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We describe the study area as A , a convex polygon that comprises any pair of coordinates in

which individuals can be found. The total time T is taken in discrete points since observations

are regularly spaced in intervals of time, i.e., mosquito traps are observed on a daily basis. There

are two kinds of individuals captured by the traps, a marked mosquito population released in the

area and an unmarked native mosquito population. The marked population, of known size N1 , is

de�ned by cohorts given by colors used in the marking process. Let C be the set of colors used in

the experiment and let Mc be the set of individuals marked with color c ∈ C . We have the total

set of marked individuals M =
⋃
c∈CMc and the total number of marked mosquitoes be N1 . The

estimation model should consider the known number N1 of marked mosquitoes, and the number of

unmarked individuals captured in each of the traps daily in order to do an estimation of abundance,

native (unmarked) mosquitoes (N2 ) For captured individuals we are able to register their capture

histories, i.e., the day it was released and the day it is observed in a given trap. This constitutes

the dataset available for estimation. In this dataset, we shall index �rst the marked individuals,

i.e., any i , such that 1 ≤ i ≤ N1 , is a marked individual, without loss of generality.
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To estimate N2 , that is, the abundance of native mosquitoes in A , a hierarchical model is de-

veloped with components: an ecological component describing the dispersal and survival of marked

individuals once released, and a observation component describing the capturing of marked and

unmarked mosquitoes at traps belonging to a set of traps distributed in the area. The hierarchical

structure emerges from the dependence of the observation process on the unobserved ecological

process.

Ecological process I: mosquito dispersal

De�nition: Center of activity is a subarea of the study area A inside which the individual

will tend to stay. For simplicity we consider it a neighborhood of a point si whose coordinates

(sxi, syi) must be inferred through the analysis. We have the center of activity si = (sxi, syi) , for

an individual i , 1 ≤ i ≤ N1 + N2 , described by a bivariate position whose prior distribution is a

uniform distribution in the area A :

si ∼ Unif(A). (1)

Ecological process II - survival probability

We describe the probability φi,t of a marked individual i to survive from time t − 1 to t ,

1 ≤ t ≤ T . Let qi,t describe whether an individual i , 1 ≤ i ≤ N1 + N2 , is present for the study

at time t , 1 ≤ t ≤ T (similar to the presence variable described by [1]). We de�ne qi,t = 1 , if an

individual i is present at time t , and qi,t = 0 , otherwise.

For simplicity, we distinguish how survival is modeled across the two sets of individuals, marked

and unmarked ones. For the unmarked population, di�erently from the marked ones, we certainly

have not only death of individuals but also recruitment. Under an assumption that the population is

at least temporarily at a stable level in the study area, which remains constant during the period of

the MRR study, we consider that the mortality cancels the recruitment component (and possibly an

immigration and migration components). As a consequence, the population of (native) unmarked

individuals, given the total period T of observation, would remain constant over time, except for

the capture of individuals. From a modeling perspective, it means that only the marked population

will be a�ected by the survival component.
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The survival component for qi,t , 1 ≤ i ≤ N1 + N2 , 1 ≤ t ≤ T , builds hierarchically upon its

previous presence to be a Bernoulli distribution given the product between the previous presence

and its survival in the t�interval, i.e. , qi,t|qi,t−1 ∼ Bern(φi,tqi,t−1) . We should do, however, an

adjustment to address observations (by captures) and subsequent removals, when we describe the

observation component.

Observation process: trap component

There are J traps placed at known locations identi�ed by uj , 1 ≤ j ≤ J , given each by a pair

of coordinates (uxj , uyj) . The probability πi,j of individual i , 1 ≤ i ≤ N1 +N2 being captured at

trap j is given as a function of distance di,j , the distance from the center of activity si of individual

i , 1 ≤ i ≤ N1 +N2 , to the location uj of trap j , 1 ≤ j ≤ J .

Following [2], this can be treated as a Generalized Linear Model (GLM). We choose to use a

function that takes a complementary log�log link function of the distance di,j , 1 ≤ i ≤ N1 + N2

and 1 ≤ j ≤ J . Hence, cloglog(πi,j)|si ∼ β0 + β1di,j , where di,j is the Euclidean distance from the

center of activity of individual i to the location of trap j .

As an individual is captured once at most at any observation time t , we have that the probability

of being captured at any trap is given by the product between the probabilities of being �capturable�

at trap j , conditioned on its distances to all traps, and its probability that it is captured at j .

Also, a variable zi,t describes a �capturable� trap for an individual i , 1 ≤ i ≤ N1 + N2 , to be

caught at time t , 1 ≤ t ≤ T . The variable zi,t is described by a categorical distribution that takes

the normalized values of πi,j from j = 1 to j = J :

zi,t|πi,j ∼ Cat

(
1∑J

j=1 πi,j
πi

)
. (2)

Observation process: capturing component

Let yi,j,t be a variable that describes whether individual i , 1 ≤ i ≤ N1 + N2 is captured at

trap j , 1 ≤ j ≤ J , at time t , 1 ≤ t ≤ T . The abundance that we want to estimate is de�ned by

the number of unmarked individuals present in the area when the experiment starts. The number

of individuals that belong to the unmarked set U of individuals is given by N2 at the onset of

the study but individuals are removed by the capture process. Therefore for individuals that are
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captured, they cannot be observed any longer, since they are removed from the study. Although the

unmarked population is considered to be at a constant level, the capture process lowers this level.

Once we introduce the removal of mosquitoes by capturing, the survival component becomes:

qi,t|qi,t−1, yi,1,t−1, ..., yi,J,t−1 ∼ Bern(φ× qi,t−1 ×
J∏
j=1

(1− yi,t−1)). (3)

The observation yi,j,t , 1 ≤ i ≤ N1 + N2 , 1 ≤ j ≤ J , 1 ≤ t ≤ T , is given by a Bernoulli

distribution that takes into account the presence in the study of individual i , whether it is capturable

at trap j and the probability to be e�ectively captured at trap j :

yi,j,t|si, qi,t, zi,t ∼ Bern(πi,j × Ij(zi,t)× qi,t), (4)

where the function Ij(.) is an indicator function to indicate whether zi,t = j .

Data augmentation

We use the data augmentation technique as used in [3] to estimate N2 , just adding another layer,

a zero�in�ated component. We let M >> N1+N2 be an overestimated number of individuals that

take part in the study. Since we do know the number N1 of marked individuals, we are e�ectively

adding non�real individuals to the unmarked population. Since these individuals are not observed,

this technique e�ectively adds a zero-in�ation component by adding a number of zero entries to the

observation data. Let wi be a variable that indicates whether individual i is real. For the marked

population of size N1 , wi = 1 , since all individuals are known to exist. For the unmarked population

of size M−N1 , wi is a Bernoulli variable with parameter ψ , for which a prior distribution is de�ned

accordingly. As such,

wi ∼ Bern(ψi), where (5)

ψi =

 1 for 1 ≤ i ≤ N1

ψ, otherwise.

Once this layer is added to the hierarchical model, the observation variable yi,j,t becomes

yi,j,t|si, qi,t, zi,t ∼ Bern(wi × πi,j × Ij(zi,t)× qi,t). (6)
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Table S1.1 shows a list of the components in the model and also a description of the variables

and parameters.

Table S1.1: The components of the hierarchical model and description of variables and parameters

used in the model.

Components Description

centers of activities si ∼ Unif(A).

survival component qi,t|qi,t−1, yi,1,t−1, ..., yi,J,t−1 ∼ Bern(φ× qi,t−1 ×
∏J
j=1(1− yi,t−1))

trap component cloglog(πi,j)|si ∼ β0 + β1di,j

zi,t|πi,j ∼ Cat( 1∑J
j=1 πi,j

πi)

zero-in�ated component wi ∼ Bern(ψi)

observation component yi,j,t|si, qi,t, zi,t ∼ Bern(wi × πi,j × Ij(zi,t)× qi,t)

Variables and Description

Parameters

A Study area

N1 Number of marked mosquitoes

N2 Number of unmarked mosquitoes

M Total number of individuals

si center of activity of each individual i (coordinates)

yi,j,t capture of individual i at trap j at time t

qi,t presence of individual i at time t

zi,t capturable trap for individual i at time t

wi individual i is part of the study

πi = (πi,1, πi,2, ...πi,J) probability of individual i being captured at each of the traps

φ daily survival probability of marked individuals

φ ∼ Beta(4, 2)

β0, β1 coe�cients used in the probability function of the trap capturing process

β0 ∼ N(0, 0.2), β1 ∼ N(0, 0.2) (�eld data)

β0 ∼ N(0, 1), β1 ∼ N(0, 1) (simulation data)

ψi probability that individual i is in the study

ψ ∼ Beta(2, 2)
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Posterior distribution of density estimates

Figure S1.2 shows the results for a simulation in which 10 marked individuals are captured out of

200 total marked individuals. The number used for unmarked individuals was 300.

Figure S1.3 shows the posterior distributions found for the estimation of abundance N2 and also

the survival probability of marked individuals φ . The abundance estimate obtained in the second

study is more skewed to the higher values, probably due to the large set of data. Indeed the credible

interval is large as seen in the table of results.

Figure S1.4 shows a map of the city of Rio de Janeiro that shows the location of the Z-10 area.

We also expand on the areas to show Ilha do Governador and the area within which Z-10 is located.

When computing the density values we estimate mean values using samples taken from MCMC

runs. The area is divided into a grid, and for each small area density is computed. In the Results

section we show the maps that contain the mean density values. We also have for each small area

credible intervals of the density. Therefore we are able to show maps that contain the lower and

upper limits of these credible intervals. Therefore, in Figure S1.5 we consider the minimum density

values and maximum density values. We observe little di�erence in the spatial distributions by

comparing the low�limit values to the high�limit values.

Figure S1.6 shows a sliced view of the spatial distribution for a �xed latitude equal to -22.82268.

It is basically the density distribution when considering just a single dimension, in this case the

longitude, since latitude is �xed.

Figure S1.7 shows the spatial density of female Aedes aegypti in the Z-10 area in Rio de Janeiro,

Brazil, using data from MRR experiments conducted in Sept. 2012 and March 2013 in the same

scale. Since abundance in September was much lower we see a �attened distribution in Figure S1.7a.

Posterior distribution of survival probability in simulation scenario

Table S1.2 shows the results for the survival probability of marked individuals. The survival prob-

ability φ tends to be underestimated when the area of attraction is small. In this case the low

capture rate of traps seems to impact the ability to accurately estimate the survival probability,
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which undoubtedly impacts also in the estimation of abundance as shown in the results for abun-

dance.

Table S1.2: Data obtained for the analysis of survival probability in simulations. The total number

of iterations was 12000 for each of 2 Markov chains. The �rst 3000 iterations are discarded as

burn-in interval. The pair (m,u) stands for (marked, unmarked).

Study� (N1, N2) Number of Capt. Hier. Std Median Conf. Int. (95%)

Cohort captures � Ratio � model's dev.

(m , u) (m , u) mean est.

b5-h (200 , 300) (5, 34) (0.03 , 0.11) 0.71 0.09 0.71 0.53 � 0.88

b5-h (300 , 500) (14, 62) (0.05 , 0.12) 0.73 0.08 0.73 0.57 � 0.87

b5-h (400 , 700) (17 , 91) (0.04 , 0.13) 0.74 0.06 0.74 0.61 � 0.86

b5-h (500 , 900) (21 , 106) (0.04 , 0.12) 0.75 0.06 0.75 0.63 - 0.85

b8-h (200 , 300) (17 , 81) (0.09 , 0.27) 0.80 0.06 0.81 0.68 � 0.92

b8-h (300 , 500) (36 , 140) (0.12 , 0.28) 0.83 0.05 0.83 0.74 � 0.93

b8-h (400 , 700) (41 , 208) (0.10 , 0.30) 0.88 0.04 0.88 0.79 � 0.95

b8-h (500 , 900) (46 , 251) (0.09 , 0.28) 0.75 0.04 0.75 0.67 � 0.84

We also experiment with random movement for individuals. Table S1.3 shows results obtained

after applying the Bayesian hierarchical model and the Fisher�Ford method for simulation data

generated with settings of random movement for each of the individuals. Mean and median estimates

from the Bayesian analysis are close to the actual numbers used in the simulations. However, in the

simulation mosquitoes perform each random walks in the space over a few days described by a few

points. Since each step of these random walks has a maximum length that is much shorter than

the area, we might still �nd individual centers of activity for mosquitoes even though not formally

de�ned in the simulation (using this option).

Table S1.3: Results obtained after applying the Bayesian hierarchical model and the Fisher-Ford

method with data from simulations in which individual movements were set to random movement

for both marked and unmarked individuals.

Simulated scenarios Hierarchical Model Fisher�Ford

simulation # captures capture Mean Std. dev. Median 95% CI Mean 95% CI

(m,u) ratio

(200, 300) (18, 63) (0.09, 0.21) 336 89 329 184 � 524 145 99 � 297

(300, 500) (30, 115) (0.10, 0.23) 546 128 531 337 � 830 242 171 � 283

(400, 700) (36, 165) (0.09, 0.24) 650 135 629 440 � 970 454 346 � 632

(500, 900) (44, 204) (0.09, 0.23) 995 206 974 647 � 1407 625 482 � 1101
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JAGS code for the Hierarchical Model

Here we present the JAGS code used for running the Bayesian analysis. The code contains com-

ments, in lines indicated by a # character.

The observation data is entered into an R workspace and is used as an input to JAGS. We

typically use multiple chains. The fact that we use an individual model, and observation over

traps and time, requires us to develop a three-dimension array as observation data to be used

as input to JAGS. In the case of �eld data, we might have numbers such as approximately 800

individuals caught at traps and 2000 marked individuals released. These large numbers require an

even higher number for M to implement the data augmentation, by adding an excess of zeroes

in this observation matrix. There are also parameters to be worked in this Bayesian analysis, for

instance the positions of each of the centers of activity, values for β0 , β1 , φ , ψ . Needless to say, as

the number of individuals increases the computing intensity also gets more intense.

model {

# Generate priors for beta0, beta1, psi

rbeta0~dnorm(0,1)

beta0 <-rbeta0

rbeta1~dnorm(0,1)

beta1 <- rbeta1

psi~dbeta(2,2)

# Prior for daily survival probability

rrho1 ~ dbeta(4,2)

rho1 <- rrho1

rho2 <- 0.999

# Generate uniform prior for spatial distribution of

# center of activities

for(i in 1:M) {

s[i,1]~dunif(Xl,Xu)

s[i,2]~dunif(Yl,Yu)

# w indicates whether individual belongs to the study (zero-inflated component)

w[i] ~ dbern(step(i-(N1+1))*psi + (1-step(i-(N1+1)))*1)

}

# For each individual compute its probability to be present

# at time t from 1 to T

for (i in 1:M) {
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phi[i] <- step(i-(N1+1))*rho2 + (1-step(i-(N1+1)))*rho1

q[i,1] <- phi[i]

for (t in 2:T) {

q[i,t]<- phi[i]*q[i,t-1]*(1-step(sum(y[i,,1:(t-1)])-1))

}

}

for(i in 1:M) {

pu[i,] <- p[i,]/sum(p[i,1:J])

y3[i]~dcat(pu[i,1:J])

for (j in 1:J) {

# the distance from the center of activity of this individual to the trap location

d[i,j]<- pow((s[i,1]-X[j,1])^2 + (s[i,2]-X[j,2])^2 , 0.5)

# the probability to be captured at trap j is a function of

# the distance from its center of activity to the trap location

p[i,j] <- 1-exp(-exp(log(1) - beta0 - beta1*d[i,j]))

for (t in 1:T) {

# The observation as a Bernoulli variable taking into account

# the existence of the individual, its probability to be captured,

# the capturing at trap j, and its survival

y[i,j,t] ~ dbern(w[i]* p[i,j] * equals(j,y3[i]) * q[i,t])

}

}

}

# The abundance is given by the sum of w[] but we discount

# the number of marked individuals

N<-sum(w[])-N1

}
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(a) Estimation of abundance
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(b) Estimation of abundance (collapsed)

Figure S1.1: Results from estimation � using simulation data (number of marked individuals = 200

and number of unmarked individuals = 300). Results obtained after 10000 iterations, 4 chains and

a burn-in period of 2000 iterations. Here we run 4 Markov chain simulations and the plots in the

boxes on top show the results obtained for each of the simulations. On the left�hand side, results

are shown for the estimation with each of the Markov chains. On the right�hand side the posterior

distribution for the abundance N2 is shown, when all distributions for each of the simulations are

collapsed into one single distribution for abundance.
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Density of survival probability estimates
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(a) Estimation of survival probability
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(b) Estimation of survival probability (collapsed)

Figure S1.2: Results from estimation � using simulation data (number of marked individuals =

200 and number of unmarked individuals = 300). Results obtained after 10000 iterations, 4 chains

and a burn-in period of 2000 iterations. Here we run 4 Markov chain simulations and the plots in

the boxes on top show the results obtained for each of the simulations. On the left�hand side, the

posterior distribution for the survival probability φ of marked individuals is shown for each of the

Markov chains. On the right�hand side the results are depicted when all distributions for each of

the simulations are collapsed into one single distribution of survival probability.
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Density of abundance estimates
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(a) Estimation of abundance (Sept. 2012)
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(b) Estimation of survival probability (Sept. 2012)
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(c) Density of abundance estimates (March 2013)
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(d) Density of survival probability estimates (March

2013)

Figure S1.3: Posterior distributions of abundance and survival probability after 16000 iterations.

On top the distributions for abundance and survival probability found after using the Sept. 2012

data are shown in Figures S1.3a and S1.3b, respectively. In the bottom Figures S1.3c and S1.3d

show the distributions for abundance and survival probability, respectively, found when taking into

account the data from March 2013.
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Figure S1.4: This map includes downtown of the city of Rio de Janeiro, a portion of its southern

zone, a portion of its northern zone, and the Guanabara Bay on the right�hand side. The Z-10 area

is located at Ilha do Governador, which appears in the top right corner. Source of map layer: USGS

LandsatLook, http://landsatlook.usgs.gov/
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Figure S1.5: Spatial distribution of individuals in the area (16000 iterations). Circles indicate trap

locations.
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Figure S1.6: Density at latitude = -22.82268. Density is shown in the y�axis for the mean density

(number of mosquitoes / 100 m2 ). Longitude is shown along the x�axis. The upper and lower limit

values from the 95% CI for each gridpiece is shown in the upper and lower curves, respectively.
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(a) Map with estimation of spatial distribution (Sept.

2012)
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(b) Map with estimation of spatial distribution (March

2013)

Figure S1.7: The spatial density of Sept 2012 compared to March 2013 in the same scale. Circles

indicate trap locations.
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