projection and the sample is  $x - (p_j^T x) p_j$ . The variance of  $t_j$  is equal to the *j*th largest eigenvalue of  $S_{xx}$ , such that the variance of  $t_1$  is larger or equal to that of  $t_2$ . Generally,  $E = \{t_j^2\} \leq E\{t_{j+1}^2\}$ . Consequently, the eigenvalue plot reveals how many important principal components the variable set x contains. Moreover, the linear combinations of the dominant principal components reveal variable interrelationships among the variable set in x. For example, plotting the elements of  $p_1$  versus the elements of  $p_2$ , i.e. the two most important principal components, to produce a scatter diagram yields, graphically, the most dominant variable interrelationships in form of clusters.

## References

[66] Kruger U, Xie L. Advances in statistical monitoring of complex multivariate processes: with applications in industrial process control. John Wiley & Sons; 2012