KFDA carries out a nonlinear transformation of the random vector x into the feature space, producing $f=\psi(x)$, where the dimension of f is usually much higher than that of x. Instead of constructing the matrices S_{B} and S_{W} from the original random vector x, KFDA relies on the nonlinearly transformed vector f. The corresponding matrices describing the between and within variation of $\mathcal{F}_{1}=\left\{f_{1}(1)=\psi\left(x_{1}(1)\right), f_{1}(2)=\psi\left(x_{1}(2)\right), \ldots, f_{1}\left(n_{1}\right)=\psi\left(x_{1}\left(n_{1}\right)\right)\right\}$ and $\mathcal{F}_{2}=\left\{f_{2}(1)=\psi\left(x_{2}(1)\right), f_{2}(2)=\right.$ $\left.\psi\left(x_{2}(2)\right), \ldots, f_{2}\left(n_{2}\right)=\psi\left(x_{2}\left(n_{2}\right)\right)\right\}$ are $S_{B}^{f}=\left(\bar{f}_{1}-\bar{f}_{2}\right)\left(\bar{f}_{1}-\bar{f}_{2}\right)^{\mathrm{T}}$ and $S_{W}^{f}=S_{f_{1}}+S_{f_{2}}$. Here, $\bar{f}_{1}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} \psi\left(x_{1}(i)\right)$, $\bar{f}_{2}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} \psi\left(x_{2}(i)\right), S_{f_{1}}=\sum_{i=1}^{n_{1}}\left(\psi\left(x_{1}(i)\right)-\bar{f}_{1}\right)\left(\psi\left(x_{1}(i)\right)-\bar{f}_{1}\right)^{\mathrm{T}}$ and $\left.S_{\left(f_{2}\right)}=\sum_{i=1}^{n_{2}}\left(\psi\left(x_{2}(i)\right)-\bar{f}_{2}\right)\left(\psi(x)_{2}(i)\right)-\bar{f}_{2}\right)^{\mathrm{T}}$. The nonlinear transformation $f=\psi(x)$ is usually not known, however, [61] showed how to utilize scalar products $\psi(x(i))$. $\psi(x(j))$, which can be expressed by Mercer kernels $k(x(i), x(j))=\psi(x(i)) \cdot \psi(x(j))$. Mercer kernels include Gaussian RBF, $k(x(i), x(j))=\exp (\|x(i)-x(j)\| / c)$, or polynomial kernels, $k(x(i), x(j))=(x(i) \cdot x(j))^{d}$, where $\|\cdot\|$ is the squared norm of a vector, and c and d are positive parameters. In this work, we used Gaussian RBF kernels and selected the parameter c using cross validation, as advocated by [81] for kernel based classification problems.

Following from the theory of reproducing kernels, the solution for the objective function $J(w)=\left(w^{\mathrm{T}} S_{B}^{f} w\right) /\left(w^{\mathrm{T}} S_{W}^{f} w\right)$ can be expressed as a function of the nonlinearly transformed samples, i.e. $w=\sum_{i=1}^{n} \alpha_{i} \phi(x(i))$. This implies that $w^{\mathrm{T}} \hat{f}_{1}$ can be written as $\frac{1}{n_{1}} \sum_{i=1}^{n} \alpha_{i} \sum_{j}^{n_{1}} k\left(x(i), x_{1}(j)\right)$, where the i th element is $\alpha_{i} \cdot \frac{1}{n_{1}} \sum_{j=1}^{n_{1}} k\left(x(i), x_{1}(j)\right)=\alpha_{i} m_{1 i}$. Expressing the sums $w^{\mathrm{T}} \bar{f}_{1}=\sum_{i=1}^{n} \alpha_{i} m_{1 i}$ and $w^{\mathrm{T}} \bar{f}_{2}=\frac{1}{n_{2}} \sum_{i=1}^{n} \alpha_{i} \sum_{j=1}^{n_{2}} k\left(x(i), x_{2}(j)\right)=\sum_{i=1}^{n} \alpha_{i} m_{2 i}$ as a scalar product yields $\alpha^{\mathrm{T}} m_{1}$ and $\alpha^{\mathrm{T}} m_{2}$, so that the numerator of the objective function $J(w), w^{\mathrm{T}} S_{B}^{f} w$, becomes $\alpha^{\mathrm{T}} M \alpha$, where $M=\left(m_{1}-m_{2}\right)\left(m_{1}-m_{2}\right)^{\mathrm{T}}$. Analogously, the denominator of $J(w), w^{\mathrm{T}} S_{W}^{f} w$ can be written as $\alpha^{\mathrm{T}} N \alpha$. The construction of N follows from the definition of $w^{\mathrm{T}} S_{f_{1}} w$ and $w^{\mathrm{T}} S_{f_{2}} w$. Substituting $w=\sum_{i=1}^{n} \alpha_{i} \psi(x(i))$ into $w^{\mathrm{T}} S_{f_{1}} w$ gives rise to $\alpha^{\mathrm{T}} K_{1}\left[I_{n_{1}}-1_{n_{1}}\right] K_{1}^{\mathrm{T}} \alpha$, where K_{1} is a matrix of dimension n times n_{1} for which $k\left(x(i), x_{1}(j)\right)$ is the element in the i th row and j th column, $I_{n_{1}}$ is the identify matrix of dimension n_{1} and $1_{n_{1}}$ is a matrix for which each element is $1 / n_{1}$. Analogously, $w^{\mathrm{T}} S_{f_{2}} w=\alpha^{\mathrm{T}} K_{2}\left[I_{n_{2}}-1_{n_{2}}\right] K_{2}^{\mathrm{T}} \alpha$, where K_{2} is a n by n_{2} matrix that has $k\left(x(i), x_{2}(j)\right)$ as the element in the i th row and j th column. The matrices $I_{n_{2}}$ and $1_{n_{2}}$ are the identify matrix of dimension n_{2} and a matrix for which every entry is $1 / n_{2}$, respectively. Hence, $N=K_{1}\left[I_{n_{1}}-1_{n_{1}}\right] K_{1}^{\mathrm{T}}+K_{2}\left[I_{n_{2}}-1_{n_{2}}\right] K_{2}^{\mathrm{T}}$. The optimal solution for α is given by the eigenvector of the matrix $N^{-1} M$. Caution is required here, since the rank of N is less than n [61]. This can be overcome by utilizing a regularization parameter of the generalized inverse. The results presented in this article relied on the use of the generalized inverse.

References

[61] Hsu CW, Chang CC, Lin CJ. A practical guide to support vector classification. Department of Computer Science, National Taiwan University; 2003. Available from: http://www.csie.ntu.edu.tw/ cjlin/papers/guide/guide.pdf
[81] Mika S, R atsch G, Weston J, Sch olkopf B, M uller KR. Fisher Discriminant Analysis with Kernels. In: Proceedings of the Neural Networks for Signal Processing IX Workshop; 1999. p. 41-48

