S1. Wavelet analysis
We used wavelet analysis to determine how fluctuations in pH and temperature both varied and co-varied over time at each site. In this appendix, we provide a summary of these methods and direct the reader to previously published practical guides for further details (e.g., Torrence and Compo 1998, Cazelles et al. 2008, Iles et al. 2012).
Univariate wavelet analysis

Wavelets are flexible functions that are resolved in the time and frequency domains, and thus ideal for quantifying changes in the contribution of each period (or frequency) over time to the overall variance (or power) of a signal (e.g., a time series). Because wavelets can be scaled (i.e., contracted or dilated), they can efficiently accommodate both high and low frequency structures in non-stationary signals whose statistical characteristics vary over time. We used the Morlet wavelet, which is defined as:
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 is the nondimensional frequency (Torrence and Compo 1998). The continuous wavelet transform of a discrete time series 
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 is defined as the convolution of 
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 with a normalized Morlet wavelet (Torrence and Compo 1998, Grinsted et al. 2004):
[image: image9.emf]


Wx s,τ( ) = δ t
s



x(t)ψ 0 *
t −τ( )δ t
s



⎛
⎝⎜



⎞
⎠⎟t=0



T−1



∑










W

x

s

,

t

( )

=

d

t

s

x

(

t

)

y

0

*

t

-t

( )

d

t

s

æ

è

ç

ö

ø

÷

t=

0

T-

1

å


where * indicates the complex conjugate. By varying the wavelet scale [image: image10.emf]


s










s

 (i.e., dilating and contracting the wavelet) and translating along localized time position [image: image11.emf]
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, one can calculate the wavelet coefficients [image: image12.emf]
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, which describe the contribution of the scales [image: image13.emf]


s










s
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 at different time positions [image: image15.emf]
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 (Torrence and Compo 1998, Cazelles et al. 2008). Here, [image: image16.emf]
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 is a parameter used to normalize the Morlet wavelet function to unit variance in order to allow direct comparisons of the wavelet coefficients [image: image17.emf]
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 (Torrence and Compo 1998, Grinsted et al. 2004). These wavelet coefficients can be used to compute the bias-corrected local wavelet power, which describes how the contribution of each frequency or period in the time series varies in time  (Torrence and Compo 1998, Liu et al. 2007, Cazelles et al. 2008):
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where [image: image21.emf]
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is the bias correction factor (Liu et al. 2007). The local wavelet power spectrum can then be visualized via contour plots (Grinsted et al. 2004, Cazelles et al. 2008). 
The scale [image: image22.emf]
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 of the Morlet wavelet is related to Fourier frequency [image: image23.emf]
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 (Maraun and Kurths 2004, Cazelles et al. 2008): [image: image24.emf]
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 is approximately equal to the reciprocal of the Fourier frequency [image: image27.emf]
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 (Maraun and Kurths 2004, Cazelles et al. 2008): [image: image28.emf]
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Zero-padding and the cone of influence

In practice, the continuous wavelet transform is computed by using discrete Fourier transforms to calculate all [image: image32.emf]
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 convolutions simultaneously (Torrence and Compo 1998). However, since the Fourier transform assumes that the data is periodic, errors in the estimation of the local wavelet power spectrum will occur at the beginning and at the end of any finite-length time series (Torrence and Compo 1998, Cazelles et al. 2008). In order to limit these edge effects, the end of a time series is padded with zeros prior to taking the wavelet transform and the zeroes are then removed (Torrence and Compo 1998, Cazelles et al. 2008). Typically, enough zeros are added in order for the total length [image: image33.emf]


T










T

 of the time series to reach the next-higher power of two. This both limits edge effects and improves the speed of the Fourier transform (Torrence and Compo 1998). 

Although padding with zeros limits errors due to edge effects, it introduces artificial discontinuities at the endpoints of the data (Torrence and Compo 1998, Cazelles et al. 2008). As one gets closer to the end of the data, more zeros are included in the estimation of the local wavelet spectrum, thus reducing its reliability (Torrence and Compo 1998, Cazelles et al. 2008). The region where zero padding affects the estimation of the wavelet spectrum is called the cone of influence (COI), and is defined as the region in which the wavelet power for a discontinuity at the edge drops by a factor of [image: image34.emf]
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 (Torrence and Compo 1998). Hence, any region falling below the COI is susceptible to edge effects.

Statistical significance testing

In order to determine the statistical significance of the wavelet spectrum obtained from a time series, one must first formulate an appropriate null hypothesis. Here, the null hypothesis is that the observed time series is generated by a stationary process with a given background power spectrum [image: image35.emf]
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 (Torrence and Compo 1998, Grinsted et al. 2004). Since many ecological and environmental time series exhibit strong temporal autocorrelation (i.e. high power associated with low frequencies; e.g. Beninca et al. 2009, see Ruokolainen et al. 2009 for review), we used a first order autoregressive model [AR(1)] to generate a temporally autocorrelated time series or red noise, which served as our null hypothesis. Specifically, the power spectrum [image: image36.emf]
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 of our red noise process was calculated with (Gilman et al. 1963):
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where the autocorrelation coefficient [image: image38.emf]
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 at time lag 1 is estimated from the observed time series and [image: image39.emf]
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 represents the frequency index. The observed wavelet spectrum can be compared to the wavelet spectrum of the red noise process by means of a chi-square test. The distribution of the local wavelet power spectrum of a red noise process is (Torrence and Compo 1998): 
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 represents the chi-square distribution with 2 degrees of freedom. The value of [image: image45.emf]
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 is the mean wavelet power spectrum at frequency [image: image46.emf]
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 (Torrence and Compo 1998). Using this equation, one can construct 95% confidence contour lines at each scale using the 95th percentile of the chi-square distribution [image: image48.emf]
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 (Torrence and Compo 1998).
Wavelet coherence
Wavelet coherence can be used to quantify the strength of the covariation between two signals in the time and frequency domains (Torrence and Webster 1998, Torrence and Compo 1998, Grinsted et al. 2004). To compute the wavelet coherence, one must first calculate the cross-wavelet of time series 
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, as described in the previous section. Then, the cross-wavelet transform is computed via (Torrence and Compo 1998, Grinsted et al. 2004):


[image: image53.emf]


Wx,y (s,τ ) =Wx (s,τ )Wy
*(s,τ )










W

x

,

y

(

s

,

t

)

=

W

x

(

s

,

t

)

W

y

*

(

s

,

t

)








where * indicates complex conjugation. The wavelet coherence between two time series 
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, and cross-wavelet spectrum 
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 is then computed as (Torrence and Webster 1998, Grinsted et al. 2004, Cazelles et al. 2008):
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where 
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 denotes smoothing in both time 
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. The time smoothing uses a filter given by the absolute value of the wavelet function at each scale, normalized to have a total weight of unity, which is a Gaussian function 
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for the Morlet wavelet. The scale smoothing is done with a boxcar function of width 0.6, which corresponds to the decorrelation scale of the Morlet wavelet (Torrence and Webster 1998, Torrence and Compo 1998, Grinsted et al. 2004). Overall, the wavelet coherence can be thought of as the local or time-resolved correlation between two time series (Cazelles et al. 2008, Rouyer et al. 2008a, 2008b).

Statistical significance testing

The statistical significance of wavelet coherence can be tested by using Monte Carlo randomization techniques (Grinsted et al. 2004). Specifically, we generated 1,000 pairs of surrogate time series with the same first order autoregressive coefficients as our observed time series. We computed the wavelet coherence for each pair of surrogate time series, thus generating a distribution of wavelet coherence. We then obtained the 95% significance level for each scale by computing the 95th percentile of the wavelet coherence distribution.
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