KFDA carries out a nonlinear transformation of the random vector z into the feature space, producing f = ¢(z), where the
dimension of f is usually much higher than that of z. Instead of constructing the matrices Sp and Sy from the original random
vector x, KFDA relies on the nonlinearly transformed vector f. The corresponding matrices describing the between and
within variation of .7:1 = {fl(]-) = l[}(xl(l)), f1(2) = 1/)(561(2)), ey fl(nl) = 1,[}(.’,81(’&1))} and fg = {f2(1) = w(IQ(l)), f2(2) =
U(@2(2)),. .., fa(na) = P(x2(n2))} are S§ = (A — fo)(fi — f2)T and Sf, = Sy, + Sp,. Here, fi = LY w(xa (i),

Fo= o 3 (a(i), Sy = Y2 ($(aa (i) — F) (a1 (i) — f)T and Scfa) = 302 ($(x2(i) — f2)($(2)2(i) — f2)*
The nonlinear transformation f = () is usually not known, however, [61] showed how to utilize scalar products 1 (x (7)) -
¥(x(j)), which can be expressed by Mercer kernels k(z(i), z(j)) = ¥ (x(7)) - ¥(x(j)). Mercer kernels include Gaussian RBF,
k(z(i),2(4)) = exp(||z(i) — z(5)||/c), or polynomial kernels, k(x(i), z(5)) = (x(i) - #(5))¢, where || - || is the squared norm of a
vector, and ¢ and d are positive parameters. In this work, we used Gaussian RBF kernels and selected the parameter ¢ using
cross validation, as advocated by [81] for kernel based classification problems.

Following from the theory of reproducing kernels, the solution for the objective function J(w) = (wTS};w) / (wTS{Vw) can
be expressed as a function of the nonlinearly transformed samples, i.e. w = Y1 | a;¢(z(i)). This implies that w™ f1 can be
written as Y@y k(2(i), 21(j)), where the ith element is o - =30 k(x(i), 21(5)) = aymai. Expressing the sums
wlfi =370 aymy; and w? fo = n% Py Z;Lil k(x(i), z2(5)) = i, aymo; as a scalar product yields atm; and a¥ma, so
that the numerator of the objective function J(w), w™ Shw, becomes o™ Ma, where M = (my —ms)(m1—m2)™. Analogously,
the denominator of J(w), wTS{ij can be written as a” Na. The construction of N follows from the definition of w™ Sy, w and
wTSp,w. Substituting w = Y"1 | a;1(x(i)) into w' Sy, w gives rise to a K [I,,, —1,,,] KT o, where K; is a matrix of dimension
n times ny for which k(x(7),z1(j)) is the element in the ith row and jth column, I,,, is the identify matrix of dimension n;
and 1, is a matrix for which each element is 1/n;. Analogously, wTSy,w = aTKs[I,,, — 1,,] K5 o, where K3 is a n by na
matrix that has k(x(7), z2(j)) as the element in the ith row and jth column. The matrices I,,, and 1,,, are the identify matrix
of dimension ny and a matrix for which every entry is 1/ns, respectively. Hence, N = Ki[I,,, — 1,,|KT + K3[IL,,, — 1,,,] K.
The optimal solution for « is given by the eigenvector of the matrix N~'M. Caution is required here, since the rank of
N is less than n [61]. This can be overcome by utilizing a regularization parameter of the generalized inverse. The results
presented in this article relied on the use of the generalized inverse.
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