S7 Text. Estimating the pK_a values of the α -amino groups of N-Ncm amino acids

The pK_a s of the α -amino groups of the N-Ncm amino acids can be estimated by using linear free energy relationships (LFER) [2]. The approach is summarized in the figure below.

R¹ N⁺ R² LFER:
$$pK_a = 10.4 - 2.05 \cdot \Sigma \sigma^*$$

NO₂ N⁺ CO₂ N⁺ H₂ CO₂ NO₂ NO₃ NO₄ NO₅ NO₅

The Taft equation (LFER) for estimating the pK_a of a secondary amine with the general formula $R^1CH_2NHCH_2R^2$ is $pK_a = 10.4 - 2.05 \cdot \Sigma \sigma^*$ [1], where σ^* is a substituent constant, and $\Sigma \sigma^*$ represents the summation of all σ^* values applicable to a particular molecule. Generally, each additional CH_2 between a functional group and the acidic or basic center attenuates the σ^* of the functional group by a factor of 0.4. Finally, σ^* is not available for the 6-nitro-7-coumarinyl group; therefore, we use the σ^* for 2-nitrophenyl, which should accurately reflect the effect of a 2-nitroaryl group. Estimation of the amino pK_a for the three N-Ncm amino acids is summarized below; the Taft equation and σ^* values used are tabulated in Perrin et al. [1].

N-Ncm-Gly 2-NO₂Ph $\sigma^* = +1.14$ $\sigma^* = -1.06$ $CO_2^$ $pK_a = 10.4 - 2.05 \cdot [1.14 - 1.06] = 10.236$ N-Ncm-GABA 2-NO₂Ph $\sigma^* = +1.14$ $\sigma^* = -1.06$, attenuated by $(0.4)^2$ due separation by 2 CH₂ groups γ -CO₂ $pK_a = 10.5 - 2.05 \cdot [1.14 - 1.06(0.4)^2] = 8.411$ N-Ncm-Glu 2-NO₂Ph $\sigma^* = +1.14$ $\sigma^* = -1.06$ α -CO₂ $\sigma^* = -1.06$, attenuated by $(0.4)^2$ due separation by 2 CH₂ groups γ -CO₂ $pK_a = 10.5 - 2.05 \cdot [1.14 - 1.06 - 1.06(0.4)^2] = 10.584$

1. Perrin DD, Dempsey B, Serjeant EP. *pKa Prediction for Organic Acids and Bases*: Springer Netherlands; 1981.