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Technical Report  

1 Executive Summary 
 
The Monitoring and Evaluation Team of the President’s Malaria Initiative identified the 
need for technical expertise in climate analysis to ensure that their impact evaluations 
benefit from the most up-to-date methods and are consistent across countries.  This 
report describes the results obtained from a study, partially funded by PMI (July 2011-
July 2012), to develop a standardized methodology for climate analysis in relation to 
malaria epidemiology for PMI’s (along with national government and RBM partner) 
Impact Evaluation. In addition, the project aimed to produce climate analysis reports for 
two PMI impact evaluation countries: Ethiopia and Tanzania. 
 

1. Review of the literature and data sources (Section 3) 
a. Climate and malaria interactions (including those involving sea surface 

temperatures) from studies published and grey literature were briefly 
reviewed in the context of the evaluation of the impact of climate as a 
potential confounder in the assessment of malaria interventions. This 
included a brief review of: 

i. The warming of Eastern Africa (Section 3.6.1) 
ii. The drying of Eastern Africa (Section 3.6.2) 

 
2. Methodology (Section 4). Two linked methodological approaches for the 

incorporation of climate information into malaria intervention impact assessment 
were investigated. These two methodologies are: 

 
a. Climate Information Analysis (CIA)  
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where in the absence of malaria and intervention data only climatic 
factors are investigated.  This approach was applied to: i.) Ethiopia 
Section 7 where limited malaria data were available and ii) Tanzania 
Section 8 where no malaria and intervention data were available to this 
study. 
 

Possible outcomes if climate information is not incorporated into malaria impact 
assessment: 
 
 Malaria decreases 

following intervention 
Malaria remains the same or increases 
following intervention 

Climate suitability for 
malaria transmission 
increases following 
intervention  

Failure to incorporate 
climate in analysis may 
underestimate benefits 
of intervention 

Failure to incorporate climate in analysis 
may result in resurgence being blamed 
inappropriately on non-climatic factors or 
conversely climate being blamed for 
resurgence when in fact control failure is 
responsible 

Climate suitability for 
malaria transmission 
does not change 
following intervention 

No further climate 
analysis required 

No further climate analysis required 

Climate suitability for 
malaria transmission 
decreases following 
intervention  

Failure to incorporate 
climate in analysis may 
overestimate benefits of 
intervention 

Failure to incorporate climate may 
underestimate the importance of non-
climatic factors in driving malaria increase.  

 
 
 

b. Climate Information, Malaria and Intervention Analysis (CIMIA)  
 

 
 
This approach was explored with limited data on malaria and intervention 
from Ethiopia.  The statistical analysis was performed by Peter Diggle’s 
group at Lancaster/Liverpool University (see document “Malaria, 

http://iri.columbia.edu/PMI/Appendix_PMI_sentinel_sites_in_Oromia_Ethiopia/PMI%20Intervention%20analysis%20for%20Ethiopia%2030%20July.pdf
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Incidences, and Climate Analysis: Ethiopia“ for more information, 
username: PMI, password: pietro).  However, due to the limited number 
of years for malaria and intervention data, it was impossible to statistically 
identify the contribution of intervention and climate factors on the trends 
of malaria cases.  In order to implement this approach, this would require 
longer time-series of cotemporaneous data on all three dimensions – 
malaria incidence, climate and intervention – observed over a time-period 
that spans the introduction of the interventions in question. 

 
 
3. Data sets (Section 5) 

a. Climate, Malaria and Intervention data were identified and explored. 
challenges in data quality and availability were identified.  

b. Appropriate data set were accessed from partners and new databases 
created as needed.  

i. Malaria data (Section 5.1) from disparate sources were accessed 
for Ethiopia including: 

1. Zone level IDSR data from the Ethiopia Health and 
Nutrition Research Institute (EHNRI) (2005-2009) 

2. National HMIS malaria incidence data from ENHRI (1983-
2010) 

3. Numerous local time series of malaria incidence data were 
explored during the impact workshop 

ii. Intervention data (Section 5.2) from PMI partners were accessed 
for Ethiopia’s Oromia region, including: 

1. Quarterly reports on commodity distribution and 
geographic coverage (2008-2010). 

iii. Climate data (Section 5.3) obtained from Enhanced National 
Climate Services (ENACTS) products, including rainfall and 
temperature. These were developed for Ethiopia and Tanzania 
with the support of Reading University, the World Meteorological 
Organization and the National Meteorological Agencies of Ethiopia 
(NMA) and Tanzania (TMA). They included: 

1. Quality assured rainfall and temperature time series 
generated for each 10km grid of the country from merged 
observation and satellite data going back 30 years 

2. IRI Data Library data management, analysis and 
visualization tool installed in each country 

3. Data products disseminated via National Meteorological 
Agency websites  

 
4. New Tools Created (Section 6) 

a. New tools were developed for climate – malaria analysis that could use 
the ENACTS climate databases created for Ethiopia and Tanzania. These 
were:   

i. Climate Suitability for Malaria Transmission (CSMT) Tool 
designed to help identify regions (including administrative 
boundaries) where climate variability and trends are likely to be 
significant.  CSMT results for Ethiopia (P. falciparum and P. vivax) 
and Tanzania (P. falciparum and P.vivax ) are available at: 

http://iri.columbia.edu/PMI/Appendix_PMI_sentinel_sites_in_Oromia_Ethiopia/PMI%20Intervention%20analysis%20for%20Ethiopia%2030%20July.pdf
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Ethiopia Falciparum, Vivax; Tanzania Falciparum, Vivax (click on 
the links and use username: PMI; password: pietro). 

 
ii. Weighted Anomaly of Standardized Precipitation (WASP) Tool 

designed to establish whether or not the intervention period was 
substantially wetter or drier than the baseline period. 
 

iii. Climate Analysis Tool designed to explore trends in the rainfall 
and temperature data by year, season or month. Climate 
variability and its relationship with ENSO can also be explored 
which will indicate the likelihood that the region will experience 
major anomalies during an ENSO event.  

 
 

5. Short Reports were created using the CIA methodology for USAID and partner 
staff to summarize information on the relevant climate data for malaria impact 
assessments for two PMI countries.  

a. “The use of climate in the assessment of the impact of malaria 
interventions: Ethiopia” (Section 7) 

b. “The use of climate in the assessment of the impact of malaria 
interventions: Tanzania” (Section 8) 

 
 

6. Appendix: Training workshops undertaken (Section 11 & 12) 
a. A training workshop was held in Addis Ababa, Ethiopia, during December, 

12-14,  2011, facilitated by the Anti-Malaria Association/Climate and 
Health Working Group of Ethiopia and the International Research Institute 
for Climate and Society/Earth Institute, Columbia University, New York, 
USA and in collaboration with the Federal Ministry of Health, the National 
Meteorological Services Agency of Ethiopia.  The workshop, entitled “The 
Use of Climate Information in Impact Assessment for Malaria 
Interventions” focused on the training of national malaria experts (both 
practitioners and researchers) in the use of the new ENACTS databases 
in malaria impact assessments. Representatives from the National 
Meteorological Agency also participated. A report on the meeting was 
produced (Appendix 1 Section 11) 

 
b. A training workshop was held in Dar es Salaam in collaboration with the 

Tanzanian National Meteorological Agency during June 25 July, 6, 2012. 
The workshop, entitled “Data Quality Control, Satellite Rainfall Estimation, 
and Merging Station Observations with Satellite Estimate” focused on the 
training of national meteorological agency staff in the creation of the 
ENACTS climate database for Tanzania. A report on the meeting was 
produced (Appendix 2 Section 12). 

http://iri.columbia.edu/PMI/Ethiopia/CSMT%20Falciparum/Ethiopia_CSMT_Falciparum.pdf
http://iri.columbia.edu/PMI/Ethiopia/CSMT%20Vivax/Ethiopia-CSMT%20_Vivax.pdf
http://iri.columbia.edu/PMI/Tanzania/CSMT_Falciparum/Tanzania_CSMT_Falciparum.pdf
http://iri.columbia.edu/PMI/Tanzania/CSMT_Vivax/Tanzania-CSMT_Vivax.pdf
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1.1 Financial Support 
 
Funding for this project was provided by the President’s Malaria Initiative, USAID. The 
project was administered through an IRI/EGAT-USAID Cooperative Agreement 
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Robertson. A subcontract was awarded to an IRI partner, the Health and Climate 
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consultancy as well as the disbursement of funds for the workshop held in Tanzania.  
 
The project leveraged resources from additional partners and projects namely: USAID-
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In particular this study leveraged a three year Google.org funded project ”Building 
Capacity to produce and use climate information for improving health in East Africa”. In 
particular the current analysis incorporates the key output from the Google.org project 
namely the new climate database for Ethiopia (Enhanced National ClimaTe Services; 
ENACTS product) developed by the National Meteorological Agency of Ethiopia with 
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workshop “Use of Climate Information in Impact Assessment for Malaria Interventions” at 
UNECA in Addis Ababa, Ethiopia from December 12-14, 2011 which was convened by 
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1.4 Acronyms  
 
 
ALR   Adiabatic Lapse Rate  
ACCM  All-cause child mortality   
ACTs  Artemisinin-based Combination Therapies 
AMA  Anti-Malaria Association 
CAMS_OPI Climate Anomaly Monitoring System and OLR Precipitation Index  
CCD  Cold Cloud Duration 
CDC  Center for Disease Control 
CGC  Columbia Global Center 
CHWG  Climate and Health Working Group 
CSMT  Climate Suitability Malaria Transmission 
CMAP  Climate Prediction Center Merged Analysis of Precipitation 
CRED  Center for Research in Environmental Decisions 
DJF  December January February 
EGAT  Economic Growth and Trade 
EHNRI  Ethiopian Health and Nutrition Research Institute 
ENACTS Enhanced National Climatology time Series   
ENSO  El Niño Southern Oscillation 
FMoH  Federal Ministry of Health 
GCMs  Global Climate Models 
GFATM Global Fund for Aids Tuberculosis and Malaria 
GMAP  Global Malaria Action Plan 
GIS  Geographical Information Systems 
GPCC  The Global Precipitation Climatology Centre  
HCF  Health and Climate Foundation 
HMIS  Health Management Information System 
HIMAL  Highland Malaria Project 
IDSR  Integrated Diseases Surveillance and Response System 
IPCC  Intergovernmental Panel on Climate Change   
IPT  Intermittent Preventive Treatment 
IPTp  Intermittent Preventive Treatment of malaria in pregnancy  
IRI  International Research Institute for Climate and Society  
IRG  International Resources Group 
IRS  Indoor residual spraying 
ITNs  Insecticide-treated nets 
MARA  Mapping Malaria Risk in Africa 
MDGs  Millennium Development Goals 
MERG  Monitoring and Evaluation Reference Group  
MSPH  Mailman School of Public Health 
NASA  National Aeronautics and Space Administration 
NMA  National Meteorological Agency 
NOAA  National Oceanic and Atmospheric Administration, USA 
PHEM  Preventive Health Emergency Management 
PMI  President Malaria Initiative 
QC  Quality Control 
RBM  Roll Back Malaria 
SST  Sea Surface Temperature 
TMA  Tanzanian Meteorological Agency 
UNECA United Nation Economic Commission for Africa 
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UNICEF United Nations Children's Fund 
USAID  United States Agency for International Development  
WASP  Weighted Anomaly of Standardized Precipitation  
WHO  World Health Organization  
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2 Introduction  
 
Malaria is the most important parasitic disease worldwide with the highest burden borne 
by endemic countries in sub-Saharan Africa where it accounts for an estimated 0.5 - 2 
million deaths each year, mostly in children under the age of 5 years [1]. Over the last 
decade, control and, more recently elimination, of malaria has been prioritized by 
governments of endemic countries and the focus of intensified international donor 
support [2]. Donor support is increasingly contingent on evidence of impact.  For 
example, the malaria targets for the reduction in malaria morbidity and mortality 
established for the Millennium Development Goals and the Roll Back Malaria partnership 
require measurement of specific malaria outcome indicators in order to evaluate the 
effectiveness of interventions toward their achievement.   
 
Malaria is a complex disease: its transmission, via vector mosquitoes (Anopheles sp.) 
can be highly climate sensitive with temperature being a significant driver of the 
development rates of both mosquito vector and plasmodium parasite while rainfall and 
humidity provide essential environmental characteristics for juvenile mosquito 
development and adult survivorship respectively. Climate has been identified as one of a 
number of possible confounders in the evaluation of malaria interventions. Climate 
information, based on routinely collected data, obtained via globally recognized 
standards at defined regular time intervals, can be systematically incorporated into 
malaria analyses at multiple spatial and temporal scales.  If climate is not taken into 
account, then the measurement of achievements may be overly pessimistic in years that 
experience an elevated climate risk for malaria in relation to the baseline period or 
conversely overly optimistic when climate risk from malaria is low.  
 

2.1 The President’s Malaria Initiative  
 
The US President’s Malaria Initiative (PMI) has supported malaria control in 19 high 
malaria burden countries in sub-Saharan Africa since its launch in 2006.  In support of 
the Global Malaria Action Plan (GMAP) goal of achieving a 50% reduction in malaria-
related mortality, PMI aims to achieve 85% coverage of vulnerable populations with 4 
proven interventions (insecticide-treated nets (ITNs), indoor residual spraying (IRS), 
intermittent preventive treatment of malaria in pregnancy (IPTp) and artemisinin-based 
combination therapies (ACTs).  Since 2005, the scaling-up of coverage with these 
proven interventions has progressed in many African countries with the expectation that 
as coverage increases a significant reduction in the malaria burden will occur. The World 
Malaria Report 2010 highlights that continued progress has been made towards meeting 
international targets for malaria control to be achieved by 2010 and 2015. The report 
also provides evidence of the scale-up of the four key interventions, with a dramatic 
increase in provision of interventions across the board in 2008.  
 
To date, several countries in Africa have reported that they have achieved target levels 
for intervention coverage [2]. Furthermore, there are an increasing number of reports 
describing declining incidence of malaria hospitalization, deaths and prevalence [3, 4] 
and a strong case has been made that the implementation of malaria interventions at 
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scale has produced a demonstrable impact in a number of African countries [5-8] 
although not all countries have achieved success [9]. 
 
Since 2010, PMI has used Roll Back Malaria’s methodology to evaluate its malaria 
interventions [10]. The methodology identifies the need to explain contextual and/or 
confounding factors (e.g. urbanization, agricultural development, education, burden of 
other infectious disease, etc.) that may have had an impact on malaria transmission 
during the past six years of intervention activities. 
 
Key among the list of potential confounders is climate. The intention is to construct a  
‘plausibility argument” whereby it can be reasonably assumed “that mortality reductions 
can be attributed to programmatic efforts when improvements are found in steps of the 
causal pathway between intervention, scale-up and mortality trends” [11]. Here, we seek 
to ensure that such observed reductions in morbidity and mortality along with changes 
along the causal pathway are appropriately attributed to interventions climate and other 
factors as appropriate. Similarly if malaria morbidity and mortality increase, then the role 
of climate must also be taken into account. 
 
PMI’s and partner’s evaluation strategy has focused on the measurement of changes in 
all-cause child mortality (ACCM) and an examination of the plausibility of attributing 
observed ACCM reductions to National Malaria Control Program (NMCP) interventions. 
A recent external evaluation of PMI’s evaluation methodology [12] indicated that PMI’s 
evaluations should no longer be centered on ACCM. Instead, the external evaluation 
recommended the use of a range of data sources (including ACCM) in order to assess 
trends in malaria morbidity and mortality. Such an approach is consistent with the 
change in PMI’s objectives, which now include the reduction of malaria morbidity, in 
addition to mortality. 
 
Below are four observations, given as examples, which indicate that climate variability 
and trends potentially confound the attribution of reductions in malaria morbidity and 
mortality solely to interventions. 

 
 Declines in malaria indicators have occurred in regions where vector populations 

(Anopheles gambiae s.str and An. funestus) have declined independently of any 
known specific malaria intervention - for example in Tanzania [13].  

 
 Declines in malaria indicators have occurred in regions where the dominant 

vector population has switched from An. gambiae s.str to An. arabiensis – the 
latter has a tendency to be more zoophilic and drought tolerant  [14]. For 
example, Anopheles gambiae s.str. adult females from indoor collections 
predominated in Kisumu, Kenya, from 1970 to 1998 (ca. 85%). Beginning in 
1999, An. gambiae s.str. decreased proportionately relative to An. arabiensis, 
then precipitously declined to rarity coincident with increased bed net ownership 
as national bed net distribution programs commenced in 2004 and 2006 [15].  
 

 Declines in malaria morbidity and mortality have preceded interventions. These 
declines have occurred on Pemba Island, Tanzania [16] and in a diverse range of 
ecological settings in Africa [3]. 
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 Declines in malaria morbidity and mortality have been shown to be associated 
with drought. For example, declines in malaria due to drought have been 
observed in Sudan and Eritrea [17, 18] 

 
Note that drought may also be the underlying cause of changes in vector abundance 
and species as well as observed declines in malaria before interventions are 
instigated.  
 
 Malaria resurgence has been observed in some areas following unusually high 

rainfall [2].  
 

2.2 Aim and objectives of this study 
 
The aim of this study is to enable USAID/CDC PMI to account for the confounding effect 
of climate variability when evaluating the NMCP’s malaria interventions.  
 
The study has the following 5 specific objectives: 
 

1. Review the probable impact of climate variability and trends on malaria in 
different eco-epidemiological settings in Africa, including recent changes in the 
climate of East Africa (2000-2010) in light of the climate suitability for malaria 
transmission. This literature will be reviewed in section 3. 
 

2. Establish a methodological framework for removing the confounding effect of 
climate from routine impact assessment activities carried out by the Monitoring 
and Evaluation Reference Group. This methodological framework will be 
summarized in section 4. 
 

3. Identify and collect best data on malaria, intervention and climate in section 5. 
 

4. Analyze the climate data and create new tools that will facilitate climate analysis 
for future requests in section 6. 

 
5. Provide two short reports (Ethiopia and Tanzania) that contribute to the PMI 

plausibility argument that is being used in the RBM Monitoring and Evaluation 
Reference Group (MERG) impact assessment. The Ethiopian short report is 
presented in section 7 and the Tanzanian report is in section 8. 
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3 Review of Climate and Malaria in Africa 
 

3.1 Why is Climate Unique? 
 
In addition to malaria interventions a plethora of temporally evolving demographic, 
epidemiological and health-system factors that are not discussed in this report may play 
an equivalent or larger role than climate in driving changing morbidity or mortality. 

 
What makes climate measurements unique is the fact that they are (at best) recorded by 
national agencies according to globally recognized standards at defined, regular time 
intervals and can be systematically analyzed at the local and global scale allowing 
comparison across space and time. The following characteristics of climate make it 
potentially ideal as an additional layer of information for the health sector for application 
in malaria vulnerability assessments, surveillance and forecasting:  its climatology, 
seasonality, diurnal rhythm and potential predictability at multiple time scales (weather, 
seasonal, decadal and climate change). Despite their potential, climate data are rarely 
used in health decision-making. Institutionalized weaknesses in policy development and 
implementation as well as availability and access to robust climate data and information 
[19] limit the current capacity of the health sector in Africa [20]. This project signals the 
type of change needed to effectively use climate information in health policy decision 
making.  
 
In order to minimize the confounding effect of climate in evaluations of malaria 
interventions, it is essential to first establish the significance of the underlying 
relationship of climate variables to malaria outcomes – both in terms of their magnitude 
and their strength.  While in some geographic regions this relationship is relatively easy 
to quantify, in others it is significantly more challenging. In all areas, quality 
contemporaneous data on malaria outcomes, the implementation of interventions and 
climate are needed in order to generate appropriate evidence of the relationship. 
 
However, the use of malaria, intervention and climate data in observational studies pose 
two distinct challenges i) those which involve the very nature of the data itself and ii) the 
availability and accessibility of appropriate quality-controlled data.  These challenges are 
outlined in detail in section 3.2 and the means to overcome the widespread lack of 
appropriate, quality controlled, high resolution climate data is presented in section 5.3. 

3.2 Climate – Malaria Interactions 
 
Malaria transmission is highly climate sensitive. Temperature is a significant driver of the 
development rates of both the Anopheles spp. mosquito vector and Plasmodium 
parasite. Rainfall and humidity provide essential environmental characteristics for 
juvenile mosquito development (breeding sites) and adult survivorship [21]. In general, a 
relative humidity of 60% or more is deemed necessary for effective malaria transmission 
[22].  
 
The greatest burden of malaria in Africa is suffered by those living in endemic rural 
areas. However, populations that live in areas bordering endemic regions are particularly 
vulnerable to epidemics as their low immunity status makes them susceptible to severe 
malaria at times when changes in the environment increases its suitability for malaria 
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transmission [23]. In both highly seasonal and marginal transmission areas, climate 
(specifically rainfall, humidity and temperature) plays a significant role in determining 
spatial, seasonal and year-to-year variations in transmission as well as influencing 
longer term trends. Thus, climate has the potential to confound observational studies of 
the impact of interventions on malaria outcomes at a range of spatial and temporal 
scales. 

3.3 Rainfall 
 
In Africa, members of the dominant malaria vector species complex, Anopheles gambiae 
s.l. breed in open, sun-light pools. Although irrigation, river pooling and domestic water 
use may also create suitable breeding sites, the most frequent source of these pools is 
seasonal rainfall. 
 
Where the environment is sufficiently warm for parasite development to occur, seasonal 
rainfall is a key determinant of the timing of the malaria transmission season in many 
parts of the world and especially in semi-arid regions in Africa. Year-to-year changes in 
rainfall quantity and distribution through the season (e.g. number of days of rainfall) may 
also be important in driving year-to-year variations in malaria outcomes.  

3.3.1 Rainfall in semi-
arid regions 

 
For example, in lowland semi-arid 
warm regions of Africa (such as 
Botswana in southern Africa) 
where rainfall is the predominant 
climatic driver of malaria 
transmission, the relationship 
between anomalies (deviations 
from the mean) of national 
laboratory confirmed malaria 
incidence data and climate data 
can be well characterized using 
simple statistical models Figure 
(Figure 3-1Error! Reference 
source not found.)[24]. 
 
Note that the negative 
standardized malaria incidence 

anomalies (<0) have a strong linear relationship with rainfall (CMAP) when compared to 
positive anomalies. For example, the very high rainfall observed in 2000 (associated with 
Cyclone Eline) resulted in higher than average malaria anomalies. Overall, however, 
malaria was lower than what might be expected from a simple linear model and a 
quadratic model worked best. One reason often cited for this phenomenon is that high 
rainfall may wash out breeding sites as well as create them, leading to a decrease in 
malaria transmission [25]. A similar situation was observed in Namibia, where again a 
quadratic relationship was observed between malaria cases from 9 hospitals in 
Ovamboland, Namibia and Cold Cloud Duration (CCD), a satellite proxy for rainfall [26] 
Figure 3-2. 

Figure 3-1 Relationship between rainfall and malaria in 
Botswana 
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Figure 3-2 Malaria cases and rainfall in Ovamboland, Namibia 

  
In highly endemic regions such as Sierra Leone (both warm and wet), climate variability 
has relatively little overall impact on differences in malaria from one season or year to 
another [27].  
 

3.3.2 Rainfall in highland regions 
 
Altitude also affects rainfall distribution. Moist air which is forced to ascend hills may be 
cooled below the dew point to produce cloud and rain. A map of average annual rainfall 
therefore looks very similar to a topographic map. However, mountains at higher 
altitudes may be relatively dry as clouds have already formed and rain fallen at lower 
altitudes. The peak rainfall region relative to altitude is called the “pluviometric optimum” 
(or rainfall maxima). This was noted by the authors of the Highland Malaria (HIMAL) 
project [28] who extensively reviewed the literature pertaining to the role of climate in the 
East African highlands. They reported that many highland areas are in fact relatively dry.  
For example, precipitation on Mount Kenya and Cameroon at 3000 m is only 10–30% of 
that at 1500m. On Mount Kilimanjaro, rainfall shows a similar pattern but the rainfall 
maximum is significantly higher, at 2000 m. In Ethiopia, there is a bimodal rainfall 
distribution with peaks at 2000–2500 m and at 3000–3500 m.  Abnormal rainfall events 
have been shown to cause malaria epidemics in highland areas as long as temperatures 
remain sufficiently high. Aspect (side of the mountain) and slope (which determines run-
off) can also be key determinants at the local level.  

3.3.3 Droughts 
 
The strong influence of droughts on lowering or even eliminating malaria for periods of 
time has been observed in other semi-arid regions including Eritrea [17] and Sudan [18], 
This relationship appears to be more predictable than the association of malaria 
epidemics with high rainfall [29], although the latter can be extremely significant - such 
as the catastrophic malaria epidemics in northeastern Kenya associated with the 1997/8 
El Niño [30].  Occasionally, droughts may cause local epidemics of malaria through the 
creation of breeding sites next to normally ‘free flowing’ rivers.  In highly endemic regions 
such as Sierra Leone (both warm and wet), climate variability has relatively little overall 
impact on differences in malaria from one season or year to another [27]. 
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3.4 Temperature 

3.4.1 The relationship between temperature and altitude 
 
The Highland Malaria Project (HIMAL) was designed to address both the academic and 
operational aspects of highland malaria in Africa following observations that epidemics 
were increasing [28]. Amongst other activities the project included the development of a 
stratification of malaria risk in highland areas, based on spatial modeling of continental 
datasets for climate and altitude. 
 
In the HIMAL report altitude is recognized as important to malaria control and is used as 
a key environmental variable to describe the limits of malaria transmission in highland 
areas.  Altitude acts as a proxy for temperature because day-time temperatures decline 
as altitude increases; a process formally described as the adiabatic lapse rate (ALR).  
The ALR varies according to the degree to which the air is saturated. In completely 
unsaturated air, the (dry) ALR is 0.98 °C per 100m, but this rate decreases as saturation 
increases. In reality air is almost always partly saturated, and while lapse rates of around 
0.6 °C per 100 m are most common, spatial and temporal variations in humidity can 
make lapse rates extremely variable. At night, the situation may be quite different and 
temperature inversions are not uncommon. The relationship also varies according to 
latitude and orography.   
 
In Ethiopia for example, altitude is used by the Ministry of Health as a cutoff for endemic, 
epidemic and non-malarious areas (below <2000, 2000-25000 and >2500 respectively). 
However because of the limitations described above it is preferable to use the best 
available estimates of actual temperature rather than simply assume that altitude is a 
good proxy.  
 
An important constraint in Africa to the use of temperature data in malaria analysis is the 
limited distribution of meteorological stations recording air temperature and the 
challenge of interpolating data across complex terrains. Compensation for this paucity of 
information may be obtained by using satellite-based methods however this is not 
straightforward. Recently a comparisons between night MODIS temperature surface 
data with minimum ambient temperature showed that MODIS nighttime products provide 
a good estimation of minimum ambient over different ecosystems [31]. 
 

3.4.2 Temperature and malaria parasite development within mosquito 
 
Temperature affects the intensity of malaria transmission primarily through its effect on 
the malaria parasite and malaria vector (mosquito). In particular the non-linear 
relationship of temperature to parasite development means that small changes in 
temperature can have a big effect on transmission. 
 
The development of the malaria parasite within the vector is referred to as sporogony 
(extrinsic incubation period). The time necessary for the malaria parasite to complete 
sporogony can be calculated using Moshkovsky’s degree-day-based formulae [32, 33] 
where: 

for Plasmodium falciparum:  E = 111 / (T-16) 
for Plasmodium vivax:  E = 105 / (T-14.5) 
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These formulae indicate that as temperatures increase there is a resulting decrease in 
the extrinsic incubation period of the malaria parasite. This reduction in the extrinsic 
incubation period is associated with an increase in malaria transmission intensity. [34]  
 
The following figure depicts the inverse relationship between temperature and the 
extrinsic incubation period  

 
Figure 3-3 Temperature and the extrinsic incubation period [35] 

 
 

3.4.3 Temperature and mosquito development 
There are a number of ways in which temperature affects malaria transmission via its 
effect on malaria vectors. These include the length of the gonotrophic cycle, vector 
abundance and vector survival. 
 
The gonotrophic cycle is the process of a female mosquito digesting a blood meal, 
developing ovaries and laying eggs. As temperatures increase, the time necessary for 
female mosquitoes to complete the gonotrophic cycle decreases. When the time 
necessary to complete the gonotrophic cycle decreases, a female mosquito has more 
opportunities to take blood meals and, therefore, transmit the malaria parasite [36]. A 
study in Kenya found that an increase in temperature of 1.8 degrees Celsius led to a 
decrease in the first and second gonotrophic cycles of Anopheles gambiae s.l. of 1.5 
days (17% decrease) and 1.4 days (27% decrease), respectively [37]. 
 
Similarly, studies in Kenya have also shown that higher temperatures of aquatic 
breeding sites lead to a decrease in the time necessary for larvae to develop into adult 
mosquitoes [38, 39]. 
 
The minimum temperature for mosquito development is between 8-10°C although, the 
minimum temperatures for parasite development are between 14-19°C.  The optimum 
temperature for mosquitoes activity is 25-27°C, and the maximum temperature for both 
vectors and parasites is 40°C [40]. It must be noted however that mosquitoes live in 
micro-climates and may avoid low temperatures by spending much of their time indoors 
(e.g. in houses or animal pens).  They may avoid high day time temperatures by locating 
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themselves in cool animal burrows or by resting on the outside of a traditional clay pot 
where the surface is cooled by constant evaporation.  
 

3.5 The relationship of malaria, local climate to global climatic 
processes  

 
In areas of the world where sea-surface temperatures (SSTs) in the Pacific (i.e., the El 
Niño-Southern Oscillation, ENSO) are important predictors of climate events, significant 
correlations between malaria incidence and observed SSTs (including lagged SSTs) 
have been noted [25, 41]. 
 
For instance, in Botswana, an analysis of sea surface temperature and national 
standardized malaria incidence anomalies revealed a sufficiently high level of 
predictability [24] to warrant the development of a malaria early warning system which 
incorporates seasonal climate forecasts [29]. See Figure 3-4. 
 
 

Figure 3-4 Malaria incidence, rainfall (CMAP) and sea surface temperature in Botswana 

 
 
 
 
However, as climate is only one of the potential drivers of malaria transmission and 
associated outcomes and its importance varies across different eco-epidemiological 
settings, a thorough understanding of the climate and epidemiology of malaria at 
relevant spatial and temporal scales is needed when assessing the sensitivity of malaria 
to climate in any particular setting.  
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3.6 The Climate of Eastern Africa  
 
Many of the countries exhibiting a strong decline in malaria cases are found in Eastern 
Africa where the environment varies from cool mountains to semi-arid desert to humid 
coastlines. In terms of its climatology, equatorial East Africa is one of the most complex 
regions in Africa. The large-scale tropical drivers, which include major convergence 
zones, are superimposed on other factors including the region’s complex topography, 
large lakes and extensive coastline. Sitting astride the equator, much of the region 
experiences two rainy seasons occurring when the Inter-tropical convergence zone 
(ITCZ) traverses the region in its southward and northward migrations. As a result, the 
climatic patterns are markedly complex and can change rapidly over short distances 
[42].  For example i) the average amount of rainfall often changes significantly within 
distances on the order of 10s of kilometers ii) within the region there are areas with one, 
two and even three seasonal cycles of rainfall and iii) the transition from desert, with 
rainfall less than 200mm, to rainforest where the annual rainfall is >2000mm happens 
within short horizontal distances or changes in elevation.  
 
Despite the spatial complexity of the average climate, Nicholson ([42]) observed that the 
year-to-year variability in rainfall is remarkably coherent across large areas of East Africa 
with the ‘Short’ rainy season (typically October to December) showing greater variability 
than the ‘Long” rains, which last from March to May. Seasonal rainfall variations during 
the short rainy season are largely linked to the El Niño Southern Oscillation phenomena 
and sea surface temperatures in the Indian Ocean [43]. East Africa is a relatively dry 
region with average annual rainfall totals in the range of 500m-1500m. In addition, very 
extensive dry regions (e.g. N.E. Kenya and Somalia) exist as do wetter areas such as 
those around Lake Victoria. 
 

3.6.1 Evidence of recent warming in Eastern Africa 
 
The potential for warming of highland regions in East Africa as a function of climate 
change has been an issue of considerable concern to the malaria research and 
practitioner community since the late 1990s [28] and has been extensively debated by 
health researchers [44-46] with widely differing perspectives. 
 
Central to this debate has been whether or not a statistically significant upward trend in 
temperature in the highlands of East Africa has occurred and whether such a rise could 
account, at least in part, for the observed increase in malaria during the 1980s and 
1990s. A substantial constraint to the climate analyses of these and subsequent studies 
has been the very limited access to a sufficiently long time series of quality controlled 
daily observations of surface air temperature from meteorological stations. Constraints to 
accessing such gold standard observations have meant that studies have relied heavily 
on limited time series of station data, have used data that are inadequately quality 
controlled or have ignored local ground observations completely in favor of spatially 
interpolated datasets. However, in the last few years, evidence of regional and local 
warming in East Africa from detailed analyses of quality-controlled ground based 
meteorological station data has emerged. 
 
For example, a detailed regional climate trend analysis for East Africa was conducted by 
Christy and co-authors examining air temperature trends at 60 stations across Kenya 
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[47].  After spatially interpolating the station-based data, the study reports finding a 
statistically significant upward trend in minimum temperature in the Kenyan Highlands 
region. The magnitude of the area-average trend in minimum temperature they identified 
was about +0.15°C per decade, based on an analysis covering the period 1979-2004. 
However, no statistically significant trend in maximum temperature was found.   
 
For a detailed local analysis, Omumbo and colleagues (including national meteorologists 
from Kenya and an IRI climate scientist) obtained 30 years (1 January 1979 to 31 
December 2009) of quality-controlled daily observations (>97% complete) of maximum 
and minimum temperature. These data were used in an analysis of trends at Kericho 
meteorological station, sited in a tea growing area of Kenya’s western highlands [48]. 
After extensive quality control of the data, linear trends were identified via a least-
squares regression analysis. An upward trend of approximately 0.2OC/decade was 
observed in both minimum and maximum temperatures (P<0.01).  
 
These ‘gold standard’ meteorological observations were compared with spatially 
interpolated temperature datasets that have been developed for regional or global 
applications and have been previously used in local malaria analyses in the Kenyan 
highlands [46, 49]. These climate surfaces showed markedly different trends when 
compared with each other and with the Kericho station observations, reinforcing the 
perspective that local high quality data are needed for epidemiological studies [50].  
 
Where malaria transmission is constrained by low temperatures, the relationship to 
malaria is made complicated by the independent and interacting effects of temperature 
and rainfall.  For example, in the Kericho study local rainfall was found to have inverse 
effects on minimum (night-time) and maximum (day-time) temperatures [48]. Months 
with above-average (unusually heavy) rainfall were found to be negatively correlated 
with maximum temperature values (r = -0.52, p < 0.01) (presumably due to cloud cover 
restricting daytime sunlight) but positively correlated with minimum temperature 
(presumably due to cloud cover preventing cooling at night; r = 0.30, p < 0.01).   
 
Conversely, unusually dry conditions boost maximum temperatures while allowing 
minimum temperatures to drop. This is an essential point when attempting to link climate 
variability with malaria: care is needed in choosing the appropriate climate variable to 
analyze. Often average temperatures (mean of the minimum and maximum) are used in 
such analyses, which may mask the underlying relationship of malaria transmission to 
night time (minimum) temperatures – the time when vector mosquitoes are active. 
 
The relationship of local climate variations with larger climate processes, including 
tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was 
also assessed by Omumbo and colleagues [48]. To facilitate comparison with other 
climate variables, monthly departures from the long-term (1980-2009) monthly mean 
values of maximum temperature, minimum temperature, average temperature and 
precipitation were computed. To analyze the relationships with El Niño (and La Niña), an 
11-month moving average was then applied to the resulting time series as that is the 
typical time scale of individual ENSO events. They found that temperature variations in 
Kericho were associated with large-scale climate variations including tropical SST. In 
particular, minimum temperature showed the strongest relationship (Table 3-1, Figure 
3-5) with large-scale climate variations. 
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Table 3-1 Temporal correlation between climate variables (maximum temperature, minimum 
temperature and sea surface temperatures) 

Variables Correlation  

Tropical sea surface temperatures 
Kericho minimum temperature 

0.77 *** 
0.46 *** 
0.36 *** 

Tropical sea surface temperatures 
Kericho maximum temperature 

0.62 *** 
0.24 *** 

       0.14 * 
Source: [48] 
*Confidence levels, based on a 2-tailed t-test, are shown by asterisks, where *** = 99%, ** = 95% and * = 
90%.  The three correlation values for each pair of climate variables are those computed for: (top) the 11-
month moving average; (middle) monthly values; and (bottom) de-trended, monthly values.  
 
 

Figure 3-5 Malaria cases and Minimum Temperature at Kericho, Kenya, compared to Global 
SSTs, Tropical LST and ENSO 

 
 
The higher correlation of minimum temperature with sea surface temperatures, when 
compared with maximum temperature, could be explained by the differential effect that 
rainfall has on minimum and maximum temperatures (as described above).  
 
During El Niño years, when sea surface temperatures in the Pacific are high, much of 
East Africa experiences unusually heavy rainfall during the short rainy season (October-
December). While El Niño tends to boost temperatures independently of rainfall, this 
heavy rainfall will moderate the effect and will tend to dampen maximum temperatures 
while at the same time further increasing minimum temperature. These interactions are 
described in more detail in following Figure 3-6. 
 



3-25 
 

Figure 3-6 Differential impact of rainfall and ENSO on maximum (Tx) and minimum (Tn) 
temperature 

 
 
Schematic of the relationship between maximum (Tx) and minimum (Tn) temperatures and unusually dry 
conditions (left), rainy conditions (center) and in relationship to tropics-wide warming or cooling associated 
with El Niño or La Niña (right) [48]. 

3.6.2 Evidence of recent drying in Eastern Africa  

Over the past decade East Africa has experienced an increasing frequency of drought 
events particularly during the “long rains” season, which typically runs from March to 
May.  The most recent of these events, in 2010-11, was considered the most severe in 
60 years and triggered a humanitarian crisis that initiated a global response. The spatial 
extent of the drought, its severity and its likely cause are important as the drought 
provides a favorable environment for malaria control but could also potentially confound 
the assessment of the impact of malaria interventions by overestimating their impact. 
The spatial extent of the recent drying is indicated in Figure 3-7. 

 

 

 

 

 

 

 

 

based on GPCP v2.2 data [51] 

An abrupt shift towards drier conditions at the regional scale is indicated in Figure 3-8. 

Figure 3-7 Percentage change in annual precipitation (c) and March – May 
precipitation (d) for the period 1999-2009 relative to 1980 – 1998 baseline. 
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Figure 3-8 Time series of March-May rainfall anomalies relative to a 1979-2010 baseline averaged 
across East Africa land areas  

 
 
 
 
 
 
 
 
 
 
 

 
The analysis is based on three sources of precipitation data: from GPCC, GPCP, and CAMSOPI [52]. 

A reduction of approximately 15% in March - May rainfall has been observed [52, 53] for 
the region as a whole. While this is substantial, it is not as severe as the protracted 
Sahel drought where rainfall declines of 30-40% were observed and shown to be mainly 
driven by sea surface temperatures [54].  Observed changes in malaria indicators in the 
Sahel as a result of the extended drought included declines in malaria attributed 
morbidity [55], changes in vector composition and in some cases complete 
disappearance of An. funestus for an extended period of time [56]. 

3.6.3 Possible causes of the Eastern Africa drought and why they matter  

Climate change projections use global climate models (GCMs) to examine the potential 
effects of increasing concentrations of anthropogenic greenhouse gasses on the Earth’s 
climate. Current projections suggest that the climate of East Africa will become wetter by 
the end of this century [57].  This divergence from the recent, observed decline in rainfall 
raises some fundamental questions to climate scientists who provide a number of 
alternative explanations which are highly relevant to current and longer-term prospects 
for malaria control and elimination.  

For instance, some climate scientists have argued that the increasing frequency of 
drought in East Africa is associated with an overall downward trend in East African 
rainfall which has been underway since the 1980s, which in turn is associated with an 
upward trend in sea surface temperature, especially in the tropical Indian Ocean and 
therefore potentially connected to climate change [53]. In simplest terms, the argument 
is that warmer ocean temperatures lead to increased precipitation over the ocean that 
ultimately robs East Africa of its moisture and rainfall.   

In contrast, while not excluding the role of climate change, a recent study by Lyon and 
DeWitt [52] provides evidence for the role of slowly-varying tropical ocean conditions in 
generating the recent droughts in East Africa.  The study argues that rather than a 
prolonged decline in rainfall since the 1980’s, the long rains of East Africa have instead 
undergone an abrupt decline that occurred around 1998-99 and that it was associated 
with similarly abrupt changes in sea surface temperatures, mainly in the tropical Pacific 
Ocean.  Their observational analysis was supported by the results from climate model 



3-27 
 

simulations, which indicated that drying in East Africa occurred when the model was only 
responding to conditions in the Pacific. 

The apparent discrepancy between recent drying and projections for a wetter future 
under climate changes raises some fundamental questions. Possible explanations 
include: 

1. The climate models used in making projections are unable to capture key 
aspects of the climate system and thus indicate the climate of the region will 
become wetter, while in fact it will dry.   

2. The recent drying may be associated with climate variations operating to a large 
extent independently of those associated with the effects of anthropogenic 
climate change.   

3. The current drying is part of a more complex response to anthropogenic climate 
change where near term responses differ from longer-term responses because of 
various feedback mechanisms in the climate system.  

Irrespective of which of the above scenarios may be at play, the observation is that the 
climate of late has been drying and there is the possibility that in the future this trend 
may reverse (as is normal with natural variations) and this reversal may then be further 
enhanced by climate change. In short, there is a scientific basis for considering that the 
climate suitability of East Africa to malaria transmission may increase in the coming 
decade.  

3.7 In summary 
 
Given the analyses summarized above, we contend that the drying and warming trends 
observed in Eastern Africa could act as confounders in PMI’s evaluation of its malaria 
interventions. In addition, a reversal of the current drying trend (should it occur) could 
have significant implications for effectiveness of malaria control and elimination 
programs over the next decade. 
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4 Methodology 
4.1 Method 1: Climate Information Analysis (CIA) Methodology  

 
 
where in absence of malaria and intervention data only climatic factors are investigated.  
This approach was applied to: i) Ethiopia Section 7 where limited malaria data were 
available and ii) Tanzania Section 8 where no malaria and intervention data were 
available. 
 
 
Step1. The Climate Suitability for Malaria Transmission Tool is used to estimate the 
degree to which malaria in a given area is climate sensitive.  This is a relative analysis 
and is dependent on the number of months of climate suitability (3 months is more 
sensitive than 4) and evidence that the area is at the margins of malaria transmission – 
i.e.. Climate suitability for malaria transmission over the 28-30 year period is <100% for a 
given month in the main transmission season. 
 
 
Step 2. The WASP tool is used to estimate the change in rainfall integrated over an area 
in the intervention period relative to the baseline period. When combined with 
information on temperature, it is used to estimate whether or not the intervention period 
is occurring during a time when the climate is more or less suitable for malaria 
transmission relative to the baseline period. 
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Step 3. The Climate Analysis Tool can be used to explore trends in the rainfall and 
temperature data by year, season or month at different spatial scales that may explain 
an increase or decrease in malaria incidences.  Climate variability and its relationship 
with ENSO can also be explored. This may  indicate the likelihood that the region will 
experience major malaria anomalies during an ENSO event which may impact on future 
control and elimination activities. 
 

4.2 Method 2: Climate Information, Malaria and Intervention 
Analysis (CIMIA) Methodology  

 

 
 
Step 1. Identify region as climate sensitive. This methodology is best applied to an area 
deemed as climate sensitive for malaria transmission using the CIA method above or 
through a review of the literature and expert knowledge. 
 
Step 2. Obtain relevant data with sufficient pre and post intervention periods to 
undertake a meaningful statistical analysis. Five years either side of the intervention 
period is appropriate but longer may be needed in a region where malaria varies 
cyclically.  
 
Step 3. Use appropriate statistical methodologies to establish whether, and if so, by how 
much, interventions have a beneficial impact on malaria morbidity and mortality allowing 
for the possibility that disease patterns are changing in response to climate variability 
and trends.  
 
This approach was explored with limited data on malaria and intervention from Ethiopia.  
The statistical analysis was performed by Peter Diggle’s group at Lancaster/Liverpool 
University (see document “Malaria, Incidences, and Climate Analysis: Ethiopia“ for more 
information, username: PMI, password: pietro).  However, due to the limited number of 
years for malaria and intervention data, it was impossible to statistically identify the 
contribution of intervention and climate factors on the trends of malaria cases.  In order 

http://iri.columbia.edu/PMI/Appendix_PMI_sentinel_sites_in_Oromia_Ethiopia/PMI%20Intervention%20analysis%20for%20Ethiopia%2030%20July.pdf
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to implement this approach, this would require longer time-series of cotemporaneous 
data on all three dimensions – malaria incidence, climate and intervention – observed 
over a time-period that spans the introduction of the interventions in question. The 
immediate appropriateness of this analysis is dependent on the quality of national or 
subnational malaria, climate and intervention data. If the data is not immediately 
available it is likely that suitable data sets will become available in most countries in the 
next few years.  

5 Data sets 
5.1 Malaria data  

 
The use of malaria data in observational studies poses distinct challenges which involve 
the very nature of the data itself as well as the issue of availability, access relevance, 
and quality.  For example, routine facility-based reporting of cases may be affected by 
low and variable treatment-seeking, poor routine diagnosis, highly incomplete reporting 
from facilities and deaths which are compounded by unreliable approaches to malaria-
specific mortality estimation.  
 
The nature of survey data also has implications for limitations in the analysis of malaria 
distributions. The ability to understand the correct distribution of malaria cases is 
complicated by differential measures (incidence, prevalence, age stratifications etc.) 
reported across both small and large-scale survey datasets.  Further, the ability to 
combine data from multiple survey sources must consider the epidemiological 
implications of data quality and biases stemming from incongruous case-definitions and 
disparate survey coverage. 
 
Other challenges are biological: the relationships between the population prevalence of 
patent infection (as measured by cross-sectional surveys), clinical disease (a fraction of 
which is ostensibly measured by routine reporting systems), and malaria-attributable 
mortality are highly non-linear, extremely biologically complex and only partially 
understood, and poorly measured empirically.  
 
Given the spatio-temporal nature of climate variability and change across very varied 
epidemiological setting, the careful use of health surveillance data (either facility based 
or by administrative unit) in malaria intervention impact analysis [58] has become 
increasingly important. 
 
Data explored during this study includes: 

5.1.1 The DHS (USAID) surveys  
These surveys were intended for other purposes and only peripherally concern 
malaria.. Whilst the reports of these surveys are already available, the malaria data 
in them is only for children <5 years old and are given to no more than second 
Administrative level. 
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5.1.2 Zone level IDSR data from ENHRI (2005-2009).  

The database has complete national coverage, is considered of higher quality than 
HMIS data, and is at the zone level but is of only 5 years duration and therefore 
insufficient for a robust analysis. In an area of high year to year variability in malaria 
under normal conditions.  

5.1.3 National malaria incidence data from ENHRI (1983-2010).  
Created from HMIS data this database is suitable for long term analysis but temporal 
averaging (year) and spatial averaging (whole country) mean that relationship to 
climate difficult to establish.  

5.1.4 Numerous varied local time series of malaria incidence data. 
These were explored during the impacts workshop (see Appendix 1). This helped 
identify valuable datasets which may be used in the future.  

5.1.5 Intervention data from PMI partners in Ethiopia.  
These data was accessed for the Oromia Region (2008-2010). However, the short 
time period covered precluded any detailed analysis. 

 

5.2 Intervention data 
 
As is intimated in all monitoring efforts, consistent and complete data reporting is 
imperative in correctly evaluating the relationship between interventions and their 
accompanying covariates. In order to accurately account for and quantify the effect of 
specific interventions, comprehensive monitoring and evaluation plans are most helpful 
when they (1) are initiated prior to the commencement of intervention, (2) involve data 
point collection at multiple and equally spaced time-intervals, and (3) report data at 
sufficient spatial and temporal resolution. Difficulties in adequately defining association 
of interventions to a change in the outcome of interest often arise from complications 
inherent in this monitoring. 
 
In the analysis of Ethiopian malaria trends, primary limitations in time series analyses 
involved differential dataset lengths of the meteorological-covariate, outcome (malaria), 
and intervention datasets (see Table 5-1). 
 

Table 5-1 Finding contemporaneous data 

 
Note: Arrows terminating at red lines denote dataset bounds before or after those in table. 
 
Quarterly reports documenting PMI partner commodity distribution and geographic 
coverage were provided by Joseph Malone and colleagues, and applied as the known 
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distribution of Ethiopian interventions. Partner organizations and the interventions they 
executed are shown in Table 5-2. 

 
Table 5-2 Interventions and associated partners 

 
 
 
Quarterly reports from 2008-2011 listed the presence/absence of interventions as 
provided by the above partners in each woreda of the Oromia region. Fiscal quarters 
were defined as Q1 (OND), Q2 (JFM) Q3 (AMJ), and Q4 (JAS). 
Two variables were created, aggregating interventions as those that vary dependent on 
malaria increase, and those that vary independent of malaria increase. Interventions 
available were aggregated as shown in Table 5-3.  Some interventions may appear in 
both categories depending on local control strategies.  

 
Table 5-3 Dependent and independent intervention variables 

 
 
For this analysis it was presumed that the above are all the possible interventions for a 
specific woreda. Each woreda was given a score for intervention 1 ('dep_inter': 
dependent on malaria increase) and intervention 2 ('ind_inter': independent of malaria 
increase), calculated as the proportion of interventions present (coded binary) of the total 
possible within each scheme. These proportions were then averaged over the available 
woredas  (3rd Order Administrative boundaries: maplibrary.org) for each zone within the 
Oromia region in each three-month quarter, weighted by woreda population size as of 
the 2007 census, and extracted over geometries while masking unavailable woredas 
over the desired zone. An example of the distribution of the intervention scores for the 
first available quarter can be seen in Figure 5-1. For a more advanced study each 
intervention might be given a different weight and the impact of an intervention in one 
time period on subsequent time periods would be included. 
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Figure 5-5-1 Intervention Score distribution in Oromia 

 

 

The score for a specific quarter was then applied to the corresponding three months for 
each zone within the dataset. 

Geometries derived from 2nd order administrative boundaries were applied to the 
intervention datasets for extraction of data at the zonal levels corresponding to the 
Oromia region. 
 
Additional analytical limitations involved caveats in the intervention dataset available for 
the country. Intervention variable dataset calculations were limited to those districts 
(woredas) within a zone that (1) population data were available for, and (2) matched the 
geographic jurisdictions within the IRI Data Library. Further, intervention scores were 
applied equally to each of the three months for a given quarter, as detailed contextual 
information was not provided as would be needed to warrant the application of a 
“ramping-up” or “waning” of intervention level. 
 
Further, correctly parameterizing interventions is paramount in understanding the correct 
association of interventions and malaria trends. Intervention data are commonly 
provided as units distributed (nets) or dispensed (drug regimens and therapies), and 
complications in analysis arise when it is desirable to parse out the impact attributable to 
individual or group interventions that overlap in scope and time of effect. However, in the 
context of this study it is the combined effect of interventions that is of interest. 
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5.3 Climate data 

5.3.1 Meteorological observations  
The main source of climate data in African countries is the network of weather stations 
managed by National Meteorology Agencies (NMAs). In Africa, in general, the number of 
stations is < 12.5% of what is deemed necessary by the World Meteorological 
Organization. Even when data exists and is quality controlled the available stations are 
unevenly distributed with most of the stations located at airports and along the main 
roads. This imposes severe limitations to the availability of climate information and 
services particularly to rural communities where these services are needed most. Where 
records exist, they frequently suffer from data gaps and poor quality and often are not 
easily accessible due to the dissemination policies of the National Meteorological 
Agencies (NMAs). As a result many users have turned to global products such as 
interpolated station data or modeled outputs and satellite data as proxies for what is 
happening on the ground in specific countries. 
 

5.3.2 Global products 
The main advantage of the global products derived from satellite proxies and model 
reanalysis is the excellent spatial converge: these data are available over most parts of 
the world at increasingly improved spatial and temporal resolutions.  Satellite rainfall 
estimates now go back thirty years. Over the past decade, a number of rainfall estimate 
products with high spatial and temporal resolution and near-global coverage have been 
developed. These products combine precipitation information from multiple sensors and 
multiple algorithms to produce estimates of rainfall over the globe at spatial resolutions 
of 0.25° latitude/longitude (or finer) and 3-h temporal resolution (or less). These products 
are similar in that most of them combine data from passive microwave (PM) and thermal 
infrared (TIR) sensors. The main differences among them are the manner in which the 
individual data inputs are combined.  These global products, while providing excellent 
spatial coverage are often not well correlated at small temporal and spatial scales (such 
as districts) and are frequently inconsistent over long time periods. Some recent 
products such as Tropical Rainfall Measuring Mission (TRIMM) have demonstrated high 
levels of skill at the local level but are only available for the last 10 years (2002-2012) 
[59].  The long term sustainability of TRIMM is also a concern, 

5.3.3 Climate change scenarios 
Climate change models over Africa are highly uncertain. While many are able to 
reproduce observed African climate in its general patterns (i.e. overall trends, large-scale 
spatial patterns), they often display strong deviations on the more detailed level. 
According to Muller et al., research on more specific aspects of African climate, such as 
climate extremes, is limited and often highly uncertain suggesting that projections on 
changes in monsoon patterns and cyclones are too uncertain to allow for general 
conclusions. Despite these deviations and some systematic errors in reproducing 
observed climate patterns, climate models reproduce the observed climate trend at the 
continental and regional scale reasonably well. Downscaling projections of coarse 
climate models for assessments of regional and local climate change impacts adds to 
the overall uncertainty in climate change projections especially in Africa where the 
reference meteorological historic database is so weak. Climate projections can therefore 
be employed to assess the range of possible future climate change, keeping in mind the 
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shortcomings of climate projections for Africa, and in general but they are not suitable for 
use in the type of impact analysis reported on here.  

5.3.4 Combining ground observations and global products 
The problem of data availability and data quality could be significantly improved by 
combining meteorological station observations with globally available products such as 
satellite proxies and model reanalysis data [60]. The main advantage of the global 
products is the excellent spatial coverage. These data are available over most parts of 
the world at increasingly improved spatial and temporal resolutions. Satellite rainfall 
estimates for Africa now go back 30 years. The combination of ground-based 
observations with satellite and/or model information should therefore help to overcome 
the spatial and temporal gaps in station data while improving the accuracy of the global 
products. This will alleviate the inadequacy of climate data, particularly for rural Africa 
where malaria is most prevalent. 

5.3.5 Enhanced National ClimaTe Services (ENACTS)  
ENACTS is a three-track approach of simultaneously improving “data availability, access 
and use” is being implement in Africa. ENACTS components include:  
 

1. Availability 
a. Enhanced national (or regional) climatology based on over 30 years of 

good quality 10 daily rainfall and temperature for every 10 km grid 
through combining all relevant data from the national observation network 
with the best global products; 

b. New monitoring products based on observed differences to long-term 
averages that are superior to currently available alternative products.  

2. Access 
a. An online mapping service (using IRI Data Library capacities) installed at 

the National Meteorological and Hydrological Services (NMHS) allowing 
visualization and querying and access to the information.  

3. Use 
a. Capacity strengthening for national researchers and development 

professions in the use of the new ENACTS climatology products 
b. Time-sensitive delivery of information for the delivery of the Millennium 

Development Goals 
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The top-left panel is 
the rain gauge data for 
the 10-day period, 
while the top-right 
panel shows a satellite 
estimate for the same 
time. The lower-left 
panel is interpolated 
rain gauge, and the 
lower-right panel is 
combined rain gauge 
and satellite data – 
both for the same ten 
day period. The 
interpolated gauge 
follows the overall 
spatial structure of 
rainfall as depicted by 
gauge data, but with 
significant smoothing.  

 

 

 

 

 
The top-left panel is 
station data for the 10-
day period, while the 
top-right panel is 
interpolated station 
data for the same time. 
The bottom-left panel 
is station data 
combined with 10-day 
period averages of 
MODIS LST and 
elevation for the same 
period. The bottom-
right panel is the 
topography for 
reference. 
 
 
 
 
 
 
 
 
 
 

Figure 5-2 Rainfall products for 2nd 10 day period in April 1996 

Figure 5-3 Maximum temperature products for the 2nd 10 day period 
in April 2000 
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6 New Tools Created 
 

6.1 Climate Suitability for Malaria Transmission Tool 
One way to assess the potential sensitivity of malaria in a region to climate is to 
understand the local drivers of seasonality. A simple approach to describe the 
seasonality of malaria, to aid localized policymaking and targeting of interventions has 
been proposed in which sites are defined as having 'marked seasonality' if 75% or more 
of all episodes of malaria (clinical malaria or confirmed) occurred in six or less months of 
the year [61]. Another approach is to define malaria seasonality using climate drivers. For 
example the MARA maps described by Craig and colleagues indicates the likely length 
and timing of onset of malaria according to a simple model of malaria suitability [62].  
 
The Pan-African Climate Suitability for Malaria Transmission (CSMT) tool was 
developed originally as a decision tool to support the timing of activities associated with 
malaria interventions in Africa organized under the auspices of the President’s Malaria 
Initiative [63]. It is an interactive map that displays the number of months during the year 
when climatological (i.e. long-term average) conditions are considered to be suitable for 
malaria transmission. Suitability is based on empirically-derived thresholds of 
precipitation, temperature and relative humidity For the purposes of this tool, climatic 
conditions are considered to be suitable for transmission when the monthly precipitation 
accumulation is at least 80 mm, the monthly mean temperature is between 18°C and 
32°C (Plasmodium falciparum) and the monthly relative humidity is at least 60% [62, 64]. 
A modified tool which uses a 16°C threshold has been developed to represent climate 
suitability for Plasmodium vivax malaria transmission.  In practice, the optimal and 
limiting conditions for transmission are dependent on the particular species of the 
parasite and vector.  
 
The CSMT tool is well suited to the task of identifying regions where malaria is climate 
sensitive as it is designed to indicate areas where variability in the climate may affect 
transmission – e.g. where the disease has a season of four months or less (including 
whether or not it is bimodal) and where changes in the characteristics of the climate from 
one year to another are likely to affect the likelihood of malaria transmission. However, 
the data used in the original published Pan African CSMT tool are based on climate data 
available from 1951-2000 and do not incorporate data from the last decade which may 
be more relevant to the current study.  
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Figure 6-6-1 The Pan African Climate Suitability for Malaria Transmission Tool 

The map in Figure 6-1 displays the number of months during the year that are suitable for malaria 
transmission in Moshi, Tanzania. Suitability is defined as the coincidence of precipitation accumulation 
greater than 80 mm, mean temperature between 18°C and 32°C, and relative humidity greater than 60 
percent. These are rough thresholds that are intended to describe conditions that are suitable for both the 
development of the Plasmodium falciparum parasite and the life cycle of the mosquito vector. The tool 
provides a simple means for identifying peak transmission periods (and transmission troughs) which will 
precede key malaria indicators (possibly by one or two months). The figure on the far right of Figure 6-1 
represents hospital admissions in Moshi, Tanzania for a single year (Feb 2002-Jan 2003) [61]. 
 
The accuracy of the CSMT is based on two factors. The first factor is the degree to 
which the simple model represents the climatic drivers for the seasonality of malaria at a 
location. The accuracy of the climate data is the second factor. Using the ENACTS high 
resolution database for the rainfall and temperature components of the CSMT, it is 
possible to develop a much higher quality product for Ethiopia and Tanzania.  
 

6.2 WASP Tool  

6.2.1 Baselines 
Central to any health impact assessment is the concept of a baseline year or baseline 
period against which changes in outcomes can be measured. If the baseline year (or 
period) was unusually severe for the particular outcome then achieving change relative 
to that baseline when the climate risk for malaria is reduced is relatively easy. 
Conversely, if the baseline year or period experienced a reduced risk relative to the 
intervention period then it will be harder to achieve positive results. 
 
For example, motivated by the emerging evidence and a widespread malaria epidemic in 
1998/1999, Eritrea was one of the earliest adopters of the new push for more aggressive 
malaria control. With the support of the World Bank and USAID, Eritrea invested $40 
million in its national control program. According to reports between 1998 and 2004, 
substantial reductions in routinely reported clinical malaria cases were described 
following a scale-up of control measures. By 2004, Eritrea, joined Brazil, Indian and 
Vietnam as significant success stories in controlling malaria [65]. During this period there 
was an observed reduction in both the incidence of presumptive malaria in outpatient 
facilities (83% decline) and in the case fatality of malaria admissions [66]. However, 
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closer examination of the data indicates that the largest decline in malaria cases was 
observed between 1998 and 2000 before the control efforts could achieve their 
maximum effect. This change is explained by the reduction of rainfall after 1998. 
 
 

 
Figure 6-6-2 Malaria morbidity in Eritrea 1996-2003 

 
According to a detailed study, up to 40% of the decline in malaria between 1999 and 
2003 could be accounted for in the first instance by climate and environmental factors 
[17, 67]. Subsequent observations have indicated that malaria control has proven largely 
robust even when higher rainfall has returned. Malaria control managers in Eritrea 
routinely use a malaria early warning system to alert them to any likely re-emergence of 
malaria as a result of high rainfall [67]. 

6.2.2 Weighted Anomaly of Standardized Precipitation (WASP) with 
changeable baseline for impact assessment 

 
A simple tool developed by the IRI to analyze droughts using different baseline years 
indicates this clearly (See Figures 6-3, 6-4).   
 

Figure 6-6-3 Weighted Anomaly of Standardized Precipitation for Eritrea using a 1999 (wet) 
baseline 

 
 

Note the 1996 anomaly. 
This was the only period 
above the 1999 WASP 
baseline in the 28 year 
time series. 
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Figure 6-6-4 Weighted Average Standardized Anomaly Rainfall for Eritrea using a 2000 (dry) 

baseline 

 
 
This tool was initially developed for analysis at the national level only. For the current online national version 
the tool uses the following data source: Latest available release of monthly CPC Merged Analysis of 
Precipitation (CMAP, version 2, combined gauge and satellite estimates) on a 2.5 x 2.5 deg. lat/lon grid. This 
plot shows a time series of the country-averaged value of the 12-Month Weighted Anomaly Standardized 
Precipitation (WASP) index calculated using the latest version of the CMAP monthly precipitation dataset for 
a user-selected country in Africa. 
 
To compute the WASP index, monthly precipitation departures from the long-term average are obtained and 
then standardized by dividing by the standard deviation of monthly precipitation. The standardized monthly 
anomalies are then weighted by multiplying by the fraction of the average annual precipitation for the given 
month. These weighted anomalies are then summed over a 12-month time period in this case, and this 
result is itself standardized. 
 
The new ENACTS products permit the use of the WASP tool at the national and 
subnational level.  
 

6.3 Climate Analysis Tool  
 
This tool was developed specifically to analyze the ENACTS products of Ethiopia and 
Tanzania. It permits an easy analysis of climate variability and trends in rainfall, 
minimum and maximum temperature over 28-30 years by month, season or year for 
administrative levels at the national and subnational level.   

Note the 1984 drought 
anomaly and the 2009 
drought anomalies are the 
only periods below the 
2000 WASP baseline. 
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7 The use of climate information in 
the assessment of the impact of 
malaria interventions: Ethiopia 

 
 
Malaria targets established for Millennium Development Goals and 
the Roll Back Malaria partnership require measurement of specific 
malaria outcome indicators in order to evaluate the effectiveness of interventions toward their 
achievement.  The intention is to construct a  ‘plausibility argument” whereby it can be reasonably 
assumed “that mortality reductions can be attributed to programmatic efforts when improvements 
are found in steps of the causal pathway between intervention scale-up and mortality trends”.  
 
Malaria is a complex disease. Its transmission, via Anopheles spp. mosquitoes can be highly 
climate sensitive with temperature being a significant driver of the development rates of both 
mosquito vector and Plasmodium parasite. In addition rainfall and humidity provide essential 
environmental characteristics for juvenile mosquito development and adult survivorship. Climate 
has been identified as a one of a number of possible confounders in the evaluation of malaria 
interventions. Climate information, based on routinely collected data, obtained via globally 
recognized standards at defined regular time intervals, can be systematically incorporated into 
malaria analysis at multiple spatial and temporal scales. If climate is not taken into account, then 
the measurement of achievements may be overly pessimistic in years that experience an 
elevated climate risk for malaria in relation to the baseline period and conversely overly optimistic 
when climate risk for malaria is low.  
 
Since 2005 there has been a dramatic increase in malaria interventions in Ethiopia and now the 
Federal Ministry of Health and its development partners (including USAID) are seeking to assess 
the impact of these interventions on all-cause mortality as well as malaria specific morbidity and 
mortality. 
 
In this short report, a climate information analysis methodology involving three steps is used to 
i) assess the climate sensitivity of malaria in Ethiopia b) indicate changes in climate suitability for 
malaria risk in the intervention period relative to a given baseline and iii) explore trends and 
variability in the climate data that indicate the likelihood of large scale climate anomalies 
associated with ENSO as well as underlying trends associated with sea surface temperatures 
which are therefore potentially predictable.  
    

7.1 Malaria is climate sensitive in Ethiopia 
Ethiopia is located in the Horn of Eastern Africa.  The dominant feature of the country is the 
rugged central highland plateau that varies from 1,290 to 3,000 m above sea level and covers 
approximately two thirds of the country. A number of rivers cross the plateau notably the Blue Nile 
rising from Lake Tana. The plateau gradually slopes to the hot and humid lowlands of the Sudan 
on the west and the hot and dry Somali-inhabited plains to the southeast. 
 
Malaria in Ethiopia is extremely climate sensitive with the majority of the population living in 
highland or semi-arid regions prone to climate related epidemics. In Ethiopia the determinants of 
malaria transmission are diverse and localized but temperature (especially minimum 
temperature), which is linked to altitude is certainly a major limiting factor for malaria transmission 
in the highland plateau region as is rainfall in the semi-arid regions. Low rainfall is also a feature 
of highland regions above 1500m. When substantial climate variations occur malaria epidemics 
can develop rapidly, with devastating effect.  A nation-wide epidemic, caused by unusual weather 
conditions associated with El Niño was documented in 1958. It affected most of the central 
highlands between1600 m and 2150 m with an estimated 3 million cases and 150,000 deaths 
[68]. Subsequently, cyclic epidemics of various dimensions have been reported from other 
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highland areas, with intervals of approximately 5-8 years. Most of these large-scale epidemics 
have been attributed to climatic variations although other factors such as population 
displacement, land-use change, drug and insecticide-resistance may also play an important role.  
 
Climatologically speaking Eastern Africa is one of the most complex regions on the African 
continent. The large-scale tropical drivers, which include several major wind convergence zones, 
are superimposed on other factors including the regions complex topography, coastline and large 
lakes.   Nowhere is this complexity greater than Ethiopia.  The country has two predominant rainy 
seasons – the main season (Kiremt or Meher) occurs June-September and the small season 
(Belg) occurs February-May.  Research indicates that the Kiremt season is strongly influenced by 
ENSO (El Niño Southern Oscillation) events that are associated with changes in global sea 
surface temperatures (SSTs). The Belg season is more erratic and less influenced by global 
processes such as ENSO. Ethiopia has been suffering from an extended period of drought over 
the last decade with a 15-20% observed decline in rainfall and evidence of widespread warming 
which is related to changes in seas surface temperature [53] the exact nature of which is unclear 
[52]. 
 
The extent to which global sea surface temperatures and ENSO (El Niño and La Niña) may drive 
local meteorological phenomena can be observed in an analysis from neighboring Kenya (Figure 
7-1). While El Niño years favor a rise in minimum temperature at Kericho, La Niña years are 
associated with a decline.  
  

Figure 7-1: Time  series of LSTs and SSTs compared to Minimum Temperature from Kericho, 
Kenya (1979-2009)[48]  

 
 
This relationship (warming minimum temperature in Kericho, and warming sea surface 
temperature) is likely common in parts of Ethiopia but a detailed analysis by location is required to 
ascertain where this relationship is robust.   
 
ENSO events have long been associated with malaria epidemics in Ethiopia (e.g. 1988/9; 1991/2) 
and a relationship with global Sea Surface Temperatures (SSTs) is considered likely. However, 
the relationship is less clear in a national analysis as different regions of Ethiopia respond 
differently to ENSO and the Belg and Kiremt season may not be uniformly impacted.  
   



7-43 
 

7.2 ENACTS Climate products for Ethiopia 
While global climate data and products can 
be used for analysis at the national scale 
there is a need for high quality high spatial 
and temporal resolution data for analysis at 
the sub-national scale. In response to this 
challenge Ethiopia has implemented a new 
climate data and dissemination process 
(Enhanced National Climate Services: 
ENACTS) [60]. These ENACTS products 
combine locally calibrated satellite rainfall 
estimates derived from METEOSAT and all 
available quality controlled ground-based 
meteorological station gauge data (more 
than 600 stations) available in Ethiopia for 
the period (1983-2010). The new climate 
time series includes minimum and maximum 
temperature generated by combining station 
measurements (from about 300 stations) 
with NASA’s MODIS land surface 
temperature estimates data and digital 
elevation model.   
 
The ENACTS data, derived products, and the 
related web-based services are 
unprecedented in Africa and many parts of the 
world. This quality assured data set has been 
made available by the National Meteorological 
Agency of Ethiopia 
(http://www.ethiomet.gov.et/) and is suitable 
for robust analysis at the national, regional, 
zonal and woreda level. 
 
The new ENACTS database and the IRI Data 
Library data management, analysis and 
visualization capacities enable the climate 
drivers of malaria seasonality, variability and 
trends in Ethiopia to be observed at multiple 
temporal and spatial scales (e.g. by month, 
season, year, grid point, woreda, zone and 
region). As a first step simple averaging and 
mapping of climate data reveals general 
patterns.  
 
The Climate Suitability Tool for Malaria 
Transmission (CSMT) [69] is an interactive 
mapping tool that interrogates the ENACTS database and then displays the number of months 
during the year when climatological (i.e. long-term average) conditions are considered to be 
suitable for malaria transmission. Suitability is based on empirically-derived thresholds of 
precipitation, temperature and relative humidity. These are a) monthly precipitation accumulation 
is at least 80 mm, b) monthly mean temperature is between 18°C and 32°C (P. falciparum) and c) 
monthly relative humidity is at least 60%. In practice, the optimal and limiting conditions for 
transmission are dependent on local conditions (including surface water) and the particular 
species of the parasite and vector. 
 

Figure 7-2 ENACTS rainfall product for  
Ethiopia– example of one 10 day period. 

Figure 7-3: ENACTS Temperature product  for 
Ethiopia – example of one 10 day period. 
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Figure 7-4: CSMT for Ethiopia using ENACTS products indicating highly seasonal transmission 

in green areas such as Tigray, a long single transmission season in the warm lowlands of Gambela 
and a bio-modal seasonality in the highly varied Oromia region 

7.3 Baselines 
Central to malaria intervention impact assessment is the concept of a baseline year or baseline 
period against which changes in outcomes can be measured. If the climate risk for malaria in the 
baseline period) was unusually severe then achieving change relative to that baseline is relatively 
easy. Using the Weighted Average Standardized Precipitation Tool (WASP) it is possible to 
explore changes in rainfall integrated over time and over a specified region for both a baseline 
and intervention period. Where temperature is not a constraint to malaria transmission this tool 
may provide a good estimate of climate risk for malaria, for example Oromia (Figure 7-9). 

 
Additional WASP results for each region in Ethiopia and each zone in Oromia can be seen in 
Figure 7-8 & Figure 7-9.

Figure 7-5: ENACTS - 
rainfall  analyzed using the 
WASP tool for Oromia 
Region. The green areas 
are wetter than the 
baseline period whereas 
the brown areas are drier. 
 
Intervention period a) 
(2006-2010) and baseline 
period b) (average of 2000-
2005) 



7-45 
 

Oromia (similar information is available for 
all regions, zones and woredas). The 
Oromia Region is home to approximately 35% 
of Ethiopia’s people and is the source of more 
than a third of the countries confirmed malaria 
cases. The other most populous regions are 
Amhara and SNNPR. Recent climate trends 
for the region’s two rainy seasons, the Belg 
and Meher (Kiremt) are set out below. 
Substantial warming can be observed in both 
seasons over the time period 1983-2010. This 
warming may make highland regions more 
susceptible to malaria. An extended drought 
period from 1997-2009 for the Belg season 
can be observed. The year 2010 was 
extremely wet in both seasons and also had 
high minimum temperatures (compared to the 

long term average).  
 

 

 
Figure 7-6abc Trend in rainfall (top) max T 

(middle) and min T (bottom) for the Belg rainy 
season (Feb-May). 

  
 

 

 

 
Figure 7-7abc Trend in rainfall (top) max 

T(middle) and min T (bottom) for the Kiremt 
rainy season (Jun-Sep).
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7.4 Findings from Analysis  
 
• The new quality assured ENACTS temperature and rainfall products for Ethiopia, (28 

years; 10 day and 10km) resolution are suitable for analysis at different time-space 
scales (e.g. woreda, zone, region and country, dekad, month, season, year).  

 
• The Climate Suitability for Malaria Transmission Tool used in conjunction with ENACTS 

products reveals that >75% of the populated areas of Ethiopia are climate sensitive for 
malaria transmission: with both temperature and rainfall having a role. The country is 
therefore classified as extremely sensitive. 

 
• The WASP Tool explores changes in ENACTS rainfall integrated over time and over a 

specified region for both a baseline and intervention period. Results for Oromia indicate 
a wetter intervention period (2005-2010) relative to a baseline period of 2000-2005. 
Given temperature also increased during the intervention period the climate risk for 
malaria is deemed more severe in 2006-2010 than during the baseline period. These 
results are replicated across the highly populated regions of the central highlands 
including Amhara and SNNPR.  

 
• The Climate Analysis Tool using ENACTS temperature shows there is evidence of 

significant warming in Oromia and other highland areas over the 28 year period.  
Warming appears to be inversely related to drying. This warming is highly significant 
(approx. 0.3oC per decade) and could (amongst other factors) account for increases in 
malaria observed at higher altitudes (e.g. in 2003). 

 
• A regional drought has persisted in East Africa including parts of Ethiopia through much 

of the last decade – especially during the long rainy season. (Kiremt).  In the most 
populated areas, where >75% of malaria cases are found (Oromia, Amhara and SNNPR) 
the drought appears to have been more significant in the period 2000-2005 with some 
recovery in recent years (2006-2010).  This suggests that drought cannot be the reason 
for the decline in malaria observed in Ethiopia during the intervention period 2006-
2010. 

 
• Observed increases in malaria in 2009 and 2010 in partner reports may be associated 

with a particularly favorable climate in some regions of Ethiopia. 
 
• Policy makers and control managers should be aware that cyclical swings in the climate 

are likely in the future and while the extended regional drought may continue it is also 
possible for a return to much wetter conditions in the near future.  

 
Figure 7-8 Regional WASP analysis for Ethiopia using ENACTS products using 2000-2005 

baseline 
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Figure 7-9  Zonal WASP analysis for Oromia, Ethiopia using ENACTS products with a 2000-2005 
baseline 
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WASP analysis based on ENACTS products using a 2000 – 2005 baseline 
 

7.5 In summary 
 
In Ethiopia, the relationship between malaria and climate is very significant and complex. The 
most obvious impact is that of the changing epidemiology of disease at increasing elevations, 
associated with both changes in temperature and rainfall. There is a high risk that impact 
assessments that do not incorporate climate will overestimate or underestimate the impact of 
malaria interventions. Incorporating climate data into an impact evaluation must be undertaken at 
multiple scales in order to account for local complexity. Evidence to date suggests that climate 
risk for malaria has increased during the intervention period when compared with the baseline 
period.  
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8 The use of climate information 
in the assessment of the impact 
of malaria interventions: 
Tanzania 

 
Malaria targets established for Millennium Development Goals and the Roll Back Malaria 
partnership require measurement of specific malaria outcome indicators in order to evaluate the 
effectiveness of interventions toward their achievement.  The intention is to construct a  
‘plausibility argument” whereby it can be reasonably assumed “that mortality reductions can be 
attributed to programmatic efforts when improvements are found in steps of the causal pathway 
between intervention scale-up and mortality trends”.  
 
Malaria is a complex disease. Its transmission, via Anopheles spp. mosquitoes can be highly 
climate sensitive with temperature being a significant driver of the development rates of both 
mosquito vector and Plasmodium parasite. In addition rainfall and humidity provide essential 
environmental characteristics for juvenile mosquito development and adult survivorship. Climate 
has been identified as a one of a number of possible confounders in the evaluation of malaria 
interventions. Climate information, based on routinely collected data, obtained via globally 
recognized standards at defined regular time intervals, can be systematically incorporated into 
malaria analysis at multiple spatial and temporal scales. If climate is not taken into account, then 
the measurement of achievements may be overly pessimistic in years that experience an 
elevated climate risk for malaria in relation to the baseline period and conversely overly optimistic 
when climate risk for malaria is low.  
 
Since 2005 there has been a dramatic increase in malaria interventions in Tanzania and now the 
Ministry of Health and its development partners (including USAID) are seeking to assess the 
impact of these interventions on all-cause mortality as well as malaria specific morbidity and 
mortality. 
 
In this short report, a climate information analysis methodology involving three steps is used to 
i) assess the climate sensitivity of malaria in Tanzania b) indicate changes in climate suitability for 
malaria risk in the intervention period relative to a given baseline and iii) explore trends and 
variability in the climate data that indicate the likelihood of large scale climate anomalies 
associated with ENSO as well as underlying trends associated with sea surface temperatures 
which are therefore potentially predictable.  

8.1 Malaria is climate sensitive in Tanzania 
Tanzania is located in Eastern Africa. It has a very varied geography – extending from the Indian 
Ocean coastline in the East to the humid Lake Victoria region in the West.  Most of the country 
has a tropical climate with cooler regions limited to the highland areas associated with Tanzania’s 
volcanic mountain range (including Kilimanjaro) in the northwest and the highland plateau in the 
south central region.  
 
Malaria in Tanzania is mostly highly endemic and seasonal. In this country the key environmental 
determinant of malaria transmission is rainfall, especially in the semi-arid central region where the 
transmission season is less than three months. Temperature (especially minimum temperature), 
which is linked to altitude, is also important in the highland regions. Low rainfall is also a feature 
of highland regions above 1500m. When substantial climate variations occur malaria epidemics 
can develop rapidly in these specific regions, with devastating effect as was notable in Kagera, a 
region that was subject to widespread malaria epidemics in 1997 and 1998 following the 
unusually strong El Niño.  
 
Climatologically speaking Eastern Africa is one of the most complex regions on the African 
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continent. The large-scale tropical drivers, which include several major wind convergence zones, 
are superimposed on other factors including the regions complex topography, coastline and large 
lakes. Tanzania lies within this complex climate system and as a result the country has two major 
rainfall regimes in different parts of the country. In the south, west, south-west and central regions 
of Tanzania the rainfall is unimodal - there is one rainy season, which occurs between December 
and April (called Kifuku). In the northern and eastern regions of the country the rainfall is bimodal, 
with two rainy seasons. The 'short rains' or Vuli last from October to December, and the 'long 
rains' or Masika last from March to May. 

Research indicates that the Oct-Dec season is strongly influenced by ENSO (El Niño and La 
Niña) events that are associated with changes in global sea surface temperatures (SSTs). As a 
result the climatic patterns across the country are mixed with locally complex regions such as the 
northern highlands or the coastal region. This makes the use of climate information from gauges 
at meteorological stations particularly challenging as what may be measured in one area cannot 
necessarily be applied to an area nearby.  The extent to which global sea surface temperatures 
and ENSO (El Niño and La Niña) may drive local meteorological phenomena can be observed in 
an analysis from neighboring Kenya (Figure 8-1). While El Niño years favor a rise in minimum 
temperature at Kericho, La Niña years are associated with a decline.  
 

Figure 8-1 Time  series of LSTs and SSTs compared to Minimum Temperature from Kericho, 
Kenya (1979-2009)[48]  
 

 
 
This relationship (warming minimum temperature in Kericho, and warming sea surface 
temperature) may also be found in parts of Tanzania where a strong response to ENSO is 
evidenced by very high rainfall in 1997/98.(see Figure 8-5 below). However the relationship is not 
uniform across the country.    
 
ENSO events have been associated with malaria epidemics in Tanzania. Uddenfeldt-Wort and 
colleagues demonstrated that the risk of delivering a low-birth weight baby in the first pregnancy 
increases approximately 5 months following a malaria epidemic. Their analysis indicates that an 
epidemic which occurred in Kagera resulted in large birth weight differences between 
primigravidae and multigravidae occurred, related to ENSO's impact in 1997–1998 [70]. 
Conversely, Lindsay et al, who compared the level of malaria infection in children before and 
following the 1997–1998 El Niño in the Usambara mountains of NE Tanzania, found that even 
though El Niño led to more abundant rainfall, fewer malaria cases were reported following this 
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event than in the previous year, suggesting that heavy rainfall may have washed away mosquito 
breeding sites [71] although lower temperatures may also have been important. 

8.2 Climate data and products for Tanzania 
While global climate data and products 
can be used for analysis at the national 
scale there is a need for high quality high 
spatial and temporal resolution data for 
analysis at the sub-national scale. In 
response to this challenge Tanzania has 
implemented a new climate data and 
dissemination process (Enhanced 
National Climate Services: ENACTS) [60] 
(Dinku, Hilemariam et al. 2011). These 
ENACTS products combine locally 
calibrated satellite rainfall estimates 
derived from METEOSAT and all available 
quality controlled ground-based 
meteorological station gauge data (more 
than 200 stations) available for Tanzania 
for the period (1983-2010). The new 
climate time series also includes minimum 
and maximum temperature generated by 
combining station measurements (from about 50 
stations) with NASA’s MODIS land surface 
temperature estimates data and a digital 
elevation model.   
 
The ENACTS data, derived products, and 
the related web-based services developed 
in Ethiopia and Tanzania are 
unprecedented in Africa and many parts of 
the world. The quality assured data set 
used in this analysis has been made 
available by the Tanzanian National 
Meteorological Agency 
(http://meteo.go.tz/) and is suitable for 
robust analysis at the national, regional 
and district level.  
 
The new ENACTS database and the IRI 
Data Library data management, analysis 
and visualization capacities  
enable the climate drivers of malaria 
seasonality, variability and trends in Tanzania to 
be observed at multiple temporal and spatial 
scales (e.g. by month, season, year, grid point, district province, country).  

8.3 The Climate Suitability for Malaria Transmission Tool (CSMT) 
The Climate Suitability for Malaria Transmission Tool (CSMT) [69] is an interactive mapping tool 
that interrogates the ENACTS database and then displays the number of months during the year 
when climatological (i.e. long-term average) conditions are considered to be suitable for malaria 
transmission. Suitability is based on empirically-derived thresholds of precipitation, temperature 
and relative humidity. These are a) monthly precipitation accumulation is at least 80 mm, b) 
monthly mean temperature is between 18°C and 32°C (P. falciparum) 16°C and 32°C (P. vivax) 

Figure 8-2  ENACTS rainfall product for 
Tanzania – example of one 10 day period 

Figure 8-3  ENACTS temperature product  for 
Tanzania – example o one 10 day period. 
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and c) monthly relative humidity is at least 60%. In practice, the optimal and limiting conditions for 
transmission are dependent on local conditions (including surface water) and the particular 
species of the parasite and vector. 
 

 
Figure 8-4  CSMT P. 
falciparum for Rungwe 
District, Mbeya, Southern 
Tanzania  

Where ever the CSMT 
tool indicates less than 
100% occurrence of a 
climate suitable for 
malaria transmission 
throughout the entire 
year the region is likely 
(at least in part) to be 
highly sensitive to 
climate variability and 
trends – for example 
Rungwe District Figure 
8-4 . 

 

8.4 Baselines   
Central to malaria intervention impact assessment is the concept of a baseline year or 
baseline period against which changes in outcomes can be measured. If the climate risk 
for malaria in the baseline period was unusually severe then achieving change relative to 
that baseline is relatively easy. Using the Weighted Average Standardized Precipitation 
Tool (WASP) it is possible to explore changes in rainfall integrated over time and over a 
specified region for both a baseline and intervention period. Where temperature is not a 
constraint to malaria transmission this tool may provide a good estimate of climate risk 
for malaria. Figure 8-5 shows a WASP calculation for Tanzania using a baseline period 
of (1995-1999) and an intervention period (2000-2010).   
 
 



 

8-52 
 

 
Additional WASP analysis for each district in Tanzania can be seen in Figure 8-. 
 
The climate analysis tool permits exploration of both rainfall and temperature. Warming 
over the last 28 years in Tanga is very apparent, as is the extreme rainfall in 1997-1998. 

 
 
 

Figure 8-5 Indicates 
that in Tanzania the 
intervention years 
(2000-2010) included 
major droughts 
(2000, 2004-2006) 
while the baseline 
period included a 
major El Nino year 
(1997/8).  

Figure 8-6 Tanga District - trends in 
rainfall (top) max T (middle) min T 
(bottom) 

Figure 8-7 Tanga District - trends in 
rainfall (top) max T (middle) min T 
(bottom) during Oct-Dec. 
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8.5 Findings from Analysis  
 
From the analysis we have undertaken the following conclusions can be drawn  
 

1. The new ENACTS product for Tanzania provides a high quality climate database 
which is suitable for analysis at different time and space scales (e.g. district and 
country, month, season, year).  However, malaria incidence data and intervention 
data that are suitable for a national statistical analysis using Method 2 was not 
available to this project.   
 

2. Drought has persisted in Tanzania through much of the last decade. However 
there is no evidence that drought could account for any substantial decline in 
malaria 2006-2010 across the whole country as this period is generally wetter 
than 2000-2005 – as has been observed in other regions of East Africa such as 
Ethiopia. However, variability at the subnational scale indicates that more 
detailed analysis will be required for specific provinces and districts.  

 
3. There is evidence of significant warming in many but not all regions of Tanzania 

including Tanga and other highland areas.  Warming appears to follow global sea 
surface temperatures and is inversely related to rainfall but the response of 
minimum and maximum temperature is not the same. This warming is highly 
significant (approx. 0.3oC per decade and could (amongst other factors) account 
for increases in malaria observed at higher altitudes. 

 
4. Analysis of both rainfall and temperature indicates a strong relationship to ENSO 

in many but not all regions. 
 

8.6 In summary 
 
In Tanzania the relationship between malaria and climate is significant and varies across 
the country with temperature important in highland areas in the northwest and south 
central regions and rainfall may be significant across the country especially in the semi-
arid regions. As a consequence there is a high risk that impact assessments will be 
confounded by climate in certain regions. In these areas analysis of malaria and climate 
must be undertaken at multiple scales to account for local complexity. 
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Figure 8-8: WASP analysis for Tanzania’s districts using a 1995-2000 baseline 
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9 Conclusion 
 
In the context of impact assessments of malaria interventions, the risk of climate 
confounding the assessments can be described as either elevated, relative to a baseline 
period, (e.g. during a period of drought in a semi-arid area) or depressed, relative to a 
baseline period (e.g. during a warmer and wetter period in a highland region). The 
following matrix Table 4 indicates the impact of ignoring climate under differing scenarios of 
climate suitability and malaria pre and post intervention.  

 

 
Table 4 Possible outcomes if climate information is not incorporated into malaria impact 

assessment: 

 Malaria decreases following 
intervention 

Malaria remains the same or 
increases following intervention 

Climate suitability 
for malaria 
transmission 
increases following 
intervention  

Failure to incorporate climate 
in analysis may underestimate 
benefits of intervention 

Failure to incorporate climate in 
analysis may result in resurgence 
being blamed inappropriately on non-
climatic factors or conversely climate 
being blamed for resurgence when in 
fact control failure is responsible 

Climate suitability 
for malaria 
transmission does 
not change 
following 
intervention 

No further climate analysis 
required 

No further climate analysis required 

Climate suitability 
for malaria 
transmission 
decreases following 
intervention  

Failure to incorporate climate 
in analysis may overestimate 
benefits of intervention 

Failure to incorporate climate may 
underestimate the importance of non-
climatic factors in driving malaria 
increase.  

 

9.1 Recommendations 
 

• ENACTS climate information products are developed for all PMI countries  
 

• Ranking tool for each country are developed which indicate the relative 
importance of climate as a confounder in malaria intervention impact 
assessment  
 

• Method 1 (Climate Information Analysis) is performed on ENACTS data 
from all countries deemed climate sensitive  

 
• Method 2 (Climate Information, Malaria and Intervention Analysis) is 

undertaken in PMI countries wherever malaria is deemed climate 
sensitive and appropriate data sets are available. Climate data and 
methodology to be made available to local scientists and those engaged 
in impact assessment. 
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• A new product be developed that integrates both rainfall and temperature 
and can be used in a more sophisticated WASP style analysis to explore 
pre and post intervention climate suitability. 

 
• ENACTS products are used to investigate the potential predictability of 

Climate Suitability for Malaria Transmission from global climate 
processes. 

 
• The risk to current control and future malaria elimination programs of a 

warmer and drier/warmer and wetter climate for malaria control and 
elimination to be assessed.  

 
 



 

10-57 
 

10  References 
 
1. Murray, C., et al., Global malaria mortality between 1980 and 2010: a systematic 

analysis. The Lancet, 2012. 379(9814): p. 413-431. 
2. WHO/UNICEF, The World Malaria Report 2010, 2011. 
3. Okiro, E.A., et al., Malaria paediatric hospitalization between 1999 and 2008 

across Kenya. BMC Medicine, 2009. 7: p. 75. 
4. Prudhomme, W., et al., Changes in the burden of malaria in sub-Saharan Africa. 

Lancet Infectious Diseases, 2010. 10: p. 545-555. 
5. Nyarango, P.M., et al., A steep decline of malaria morbidity and mortality trends 

in Eritrea between 2000 and 2004: the effect of combination of control methods. . 
Malaria Journal, 2006. 5(33). 

6. Ceesay, S., et al., Changes in malaria indices between 1999 and 2007 in 
The Gambia: a retrospective analysis. The Lancet, 2008. 372(9649): p. 
1545-1554. 

7. O'Meara, W., et al., Changes in the burden of malaria in sub-Saharan 
Africa. Lancet Infectious Diseases, 2010. 10(8): p. 545-55. 

8. Aregawi, M.W., et al., Reductions in malaria and anaemia case and death burden 
at hospitals following scale-up of malaria control in Zanzibar, 1999-2008. Malaria 
Journal, 2011. 10(46). 

9. Roca-Feltrer, A., et al., Lack of Decline in Childhood Malaria, Malawi, 2001–
2010. Emerging Infectious Diseases, 2012. 18(2). 

10. RBM, A decade of partnership and results, in Progress and Impact Series2011, 
RBM. p. 136pp. 

11. Rowe, A.K., et al., Viewpoint: evaluating the impact of malaria control efforts on 
mortality in sub-Saharan Africa; Roll Back Malaria Monitoring and Evaluation 
Reference Group. Tropical Medicine & International Health, 2007. 12(12): p. 
1524-39. 

12. Simon, J., et al., External Evaluation of the President's Malaria Initiative - Final 
Report, 2011: Washington, D.C. 

13. Meyrowitsch, D.W., et al., Is the current decline in malaria burden in sub-Saharan 
Africa due to a decrease in vector population? Malaria Journal, 2011. 10: p. 188. 

14. Lindsay, S.W., L. Parson, and C.J. Thomas, Mapping the ranges and relative 
abundance of the two principal African malaria vectors, Anopheles gambiae 
sensu stricto and An.arabiensis, using climate data. The Royal Society, London. 
Series B., 1998. 265: p. 847-854. 

15. Bayoh, M.N., et al., Anopheles gambiae: historical population decline associated 
with regional distribution of insecticide-treated bed nets in western Nyanza 
Province, Kenya. Malaria Journal, 2010. 9: p. 62. 

16. Jaenisch, T., et al., Malaria incidence and prevalence on Pemba Island before 
the onset of the successful control intervention on the Zanzibar Archipelago. 
Malaria Journal, 2010. 9: p. 32. 

17. Graves, P.M., et al., Effectiveness of malaria control during changing climate 
conditions in Eritrea, 1998-2003. Tropical Medicine & International Health, 2008. 
13(2): p. 218-228. 

18. Creasey, A., et al., Eleven years of malaria surveillance in a Sudanese village 
highlights unexpected variation in individual disease susceptibility and outbreak 
severity. Parasitology, 2004. 129: p. 263-271. 



 

10-58 
 

19. IRI, A Gap Analysis for the Implementation of the Global Climate Observing 
System Programme in Africa, 2006, International Research Institute for Climate 
and Society: Palisades, NY. 

20. Connor, S.J., et al., Health and Climate - Needs. Procedia Environmental 
Sciences Volume 1, 2010. 1: p. 27-36. 

21. Wernsdorfer, W.H. and I.A. McGregor, Malaria: Principles and practice of 
malariology1988, Edinburgh: Churchill Livingstone. 

22. Molineaux, L., The epidemiology of human malaria as an explanation of its 
distribution, including some implications for its control, in Malaria: Principles and 
practise of malariology, W.H. Wernsdorfer and I.J. McGregor, Editors. 1988, 
Churchill Livingstone. p. 913-998. 

23. Worrall, E., A. Rietveld, and C. Delacollette, The burden of malaria epidemics 
and cost-effectiveness of interventions in epidemic situations in Africa. American 
Journal of Tropical Medicine and Hygiene, 2004. 71(Suppl 2): p. 136-140. 

24. Thomson, M.C., et al., Rainfall and Sea-Surface temperature monitoring for 
malaria early warning in Botswana. American Journal of Tropical Medicine and 
Hygiene, 2005. 73(1): p. 214-221. 

25. Thomson, M.C., et al., Use of rainfall and Sea Surface Temperature monitoring 
for Malaria Early Warning in Botswana. American Journal of Tropical Medicine 
and Hygeine, 2005. 73(1): p. 214-221. 

26. WHO, Malaria Early Warning Systems, Concepts, Indicators, and Partners: A 
Framework for Field Research in Africa, 2001, WHO/Roll Back Malaria/Technical 
Support Network for Prevention and Control of Malaria: Geneva. 

27. Barnish, G., et al., Malaria in a Rural Area of Sierra-Leone .1. Initial Results. 
Annals of Tropical Medicine and Parasitology, 1993. 87(2): p. 125-136. 

28. Cox, J., et al., Mapping malaria risk in the highlands of Africa - MARA/HIMAL 
Technical Report, 1999, MARA / London School of Hygiene and Tropical 
Medicine: Durban, South Africa / London. 

29. Thomson, M.C., et al., Malaria early warnings based on seasonal climate 
forecasts from multi-model ensembles. Nature, 2006. 439: p. 576-579. 

30. Brown, V., et al., Epidemic of malaria in north-eastern Kenya. Lancet, 1998. 
352(9137): p. 1356-1357. 

31. Vancutsem, C., et al., Evaluation of MODIS Land surface temperature data to 
estimate air temperature in different ecosystems over Africa. Remote Sensing of 
Environment, 2010. 114: p. 449-465. 

32. Kiszewski, A., et al., A global index representing the stability of malaria 
transmission. American Journal of Tropical Medicine and Hygiene, 2004. 70(5): 
p. 486-498. 

33. Moshkovsky, S.D. and M.G. Rashina, Epidemiology and medical parasitology for 
entomologists, 1951: Moscow. 

34. !!! INVALID CITATION !!! 
35. Patz, J.A. and S.H. Olson, Climate Change and Health: Global to Local 

Influences on Disease Risk. Annals of Tropical Medicine and Parasitology, 2006. 
100(5): p. 535-549. 

36. Lindsay, S.W. and M.H. Birley, Climate change and malaria transmission. Annals 
of Tropical Medicine and Parasitology, 1996. 90(6): p. 573-588. 

37. Afrane, Y.A., et al., Effects of microclimate changes caused by land use and land 
cover on duration of gonotrophic cycles of Anopheles gambiae (Diptera: 
Culicidae) in western Kenya highlands. Journal of Medical Entomology, 2005. 42: 
p. 974-980. 



 

10-59 
 

38. Munga, S., et al., Association between land cover and habitat productivity of 
malaria vectors in western Kenyan highlands. American Journal of Tropical 
Medicine and Hygiene, 2006. 74(1): p. 69-75. 

39. Tuno, N., et al., Survivorship of Anopheles gambiae sensu stricto (Diptera : 
Culicidae) larvae in western Kenya highland forest. Journal of Medical 
Entomology, 2005. 42(3): p. 270-277. 

40. McMichael, A.J., et al., Climate Change and Human Health1996, Geneva: World 
Health Organisation. 

41. Kovats, R.S., et al., El Nino and health. Lancet, 2003. 362(9394): p. 1481-1489. 
42. Nicholson, S., A Review of Climate Dynamics and Climate Variability in Eastern 

Africa. , in Limnology, Climatology and Paleoclimatology of the East African 
Lakes, T.C.O. Johnson, E.O., Editor 1996, Gordon and Breach: New York. 

43. Goddard, L., et al., Providing Seasonal-to-Interannual Climate Information for 
Risk Management and Decision Making, in White Paper for WCC32009, World 
Climate Conference - 3  

44. Hay, S.I., et al., Climate change and the resurgence of malaria in the East 
African highlands. NATURE, 2002. 415(6874): p. 905-909. 

45. Patz, J.A., et al., Climate change (Communication arising): Regional warming 
and malaria resurgence. Nature, 2002. 420: p. 627-628. 

46. Pascual, M., et al., Malaria resurgence in the East African Highlands: 
Temperature trends revisited. . Proceedings of the National Academy of 
Sciences,, 2006. 103: p. 5829-5834. 

47. Christy, J.R., W.B. Norris, and R.T. McNider, Surface Temperature Variations in 
East Africa and Possible Causes. Journal of Climate, 2009. 22(33423356). 

48. Omumbo, J., et al., Raised temperatures over the Kericho tea estates: revisiting 
the climate in the East African highlands malaria debate. Malaria Journal, 2011. 
10:12. 

49. Rogers, D.J., et al., Satellite imagery in the study and forecast of malaria. Nature, 
2002. 415((6872)): p. 710-715. 

50. Thomson, M.C., et al., Africa needs climate data to fight disease. Nature, 
2011(471): p. 440-442. 

51. Huffman, G.J., et al., Improving the global precipitation record: GPCP Version 
2.1. Geophysical Research Letters, 2009. 36(L17808). 

52. Lyon, B. and D.G. DeWitt, A recent and abrupt decline in the East African long 
rains. Geophysical Research Letters, 2012. 39. 

53. Williams, A.P. and C. Funk, A westward extension of the warm pool leads to a 
westward extension of the Walker circulation, drying eastern Africa. Climate 
Dynamics, 2011. 37: p. 2417-2435. 

54. Giannini, A., R. R. Saravanan, and P. Chang, Oceanic Forcing of Sahel Rainfall 
on Interannual to Interdecadal Time Scales. Science., 2003(1089357): p. 3-10. 

55. Mouchet, J., et al., Drought and malaria retreat in the Sahel, West Africa. Lancet, 
1996. 348(9043): p. 1735-1736. 

56. Labbo, R., et al., Anopheles funestus in Sahel: new evidence from Niger. Lancet, 
2004. 363(9409): p. 660-660. 

57. IPCC, ed. Climate Change 2007: Impacts, Adaptation and Vulnerability. 
Contribution of Working Group II to the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change. ed. M.L. Parry, et al.2007, 
Cambridge University Press: Cambridge, UK. 

58. Cibulskis, R.E., et al., Worldwide Incidence of Malaria in 2009: Estimates, Time 
Trends, and a Critique of Methods. . PLoS Med, 2011. 8(12): p. e1001142. 



 

10-60 
 

59. Dinku, T., et al., Validation of satellite rainfall products over East Africa's complex 
topography. International Journal of Remote Sensing, 2007. 28(7-8): p. 1503-
1526. 

60. Dinku, T., et al., Improving availability, access and use of climate information 
World Meteorological Bulletin, 2011. 60(2). 

61. Roca-Feltrer, A., et al., A simple method for estimating malaria seasonality. 
Malaria Journal, 2009. 8: p. 276. 

62. Craig, M.H., R.W. Snow, and D. le Sueur, A climate-based distribution model of 
malaria transmission in sub-Saharan Africa. Parasitology Today, 1999. 15(3): p. 
105-111. 

63. Grover-Kopec, E., et al., An online operational rainfall-monitoring resource for 
epidemic malaria early warning systems in Africa. Malaria Journal, 2005. 4(6). 

64. Gillies, H.M. and D.A. Warrell, Bruce Chwatt's Essential Malariology. 3rd ed1996, 
London: Arnold. 

65. Barat, L., Four malaria sucess stories: how malaria burden was successfully 
reduced in Brazil, Eritrea, India and Vietnam. American Journal of Tropical 
Medicine and Hygiene, 2006. 74(1): p. 12-16. 

66. Nyarango, P.M., et al., A steep decline of malaria morbidity and mortality trends 
in Eritrea between 2000 and 2004: the effect of combination of control methods. 
Malaria Journal, 2006. 5: p. 33. 

67. Ceccato, P., et al., Malaria stratification, climate, and epidemic early warning in 
Eritrea. American Journal of Tropical Medicine and Hygiene, 2007. 77(6): p. 61-
68. 

68. Fontaine, R.E., A.E. Najjar, and J.S. Prince, The 1958 malaria epidemic m 
Ethiopia. American Journal of Tropical Medicine and Hygiene, 1961. 10: p. 795-
803. 

69. Grover-Kopec, E., et al., Web-Based Climate Information Resources for Malaria 
Control in Africa. Malaria Journal, 2006. 5: p. 38. 

70. Wort, U.U., et al., Impact of El Nino and malaria on birthweight in two areas of 
Tanzania with different malaria transmission patterns. International Journal of 
Epidemiology, 2004. 33(6): p. 1311-1319. 

71. Lindsay, S.W., et al., Effect of 1997-98 El Nino on highland malaria in Tanzania. 
Lancet, 2000. 355(9208): p. 989-990. 

 
 
 
  



 

11-61 
 

11  Appendix I: Workshop report “The use of Climate 
Information in Impact Assessment for Malaria 
Interventions” Addis Ababa, Ethiopia  

 
To test the acceptability of the ENACTS products to a key stakeholder community the 
workshop, ‘Use of Climate information in Impact Assessment for Malaria Interventions’, 
was held with support from the Federal Ministry of Health and the National 
Meteorological Services Agency of Ethiopia, at the UNECA Conference Center, in Addis 
Ababa, Ethiopia from December 12-14, 2011. The main objectives of the workshop were 
to: 1. Introduce the ENACTS products to the Ethiopian Malaria community, 2. Investigate 
possible associations between climate variability and trends, and malaria transmission in 
Ethiopia between July 2004 and June 2009 at sub–national levels, using the 
comprehensive IDSR data set made available by the Ministry of Health, and 3. Establish 
a methodology for removing the confounding effect of climate on impact evaluation for 
malaria interventions in Ethiopia using a range of local malaria data sets and the 
ENACTS product. The workshop was very successful and indicated the strong interest 
on the part of this user community in accessing and using the ENACTS products.  
 

 
For more information please see the December 2011 ‘Use of Climate information in 
Impact Assessment for Malaria Interventions’ Workshop report available at the following 
link: Building Capacity to Produce and Use Climate Information for Improving Health in 
East Africa   

http://iri.columbia.edu/publications/download=1136
http://iri.columbia.edu/publications/download=1136
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12  Appendix II: Workshop report “Data Quality 
Control, Satellite Rainfall Estimation, and Merging 
Station Observations with Satellite Estimates. Dar 
es Salaam, Tanzania. 

 
The Tanzanian Meteorological Agency (TMA) and the International Research Institute 
for Climate and Society (IRI) of Columbia University, agreed to work together to improve 
the availability, access and use of climate information in Tanzania.  This would be 
accomplished by: 
 
1. Generating a 30-year times series of enhanced rainfall and temperature data every 

10km grid over Tanzania through combination of all available observations with 
satellite proxies; 

2. Creating new climate analysis and monitoring products for specific applications; and 
3. Installing an online mapping service at TMA that will provide user-friendly tools for 

visualization, querying, and accessing information products. 
4.  
A critical aspect of the collaboration was to build capacity with a goal of making activities 
and investments sustainable. TMA staff participated in the first of an intended three 
training workshops to understand and implement each of the three components of the 
project. The first training workshop focused on the generation of a 30-year rainfall and 
temperature time series. This two-week training included: 

- Quality control of station data; 

- Introduction to satellite rainfall estimation; and 

- Combining satellite data with station measurements. 

 
 
Workshop participants  
 
For more information please 
see the Workshop report 
available at the following link: 
Data Quality Control, Satellite 
Rainfall Estimation, and 
Merging Station Observations 
with Satellite Estimates. Dar es 
Salaam, Tanzania (username: 
PMI, password: pietro)  
 
 

 

http://iri.columbia.edu/PMI/Workshop_report_Tanzania/TMA-IRI%20Training%20Report_June%2027-July%206_FIN.pdf
http://iri.columbia.edu/PMI/Workshop_report_Tanzania/TMA-IRI%20Training%20Report_June%2027-July%206_FIN.pdf
http://iri.columbia.edu/PMI/Workshop_report_Tanzania/TMA-IRI%20Training%20Report_June%2027-July%206_FIN.pdf
http://iri.columbia.edu/PMI/Workshop_report_Tanzania/TMA-IRI%20Training%20Report_June%2027-July%206_FIN.pdf
http://iri.columbia.edu/PMI/Workshop_report_Tanzania/TMA-IRI%20Training%20Report_June%2027-July%206_FIN.pdf
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