
Influencing Busy People in a Social Network

Kaushik Sarkar1*, Hari Sundaram2*

1 School of Computing, Informatics and Decision Systems Engineering, Arizona State
University, Tempe, Arizona, USA
2 Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana,
Illinois, USA

* ksarkar1@asu.edu, hs1@illinois.edu

PLOS 1/4



Appendix

A Computation of Immediate Adoption Probability

In this section we discuss an example of how the different immediate behavior adoption
probabilities for a node are computed. This computation depends on whether all the
thresholds of a node have the same random value (matched threshold) or independent
and uniformly distributed random values (different threshold). Although all the results
in this paper are for the different threshold model, here we present examples for both
cases for the sake of completeness. Suppose a vertex v has 8 neighbors. According to
our threshold model each of its neighbors exerts an influence of 0.125 on it. Suppose v
is already a seed for behavior A; moreover it has 2 neighbors with behaviors B, and 3
neighbors with behavior C. We are interested in computing the probabilities that it will
adopt each of the three behaviors in the next time step.

A.1 Matched Threshold:

In this case, for any vertex the thresholds for all the three behaviors will be the same,
but it will be assigned independently of other nodes and uniformly at random from the
interval [0, 1]. So if v’s threshold is in the interval [0, 0.25], then v will consider both
behaviors B and C together with A for adoption. Our payoff maximizing behavior
adoption process dictates that it will adopt a subset of A,B and C that will provide
maximum combined payoff subject to the resource constraint of the node. This
adoption decision process is equivalent to solving a knapsack problem. We will solve the
knapsack problem and decide which behaviors out of the three behaviors - A, B and C -
will be adopted. Any such behavior will be adopted with probability 0.25.

If v’s threshold is in the interval (0.25, 0.375] then v will only consider behavior C
together with behavior A for adoption. Again after solving knapsack problem and
deciding which behaviors to adopt out of A and C, it will adopt any such behavior with
probability 0.125.

At last if v’s threshold is in the interval (0.375, 1] then it will definitely adopt
behavior A - the probability of which is 1− 0.375 = 0.625. In the worst case the
complexity of this probability computation process for each node is linear in the number
of behaviors.

A.2 Different Threshold:

In the different threshold case, for each vertex the thresholds are assigned independently
and uniformly at random from the interval [0, 1]. So in this case we need to consider all
possible combinations of behaviors B and C together with A (which will always be
considered) and work out the individual probabilities. The worst case computational
complexity of this process for each node will be exponential in the number of behaviors.
In our example we need to consider the following cases:

i) B and C together with A; any behavior selected by the knapsack algorithm will be
adopted with probability 0.25× 0.375 = 0.09375.

ii) B together with A; any behavior selected by the knapsack algorithm will be
adopted with probability 0.25× (1− 0.375) = 0.15625.

iii) C together with A; any behavior selected by the knapsack algorithm will be
adopted with probability (1− 0.25)× 0.375 = 0.28125.

iv) Only A; A will be adopted with probability (1− 0.25)× (1− 0.375) = 0.46875.
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As this section illustrates, computation of this metric is considerably more complex
and costly in comparison to node degree and influence weight based heuristics.

B Variants of Seed Selection Algorithm

Table 1 presents the Total Participation and Total Adoption values for the different
variants of the KKT seed selection algorithm and IA based seed selection heuristic. T —
topped up versions provide better spread than the NT — no top up versions which is
expected since more resource is required for starting the diffusion in the T version.
However for the same type of top up regime there is not much difference between the S
(single behavior per seed) and M (multiple behaviros per seed) version. If we consider
exact algorithms instead of heuristics and approximation algorithms, then it is easy to
see that S version can never produce a result that is better than the M version, since
solution for S version is also a valid solution for M version. This fact accounts for the
absence of any real difference between the S and T versions in the case of the heuristic
and the approximate algorithm.

Table 1. Total Participation / Total Adoption under different networks as % of the
network size. S and M variants give almost identical results with T variants exceeding
NT variants.

Heuristics PA SW SC

KKT-S-T 43.7 / 44.5 26.2 / 26.4 27.3 / 27.3
H8-S-T 43.9 / 44.5 23.6 / 24.5 23.6 / 24.2

KKT-S-NT 39.5 / 39.5 21.7 / 22.0 22.0 / 22.5
H8-S-NT 39.51 / 39.8 22.7 / 23.2 20.0 / 20.5

KKT-M-T 43.7 / 44.5 26.2 / 26.4 27.1 / 27.1
H8-M-T 39.0 / 45.8 22.8 / 23.5 21.9 / 22.6

KKT-M-NT 39.5 / 39.5 21.7 / 22.0 22.4 / 23.0
H8-M-NT 39.5 / 43.3 22.7 / 23.2 19.7 / 21.1

C Equivalence between the Threshold and Network
Average Cases

In table ?? we have seen that the resource utilization values under threshold and
network average conditions are almost identical. In this section we will investigate the
relationship between these two type of averages. First we will show an exact relation for
the regular networks. This special case will provide us with helpful insights for
analyzing the more general cases.

Suppose we have n nodes with fixed resource distribution. Each node will have a
fixed in-degree ρ. Each node selects ρ in-neighbors uniformly at random from the rest
n− 1 nodes. We assume that only in-neighbors can exert influence on a node. In the
threshold average (TA) case the nodes choose the in-neighbors at random at the
beginning of the simulation and then at the start of each simulation run select the
threshold values uniformly at random from the interval [0, 1]. In the network average
(NA) case each node chooses threshold values uniformly at random from the interval
[0, 1] at the beginning of the simulation and then at the start of each simulation run it
chooses its ρ in-neighbors uniformly at random from the rest of the nodes. Both the
processes start with a set S of seeds for each of the k behaviors. The diffusion process
unfolds over time according to the Sticky multiple behavior diffusion process. We will
show that σTA(S) = σNA(S) by proving the following lemma:
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Lemma C.1. For a given seed set S, the following two distributions over the sets of
nodes are the same:

1. The distribution of probability over the active sets at the completion of the
diffusion process in the TA case.

2. The distribution of probability over the active sets at the completion of the
diffusion process in the NA case.

Proof. We prove the lemma by induction over the time step t. Clearly it is true at t = 0.

Let S
(t)
i denote the set of nodes with behavior i at the end of time step t, and

S(t) := ∪iS(t)
i . For the TA case, suppose v is a node that has not adopted any behavior

at the end of time step t and κ(v) = κ 6= 0. As before, the probability that v will become
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For the NA case, again let v be a node that is not active at time step t with
κ(v) = κ 6= 0. The probability that v will become active at time step t+ 1, given that it
was not active till the previous time step is given by -
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Since the in-degree of every node is same, we get the same probability distribution over
the active sets in both the cases.

Consequently we obtain the result that the expected number of active nodes in both
the TA and NA cases are the same for the networks with constant in-degree. In the
general case when the networks do not have a constant degree for every node but the
randomization over the network structure preserves a fixed degree distribution (as in
the case of Power Law or Spatially Clustered networks) we may obtain similar results.
However the probability that a node becomes active in time step t+ 1, given that it was
not active till time step t would be calculated for a node v with κ(v) = κ 6= 0 and
degree d 6= 0. Assuming that the distribution over the values d would be the same at
the time step t in both the cases (notice that the distribution over the values κ would
be the same for both the cases since the initial distribution of node resources are the
same), we will obtain similar results. Our experimental results show that this
observations about the Sticky model carries over to the general model. In all of the
simulation experiments we observe that the estimations of the expected values of the
different metrics (total participation, total adoption, resource utilization etc.) for both
the TA and NA cases are almost identical.
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