
Advantages of multi-objective optimisation in evolutionary
robotics: survey and case studies - Experimental methods

Vito Trianni1,*, Manuel López-Ibáñez2

1 Institute of Cognitive Sciences and Technologies (ISTC), National
Research Council (CNR), Rome, Italy.
2 IRIDIA, CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium

* vito.trianni@istc.cnr.it

1 Basic elements of MOO 1

Many real-world optimization problems are evaluated in terms of multiple, often 2

conflicting criteria or objective functions. When there is no a priori information about 3

the importance of each objective, the solutions to such a multi-objective optimization 4

(MOO) problem are usually compared in terms of Pareto dominance [1, 2]: A solution 5

dominates another one if the former is not worse than the latter in all objectives and 6

strictly better in at least one. The goal when tackling such a MOO problem is to find, 7

or approximate as well as possible, the set of all solutions whose image in the objective 8

space is not dominated by any other feasible solution. This set is called the Pareto set 9

and its image is called the Pareto front. 10

Computing the Pareto front is often intractable in practice and heuristic methods 11

are necessary to generate a high-quality approximation [3]. Among the heuristic 12

methods, multi-objective evolutionary algorithms (MOEAs) have achieved a 13

considerable success and we refer the reader to the many textbooks available on the 14

subject for a detailed introduction [1, 2]. 15

2 Comparison of MOO and SOO approaches 16

The experimental methodology followed in this paper has been defined to contrast the 17

MOO approach to evolutionary robotics with a standard SOO approach. To this 18

purpose, we have designed an evolutionary algorithm loosely inspired from a canonical 19

(µ, λ)-ES, which is characterised by rank-based selection [4]. Between the single- and 20

multi-objective approaches, the algorithm differs only in the ranking of the population 21

before selection. In the single-objective case, the ranking is based on the genotype 22

fitness, the best individual being the one with the highest fitness score (assuming a 23

maximisation problem). In the multi-objective case, we have chosen to rank the 24

population according to the hypervolume measure, which gives a higher rank to those 25

solutions that contribute more to the hypervolume defined by the Pareto front [5]. The 26

usage of the hypervolume for ranking solutions in evolutionary optimisation is currently 27

used in state-of-the-art multi-objective evolutionary algorithms like SMS-EMOA [6] and 28

HypE [7]. Being interested in a fair comparison between SOO and MOO, we do not 29

exploit state-of-the-art MOEAs which may implement techniques that cannot be 30

translated to the SOO case. Instead, we provide an implementation which differs 31

minimally between the two experimental conditions, in order to isolate the contribution 32

given by ranking the population according to a single or to multiple objectives. 33

PLOS 1/7

Table 1. The evolutionary algorithm used, loosely inspired by a canonical (µ, λ)-ES.
Note that the differences between the MOO and the SOO version are solely in step 7 for
the computation of a single or of multiple objectives, and in step 8 for the population
ranking. The algorithm is implemented using the Shark machine learning library [8],
which also provides a readily available procedure for ranking based on the hypervolume
measure.

1: procedure Evolutionary Algorithm
2: for 0 ≤ i < λ do . population initialisation
3: Initialise(pi)
4: end for
5: P ← {pi, i ∈ [0, λ)}
6: for 0 ≤ g < G do . repeat for G generations
7: Evaluate(P)
8: Rank(P)
9: for 0 ≤ i < η do . η-elitism

10: p̂i ← pi
11: end for
12: for η ≤ i < λ do . rank-based µ-selection
13: j ← (i− η) mod µ
14: p̂i ← Mutation(pj)
15: end for
16: P ← {p̂i, i ∈ [0, λ)}
17: end for
18: end procedure

The evolutionary algorithm used is detailed in Table 1. Individuals in the population 34

are real-valued vectors pi. Each element of the vector is initialised by sampling a 35

uniform distribution in the range [−pm, pm]. The main evolutionary loop proceeds by 36

first evaluating the whole population using one or more objectives. Then, the 37

population is ranked from the best to the worst individual, and undergoes selection and 38

reproduction. We employ an elitist strategy, by copying the best η individuals 39

unchanged in the offspring population. The remainder of the population is generated 40

from a reproductive pool selected as the best µ individuals, by applying only a mutation 41

operator. Mutation is applied by adding a random value drawn from a gaussian 42

distribution N(0, σ) to each element of the genotype, possibly cutting off the value to 43

constrain it within the interval [−pm, pm]. The process is iterated for a maximum of G 44

generations, and results are collected from the final population. See Table 2 for a 45

summary of the algorithm parameters and the value adopted in the experiments. 46

Performance evaluation is performed in simulation using ARGoS [9], a multi-engine 47

simulator of swarm robotics systems. Because performance evaluation in robotics is 48

dependent on the initial conditions and is influenced by random noise in sensors and 49

actuators, averaging over multiple repetitions (trials) is necessary. For each genotype, 50

we performed K = 10 trials initialised with a different seed of the random number 51

generator. The performance of the genotype is the average over all trials, both in the 52

single- and in the multi-objective case. In the latter case, the average is performed 53

separately for the different objectives. In each generation, all genotypes in the 54

population are evaluated against the same K initial conditions, in order to ensure a fair 55

comparison for ranking. Across generations, the K initial conditions are randomly 56

chosen and any possible information available on previous performance is discarded 57

(e.g., for the elite). 58

For each experimental condition, we performed R = 20 different evolutionary runs, 59

PLOS 2/7

Table 2. Value of the parameters used for the evolutionary algorithm

Parameter Description Value
pm max parameter absolute value 5
λ population size 100
η elite size 25
µ reproductive pool 25
σ standard deviation of mutations 0.2 · pm
G maximum generation number 200
K repetitions for evaluation 10

K̂ repetitions for post-evaluation 500
R number of runs per experimental condition 20

each starting with a randomly initialised population. The R initial populations are 60

identical across different experimental conditions, to further ensure comparability of the 61

obtained results. For each evolutionary run, we retain only the individuals of the last 62

generation, and we re-evaluate their performance averaging over K̂ = 500 trials to 63

obtain a bias-free assessment. All the K̂ trials (across evolutionary runs and 64

experimental conditions) are performed with the same initial conditions obtained with 65

K̂ different seeds of the random number generator. The performance gained in these 66

tests is exploited for comparison. In each evolutionary run, the solutions we consider are 67

either the ones with the highest average performance when accounting for a single 68

objective, or the ones that belong to the (approximate) Pareto front when accounting 69

for multiple objectives. 70

The SOO and MOO approaches require comparable computational resources in the 71

experiments presented here because evolutionary runs using either the SOO or the 72

MOO approach always execute the same number of objective function evaluations. 73

While the ranking of the population is more computationally expensive in the case of 74

the MOO approach, especially for large number of objectives, this difference is 75

negligible with respect to the time required by a single evaluation of the objective 76

functions in our experiments. 77

3 Empirical Attainment Functions 78

Different experimental conditions are compared by means of graphical exploration 79

techniques [10] based on the empirical attainment function (EAF). The attainment 80

function [11,12] gives the probability of a single run of an optimiser attaining (dominate 81

or equal) a specific point in the objective space. In most practical cases, such 82

attainment function is unknowable, but it can be empirically estimated from several 83

independent runs of an optimiser. Such an estimation of the attainment function is 84

called the EAF. The EAF statistically summarises the location and variability of the 85

output of stochastic multi-objective optimisers, in an analogous way as the empirical 86

cumulative distribution function in univariate statistics. For instance, those points (x, y) 87

for which EAF(x, y)≥0.5 are attained in at least 50% of the runs of the optimiser. We 88

can summarise the EAF by plotting the border of the region attained by at least k% of 89

the runs, called k%-attainment surfaces. For example, Fig. 7 in the main text shows the 90

attainment surfaces with values: 0% (best), 25%, 50% (median), 75% and 100% (worst). 91

These surfaces denote the transition of the EAF to a specific value (k/100), that is, 92

these lines correspond to the points in the objective space where the EAF becomes 93

≥k/100. Any point between the k1% and k2% attainment surfaces has a value of 94

k1
100 ≤ EAF(x, y) < k2

100 . By examining the attainment surfaces of an optimiser (e.g., the 95

plots in Fig. 7 in the main text), we can visualize the expected location and variability 96

PLOS 3/7

of its output. 97

A more direct comparison of two optimisers (or experimental conditions) is achieved 98

by plotting the differences between their respective EAFs (see Fig. 6a in the main text 99

for the difference between the EAFs shown in Fig. 7 in the main text). Each side of the 100

plot shows the EAF differences in favour of each optimiser, that is, the points of the 101

objective space where one optimiser has a higher probability than the other of attaining 102

that particular point in a single run. The grey-level gives the magnitude of the 103

difference: darker colours indicate larger differences. For example, a black point on the 104

left indicates that the difference between the EAF of the left optimiser minus the EAF 105

of the right optimiser is at least 0.8, that is, the left optimiser has attained that point in 106

at least 80% more runs than the right one. The solid lines shown in the plot are equal 107

on both sides and correspond to the grand-worst and grand-best attainment surfaces, 108

that is, the best points (in terms of dominance) that are attained, respectively, by all 109

runs of both optimisers and by at least one run of either optimiser. Any EAF 110

differences between the optimisers is located between these two lines. The dashed lines, 111

which are different on each side, denote the 50% attainment surface of the optimiser 112

shown in that side. 113

4 Experimental Setup 114

4.1 The marXbot robot and the simulation model 115

The simulated robot closely models the marXbot robotic platform [13], a small wheeled 116

autonomous robot specifically designed for single as well as collective robotics 117

experimentation. The robot has a roughly cylindrical body, and is characterised by 118

tracks and wheels that provide a differential drive motion. It features several sensory 119

and communication devices, including IR proximity sensors for obstacle detection, two 120

cameras (an omni-directional one and a switchable front/ceiling camera), an IR distance 121

scanner, a range-and-bearing communication module to detect and exchange short 122

messages with neighbours, coloured LEDs around the robot body and a powerful RGB 123

beacon placed below the omni-directional camera. 124

Simulation of the marXbot robot exploits the ARGoS simulator [9]. For the 125

presented experiments, the robot is roughly modelled in two dimensions as a circle, and 126

motion is computed through kinematic equations. This ensures fast simulations even 127

with relatively large groups of robots. Sensors and actuators have been modelled and 128

calibrated to match the features of the physical robot. Random noise is added to every 129

sensor and actuator in order to provide robustness to the synthesised solutions. 130

4.2 The robot controller 131

In all experimental studies presented in the paper, robots are controlled by a simple 132

feed-forward neural network whose parameters are optimised by the evolutionary 133

algorithm. Path planning or trajectory tracking strategies are not used. The navigation 134

strategy exploited by the robots is a reactive one, as follows from the usage of a 135

feed-forward neural controller without internal states, which directly maps the sensory 136

inputs to the motor outputs: 137

Oj = z

(∑
i

wijIi + βj

)
, z(x) =

1

1 + e−x
, (1)

where wij ∈ [−pm, pm] is the connection weight between the sensory input Ii and the 138

motor output Oj , and βj ∈ [−pm, pm] is a bias term. Connection weights wij and bias 139

PLOS 4/7

terms βj are the genetically encoded parameters that are subject to artificial evolution. 140

Whenever necessary, the input from sensors are normalised by linearly scaling the 141

readings in the [0, 1] interval before being fed to the neural network. Similarly, the 142

outputs of the network are scaled from the interval [0, 1] to the range of values of the 143

specific actuator. 144

4.3 Navigation in a maze 145

For the maze navigation task, we employ a single robot that has to detect walls and 146

obstacles and move along the corridor of a looping maze. We employ only the 24 IR 147

proximity sensors uniformly distributed around the robot body. The readings from the 148

24 proximity sensors are linearly scaled in the [0, 1] interval, and directly used as inputs 149

for the neural network. The 2 outputs of the neural network are linearly scaled in the 150

range [−ωm, ωm] with ωm ≈ 0.34 s−1, and used to control the angular speed of the two 151

wheels. Therefore we have 24 inputs, 2 outputs and 2 bias terms, resulting in 152

24 · 2 + 2 = 50 genes per genotype. 153

Each evaluation trial is performed by initialising the robot in the looping maze with 154

a random position and orientation. The initial position is chosen close to the centre of 155

the corridor and randomly varying distance from the centre and orientation. Each trial 156

lasts T = 120 s and the robot performs a control step every 100 ms. 157

4.4 Flocking 158

Flocking is studied with groups of N = 10 robots. Each robot is equipped with a 159

minimal set of sensors and actuators, which is however sufficient for displaying a flocking 160

behaviour. The robots use their LEDs to display a left-right pattern that provides some 161

information on their heading. In particular, two red LEDs on the left and two blue 162

LEDs on the right are activated during the whole evaluation trial. These LEDs can be 163

perceived by the omnidirectional camera of neighbouring robots up to the distance of 164

1 m. Additionally, IR proximity sensors are exploited for close-range collision avoidance. 165

To provide the inputs to the neural network and to reduce their number, we 166

pre-process both the camera image and the IR proximity sensors as follows. The 167

acquired image is processed to extract a list of red/blue colour blobs c ∈ {r, b} with 168

their distance ρc,i and angle θc,i, resulting in a vector vc,i(ρc,i, θc,i) for each detected 169

blob (in polar coordinates). Similarly, for each IR proximity sensor i = 1, . . . , 24 we 170

build a two-dimensional vector vp,i(ρp,i, θp,i) in polar coordinates, where ρp,i 171

corresponds to the sensor reading, and θp,i corresponds to the sensor bearing. 172

We compute a single resultant vector for red blobs, for blue blobs and for the 173

proximity sensors: 174

Vk =
∑
i

vk,i, k = r, b, p. (2)

Then, we rescale the vector length to be within the range [0, 1] by exploiting a sigmoid 175

normalisation: 176

V̂k =
Vk

|Vk|
2

1 + e−β|Vk|
− 1, (3)

where β = 2 is a normalisation parameter. Finally, we consider the projection along 177

D = 6 equally distributed axes, by computing the scalar product: 178

Ik,d = V̂k ·Vd, d = 1, . . . , D, (4)

where Vd is the versor in the direction (2d− 1)π/D. In this way, we reduce the total 179

number of scalar inputs to a more manageable size without significant loss of 180

information. The neural network has therefore 18 sensory inputs and 2 motor outputs. 181

PLOS 5/7

The first 6 neurons receive the input from proximity sensors: Id = Ip,d. Neurons in the 182

range [7, 12] and [13, 18] receive the data corresponding to the red and blue vectors: 183

Id+6 = Ir,d and Id+12 = Ib,d. Finally, the output of the two motor neurons is scaled 184

onto the range [−ωm,+ωm] with ωm ≈ 0.34 s−1, and used to control the speed of the 185

wheels. With 18 inputs, 2 outputs and 2 bias terms we have in total 18 · 2 + 2 = 38 186

genes per genotype. 187

Each evaluation trial is performed by initialising N = 10 robots randomly within a 188

circle of 1 meter radius. All robots are provided with the same neural controller (i.e., we 189

use a homogeneous group). The controllers are generated by the same genotype thanks 190

to a direct encoding. Each trial lasts T = 120 seconds. 191

4.5 Strictly collaborative task 192

This task involves N = 6 robots that have to collaborate to switch off M = 18 beacons. 193

Beacons are implemented as red LEDs placed over cylindrical obstacles (radius: 5 cm). 194

Additionally, robots can emit a blue signal using their own RGB beacon. To detect 195

beacons and signals, robots exploit their omni-directional camera. Additionally, IR 196

proximity sensors are used for collision avoidance. Similarly to the flocking case study, 197

the information from both camera and proximity sensors is pre-processed, resulting in 198

D = 6 inputs for red blobs, blue blobs and IR proximity sensors, for a total of 18 inputs. 199

The neural network has three outputs. The first two are scaled onto the range 200

[−ωm,+ωm] with ωm ≈ 0.68 s−1 and used to control the wheels speed. The third 201

output is used to control the signalling beacon, which is switched on (off) when the 202

output is larger (smaller) than 0.5. In the whole, with 18 inputs, 3 outputs and 3 bias 203

terms we have 18 · 3 + 3 = 57 genes per genotype. 204

Each evaluation trial is performed by initialising the robots randomly in a circular 205

arena (radius: 6 m). The M beacons are also randomly positioned within the arena. 206

The robots are homogeneous, and share identical controllers generated from a single 207

genotype. Each trial lasts T = 600 seconds. 208

References 209

1. Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. 210

Chichester, UK: Wiley; 2001. 211

2. Coello Coello CA, Lamont GB, Van Veldhuizen DA. Evolutionary Algorithms for 212

Solving Multi-Objective Problems. Springer, New York, NY; 2007. 213

3. Zitzler E, Thiele L, Laumanns M, Fonseca CM, Grunert da Fonseca V. 214

Performance assessment of multiobjective optimizers: an analysis and review. 215

IEEE Transactions on Evolutionary Computation. 2003;7(2):117–132. 216

4. Beyer HG, Schwefel HP. Evolution stratagies: a comprehensive introduction. 217

Natural Computing. 2002;1:3–52. 218

5. Zitzler E, Thiele L. Multiobjective Optimization using evolutionary algorithms - 219

A comparative case study. In: Eiben AE, Bäck T, Schoenauer M, Schwefel HP, 220

editors. Parallel Problem Solving from Nature, PPSN V. vol. 1498 of Lecture 221

Notes in Computer Science. Springer, Heidelberg, Germany; 1998. p. 292–301. 222

6. Beume N, Naujoks B, Emmerich M. SMS-EMOA: Multiobjective selection based 223

on dominated hypervolume. European Journal of Operational Research. 224

2007;181(3):1653–1669. 225

PLOS 6/7

7. Bader J, Zitzler E. HypE: An Algorithm for Fast Hypervolume-Based 226

Many-Objective Optimization. Evolutionary Computation. 2011;19(1):45–76. 227

8. Igel C, Heidrich-Meisner V, Glasmachers T. Shark. Journal of Machine Learning 228

Research. 2008 Jun;9:993–996. Available from: 229

http://www.jmlr.org/papers/volume9/igel08a/igel08a.pdf. 230

9. Pinciroli C, Trianni V, O’Grady R, Pini G, Brutschy A, Brambilla M, et al. 231

ARGoS: A Modular, Parallel, Multi-Engine Simulator for Multi-Robot Systems. 232

Swarm Intelligence. 2012;6(4):271–295. 233

10. López-Ibáñez M, Paquete L, Stützle T. Exploratory Analysis of Stochastic Local 234

Search Algorithms in Biobjective Optimization. In: Bartz-Beielstein T, 235

Chiarandini M, Paquete L, Preuss M, editors. Experimental Methods for the 236

Analysis of Optimization Algorithms. Berlin, Germany: Springer; 2010. p. 237

209–222. 238

11. Grunert da Fonseca V, Fonseca CM, Hall AO. Inferential Performance 239

Assessment of Stochastic Optimisers and the Attainment Function. In: Zitzler E, 240

Deb K, Thiele L, Coello Coello CA, Corne D, editors. Evolutionary 241

Multi-criterion Optimization, EMO 2001. vol. 1993 of Lecture Notes in Computer 242

Science. Springer, Heidelberg, Germany; 2001. p. 213–225. 243

12. Grunert da Fonseca V, Fonseca CM. The Attainment-Function Approach to 244

Stochastic Multiobjective Optimizer Assessment and Comparison. In: 245

Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M, editors. Experimental 246

Methods for the Analysis of Optimization Algorithms. Berlin, Germany: Springer; 247

2010. p. 103–130. 248

13. Bonani M, Longchamp V, Magnenat S, Rétornaz P, Burnier D, Roulet G, et al. 249

The MarXbot, a Miniature Mobile Robot Opening new Perspectives for the 250

Collective-robotic Research. In: Proceedings of the 2010 IEEE/RSJ International 251

Conference on Intelligent Robots and Systems (IROS 2010). Piscataway, NJ: 252

IEEE Press; 2010. p. 4187–4193. 253

14. Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M, editors. Experimental 254

Methods for the Analysis of Optimization Algorithms. Berlin, Germany: 255

Springer; 2010. 256

PLOS 7/7

http://www.jmlr.org/papers/volume9/igel08a/igel08a.pdf

	Basic elements of MOO
	Comparison of MOO and SOO approaches
	Empirical Attainment Functions
	Experimental Setup
	The marXbot robot and the simulation model
	The robot controller
	Navigation in a maze
	Flocking
	Strictly collaborative task

