
KFDA carries out a nonlinear transformation of the random vector x into the feature space, producing f = ψ(x), where the
dimension of f is usually much higher than that of x. Instead of constructing the matrices SB and SW from the original random
vector x, KFDA relies on the nonlinearly transformed vector f . The corresponding matrices describing the between and
within variation of F1 = {f1(1) = ψ(x1(1)), f1(2) = ψ(x1(2)), . . . , f1(n1) = ψ(x1(n1))} and F2 = {f2(1) = ψ(x2(1)), f2(2) =

ψ(x2(2)), . . . , f2(n2) = ψ(x2(n2))} are Sf
B = (f̄1 − f̄2)(f̄1 − f̄2)

T and Sf
W = Sf1 + Sf2 . Here, f̄1 = 1

n1

∑n1

i=1 ψ(x1(i)),

f̄2 = 1
n2

∑n2

i=1 ψ(x2(i)), Sf1 =
∑n1

i=1(ψ(x1(i)) − f̄1)(ψ(x1(i)) − f̄1)
T and S(f2) =

∑n2

i=1(ψ(x2(i)) − f̄2)(ψ(x)2(i)) − f̄2)
T.

The nonlinear transformation f = ψ(x) is usually not known, however, [61] showed how to utilize scalar products ψ(x(i)) ·
ψ(x(j)), which can be expressed by Mercer kernels k(x(i), x(j)) = ψ(x(i)) · ψ(x(j)). Mercer kernels include Gaussian RBF,
k(x(i), x(j)) = exp(‖x(i)− x(j)‖/c), or polynomial kernels, k(x(i), x(j)) = (x(i) · x(j))d, where ‖ · ‖ is the squared norm of a
vector, and c and d are positive parameters. In this work, we used Gaussian RBF kernels and selected the parameter c using
cross validation, as advocated by [81] for kernel based classification problems.

Following from the theory of reproducing kernels, the solution for the objective function J(w) = (wTSf
Bw)/(w

TSf
Ww) can

be expressed as a function of the nonlinearly transformed samples, i.e. w =
∑n

i=1 αiφ(x(i)). This implies that wTf̄1 can be
written as 1

n1

∑n
i=1 αi

∑n1

j k(x(i), x1(j)), where the ith element is αi · 1
n1

∑n1

j=1 k(x(i), x1(j)) = αim1i. Expressing the sums

wTf̄1 =
∑n

i=1 αim1i and w
Tf̄2 = 1

n2

∑n
i=1 αi

∑n2

j=1 k(x(i), x2(j)) =
∑n

i=1 αim2i as a scalar product yields α
Tm1 and α

Tm2, so

that the numerator of the objective function J(w), wTSf
Bw, becomes αTMα, whereM = (m1−m2)(m1−m2)

T. Analogously,

the denominator of J(w), wTSf
Ww can be written as αTNα. The construction of N follows from the definition of wTSf1w and

wTSf2w. Substituting w =
∑n

i=1 αiψ(x(i)) into w
TSf1w gives rise to αTK1[In1

−1n1
]KT

1 α, where K1 is a matrix of dimension
n times n1 for which k(x(i), x1(j)) is the element in the ith row and jth column, In1 is the identify matrix of dimension n1

and 1n1 is a matrix for which each element is 1/n1. Analogously, wTSf2w = αTK2[In2 − 1n2 ]K
T
2 α, where K2 is a n by n2

matrix that has k(x(i), x2(j)) as the element in the ith row and jth column. The matrices In2
and 1n2

are the identify matrix
of dimension n2 and a matrix for which every entry is 1/n2, respectively. Hence, N = K1[In1

− 1n1
]KT

1 +K2[In2
− 1n2

]KT
2 .

The optimal solution for α is given by the eigenvector of the matrix N−1M . Caution is required here, since the rank of
N is less than n [61]. This can be overcome by utilizing a regularization parameter of the generalized inverse. The results
presented in this article relied on the use of the generalized inverse.
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