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Data Set

The datasets used in the study are Meridian 2 [1] for London and OpenStreetMap (OSM) [2] for Beijing, which are

publicly available. The both datasets involve road types and names. For example, in the case of London, roads are

classified as A road, B road, Motorway and Minor roads and in the case of Beijing roads are categorised to 31 types

such as primary road, secondary road, tertiary road, trunk road, motorway, residential road, and etc. Nevertheless,

the roads in the both datasets can be grouped into major roads and minor roads. The street networks in the both

datasets first are cleaned by removing links such as footpath, steps, construction, etc for Beijing and duplicated

links for London. Then, the roads are fragmented into segments in the both street networks in order to create

planar graph. The street names of major roads are edited manually for the both datasets to keep them consistent

in symbolism in order to build dual representation of a planar graph using Hierarchical Intersection Continuity

Negation (HICN) method (see the Methods section). That is, a major road in the both datasets consisting of a

set of continuous segments shares only one name. Finally, redundant vertices with degree 2 are removed. After

that, the London street network is composed by V = 74557 vertices and E = 107194 edges. And the Beijing street

network is composed by V = 44770 vertices and E = 67941 edges.

Parallel Implementation

For the resilient analysis, it is time-consuming to carry out simulation of hundreds of realisations for each network,

particularly on the real size networks like London and Beijing. In this study, the UCL Legion High Performance

Computing Facility (Legion@UCL) is used to implement simulation in parallel, enabling the deactivating process
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to be performed simultaneously. Table A shows a summary of the critical points averaged over one hundred

realisations for each network and each attack scenario in the primal and dual space.

Table A. Critical points (%) averaged over one hundred realisations
for each network in the primal and dual space under the random and
intentional attack scenarios

Primal Space Dual Space

Random Betweenness Random Betweenness

ERPG 37 18 31 11
London 26 8 32 8

GRID 50 34 50 34
Beijing 37 16 37 16

The way in which parallelism is exploited depends on the hardware available to the practitioner, but graphics

processing units (GPUs) is becoming variable at decreasing cost. Routines optimised for parallel technology that

can carry out many of the required computations are readily available. In this study GPU Dijkstra’s Single-Source

Shortest Path (SSSP) algorithm [3] have been utilised to implement computation of network efficiency on Dell

workstation with NVIDIA Quadro 600 graphics card since the runtime of network efficiency increases strongly

with network size. The implementation of the GPU SSSP algorithm is available in [4]. Fig 8 in the main text

shows a comparison of network efficiencies for the London, Beijing, ERPG, and GRID under the random and

intentional attacks.

Network Diameter

Figs A and B show diameter as a function of proportion of edges removed under the random and intentional attack

scenarios separately where there is representative behaviour where diameters of networks increase to maximum

before declining. For each realisation there is a turning point of diameter just before crash where the dual network

is broken down into two components. Table B shows the turning points of diameters on average for each network

under the random and intentional attack scenarios.

Average Degree

Figs C and D show the average degree of largest clusters as a function of proportion of edges removed under the

intentional attacks in the primal space and the dual space. From Fig C, similar patterns are observed between

Beijing and the GRID where there are straight declines before becoming flat whereas London and the ERPG looks

more alike. However, in the dual space of Fig D it appears that the London and Beijing are more like the ERPG

where there is roughly U-bend shape.
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Fig A. Diameter as a function of proportion of edges removed in the dual space under the random attack scenario.
Gray dot is diameter; Red dot is diameter averaged over one hundred realisations with error bars. Upper left
panel: ERPG; Upper right panel: GRID; Bottom left panel: London; Bottom right panel: Beijing.

Fig B. Diameter as a function of proportion of edges removed in the dual space under the intentional attack
scenario. Gray dot is diameter; Red dot is diameter averaged over one hundred realisations with error bars. Upper
left panel: ERPG; Upper right panel: GRID; Bottom left panel: London; Bottom right panel: Beijing.
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Table B. Turning points (%) of diameters
in the dual space for each network

Dual Space

Random Betweenness

ERPG 28 10
London 29 7

GRID 48 32
Beijing 35 15

Betweenness Centrality in ERPG and GRID

Maps of betweenness centrality are reported for the ERPG and GRID, which are calculated from their dual space

as shown in Fig E where the roads with highest betweenness centrality (red segments) locate in the centre of

the network and the higher-betweenness roads connect to the lower-betweenness roads, showing clear hierarchi-

cal structure. However, in the GRID, ring road has highest betweennness and the remaining roads have lower

betweenness centrality equally.

Fig C. Average degree as a function of proportion of edges removed in the primal space under the intentional
attack scenario. Gray is diameter; Red is diameter averaged over one hundred realisations with error bars. Upper
left panel: ERPG; Upper right panel: GRID; Bottom left panel: London; Bottom right panel: Beijing.
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Fig D. Average degree as a function of proportion of edges removed in the dual space under the intentional attack
scenario. Gray is diameter; Red is diameter averaged over one hundred realisations with error bars. Upper left
panel: ERPG; Upper right panel: GRID; Bottom left panel: London; Bottom right panel: Beijing.

Closeness Centrality in ERPG and GRID

Fig F shows the closeness gradient maps for the ERPG and GRID, which are calculated from the weighted networks

where closeness decades from centre to periphery. In the case of GRID, it seems that there are regular rounded

patterns whereas in the case of ERPG irregular appearance is observed.

Fig E. Betweenness centrality in the ERPG and GRID, which is calculated from the dual space. Left panel:
ERPG; Right panel: GRID.
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Fig F. Closeness gradient maps in the primal space. Left panel: ERPG; Right panel: GRID. Dark blues are
higher-closeness places.
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