KFDA carries out a nonlinear transformation of the random vector x into the feature space, producing $f = \psi(x)$, where the dimension of f is usually much higher than that of x. Instead of constructing the matrices S_B and S_W from the original random vector x, KFDA relies on the nonlinearly transformed vector f. The corresponding matrices describing the between and within variation of $\mathcal{F}_1 = \{f_1(1) = \psi(x_1(1)), f_1(2) = \psi(x_1(2)), \dots, f_1(n_1) = \psi(x_1(n_1))\}$ and $\mathcal{F}_2 = \{f_2(1) = \psi(x_2(1)), f_2(2) = \psi(x_2(2)), \dots, f_2(n_2) = \psi(x_2(n_2))\}$ are $S_B^f = (\bar{f}_1 - \bar{f}_2)(\bar{f}_1 - \bar{f}_2)^T$ and $S_W^f = S_{f_1} + S_{f_2}$. Here, $\bar{f}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} \psi(x_1(i)), \bar{f}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} \psi(x_2(i)), S_{f_1} = \sum_{i=1}^{n_1} (\psi(x_1(i)) - \bar{f}_1)(\psi(x_1(i)) - \bar{f}_1)^T$ and $S_G^f = \sum_{i=1}^{n_2} (\psi(x_2(i)) - \bar{f}_2)(\psi(x_2(i)) - \bar{f}_2)^T$. The nonlinear transformation $f = \psi(x)$ is usually not known, however, [61] showed how to utilize scalar products $\psi(x(i)) \cdot \psi(x(j))$, which can be expressed by Mercer kernels $k(x(i), x(j)) = \psi(x(i)) \cdot \psi(x(j))$. Mercer kernels include Gaussian RBF, $k(x(i), x(j)) = \exp(||x(i) - x(j)||/c)$, or polynomial kernels, $k(x(i), x(j)) = (x(i) \cdot x(j))^d$, where $||\cdot||$ is the squared norm of a vector, and c and d are positive parameters. In this work, we used Gaussian RBF kernels and selected the parameter c using cross validation, as advocated by [81] for kernel based classification problems.

Following from the theory of reproducing kernels, the solution for the objective function $J(w) = (w^T S_B^f w)/(w^T S_W^f w)$ can be expressed as a function of the nonlinearly transformed samples, i.e. $w = \sum_{i=1}^n \alpha_i \phi(x(i))$. This implies that $w^T f_1$ can be written as $\frac{1}{n_1} \sum_{i=1}^n \alpha_i \sum_{j=1}^{n_1} k(x(i), x_1(j))$, where the ith element is $\alpha_i \cdot \frac{1}{n_1} \sum_{j=1}^{n_1} k(x(i), x_1(j)) = \alpha_i m_{1i}$. Expressing the sums $w^T \bar{f}_1 = \sum_{i=1}^n \alpha_i m_{1i}$ and $w^T \bar{f}_2 = \frac{1}{n_2} \sum_{i=1}^n \alpha_i \sum_{j=1}^{n_2} k(x(i), x_2(j)) = \sum_{i=1}^n \alpha_i m_{2i}$ as a scalar product yields $\alpha^T m_1$ and $\alpha^T m_2$, so that the numerator of the objective function J(w), $w^T S_B^f w$, becomes $\alpha^T M \alpha$, where $M = (m_1 - m_2)(m_1 - m_2)^T$. Analogously, the denominator of J(w), $w^T S_W^f w$ can be written as $\alpha^T N \alpha$. The construction of N follows from the definition of $w^T S_{f_1} w$ and $w^T S_{f_2} w$. Substituting $w = \sum_{i=1}^n \alpha_i \psi(x(i))$ into $w^T S_{f_1} w$ gives rise to $\alpha^T K_1 [I_{n_1} - 1_{n_1}] K_1^T \alpha$, where K_1 is a matrix of dimension n times n_1 for which $k(x(i), x_1(j))$ is the element in the ith row and jth column, I_{n_1} is the identify matrix of dimension n_1 and n_2 and n_3 and n_4 and n_4 are the identify matrix of dimension n_2 and a matrix for which every entry is n_1/n_2 , respectively. Hence, $n_1/n_2 = n_1/n_1 = n_$

References

- [61] Hsu CW, Chang CC, Lin CJ. A practical guide to support vector classification. Department of Computer Science, National Taiwan University; 2003. Available from: http://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf
- [81] Mika S, R atsch G, Weston J, Scholkopf B, Muller KR. Fisher Discriminant Analysis with Kernels. In: Proceedings of the Neural Networks for Signal Processing IX Workshop; 1999. p. 41–48