
This multivariate technique determines linear combinations of an m-variate set of random variables that possess a mean
of zero that has a maximum variance, i.e. tj = p1jx1 + p2jx2 + · · ·+ pijxi + · · ·+ pmjxm =

∑m
i=1 pijxi = pTj x and E{t2j} is a

maximum. By setting the vector pj to be of unit length, the PCA objective function is J(pj) = E{pTj xxTpj} − λj(p
T
j pj − 1)

(Kruger and Xie, 2012). As E{pTj xxTpj} = pTj E{xxT}pj = pTj Sxxpj , where Sxx is the covariance matrix of the random vector
x, the maximum of J(pj) is given by the eigenvector associated with the jth largest eigenvector of Sxx [66]. The orthogonal
projection of a sample onto the direction vector pj is given by (pTj x)pj and the orthogonal distance of the projection and

the sample is x − (pTj x)pj . The variance of tj is equal to the jth largest eigenvalue of Sxx, such that the variance of t1 is

larger or equal to that of t2. Generally, E = {t2j} ≤ E{t2j+1}. Consequently, the eigenvalue plot reveals how many important
principal components the variable set x contains. Moreover, the linear combinations of the dominant principal components
reveal variable interrelationships among the variable set in x. For example, plotting the elements of p1 versus the elements of
p2, i.e. the two most important principal components, to produce a scatter diagram yields, graphically, the most dominant
variable interrelationships in form of clusters.
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