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1. CHARGE WGS European American samples in this study 

The individuals sequenced in this study were part of the Cohorts for Heart and Aging Research in Genetic Epidemiology (CHARGE) cohorts1


[ ADDIN EN.CITE ]
, and belong to one of three NHLBI cohort studies. The ARIC study contributed 404 participants; the Cardiovascular Health Study contributed 237 participants; and the Framingham Heart Study contributed 321 participants. Each of these cohort studies is briefly described below.
Atherosclerosis Risk in Communities (ARIC) study 
The ARIC study has been described in detail previously2[]
. White and African American men and women aged 45-64 years at baseline were recruited from four communities: Forsyth County, North Carolina; Jackson, Mississippi; Minneapolis, Minnesota; and Washington County, Maryland. A total of 15,792 individuals participated in the baseline examination in 1987-1989, with three triennial follow-up examinations. 
Cardiovascular Health Study (CHS) 
CHS has been described in detail previously3[]
. CHS is a population-based cohort study of risk factors for coronary heart disease and stroke in adults ≥65 years conducted across four field centers. The original cohort of 5,201 persons was recruited in 1989-1990 from random samples of the Medicare eligibility lists.
Framingham Heart Study (FHS)  
FHS has been described in detail previously4[,5]
. Individuals were initially recruited in 1948 in Framingham, MA to evaluate cardiovascular disease risk factors. The second generation cohort (5,124 offspring of the original cohort) was recruited between 1971 and 1975, and multiple lipid measurements where available were averaged. The third generation cohort (4,095 grand-children of the original cohort) was collected between 2002 and 2005, and a single lipid measurement was available. 

2. Data Generation using whole genome sequencing based on Illumina platforms

Library construction processes for the Illumina pipeline are fully automated at the Baylor College of Medicine Human Genome Sequencing Center (BCM-HGSC). This automated pipeline uses the Biomek NX Span 8 liquid handler in tandem with Biomek FX or NX platforms. Established automated steps within the library construction process include DNA aliquoting, end-repair, 5’ adenylation, adaptor ligation, library amplification and sample pooling using the Biomek Span 8 platform. SPRI-bead purification associated with end-repair, nick translation and PCR amplification steps are all performed on Biomek FX and NX platforms. All processes within library construction are fully LIMS integrated for tracking sample identities on reaction plates to prevent sample swaps. LIMS interfacing allows downstream sequencing data to be deconvoluted, with reads being assigned to the appropriate barcodes/libraries/samples during analysis. To date, over 15,000 libraries have been completed using these automated methods for capture and WGS applications with up to 96 sample barcodes now employed for multiplexing. For this project, Illumina PE libraries were barcoded with standard Illumina multiplex adaptors and pooled for sequencing in sets of three samples to generate an average of 6.2-fold sequence coverage per sample.

Methods for WGS sequencing followed standard Illumina PairEnd library protocols with minor modifications. DNA concentration was determined by pico green assays while DNA integrity was determined through Agilent Bioanalyzer traces and agarose gels. Libraries were constructed using 1ug of genomic DNA in 100ul volume and sheared into fragments of approximately 300 base pairs in a Covaris plate with E210 system (Covaris, Inc. Woburn, MA). The setting was 10% Duty cycle, Intensity of 4, 200 Cycles per Burst, for 120 seconds. Fragment size was checked using a 2.2 % Flash Gel DNA Cassette (Lonza, Cat. No.57023). The fragmented DNA was end-repaired in 90 μl total reaction volume containing sheared DNA, 9 μl 10X buffer, 5 μl END Repair Enzyme Mix and H2O (NEBNext End-Repair Module; Cat. No. E6050L) and then incubated at 20(C for 30 min. A-tailing was performed in a total reaction volume of 60 μl containing end-repaired DNA, 6 μl 10X buffer, 3 μl Klenow Fragment (NEBNext dA-Tailing Module; Cat. No. E6053L) and H2O followed by an incubation at 37(C for 30 min. Illumina multiplex adapter ligation (NEBNext Quick Ligation Module Cat. No. E6056L) was performed in a total reaction volume of 90 μl containing 18 μl 5X buffer, 5 μl ligase, 0.5 μl 100 μM adaptor and H2O at room temperature for 30 min. After ligation, PCR with Illumina PE 1.0 and modified barcode primers was performed in 170 μl reactions containing 85 2x Phusion High-Fidelity PCR master mix, adaptor ligated DNA, 1.75 μl of 50 μM each primer and H2O. The standard thermocycling for PCR was 5’ at 95°C for the initial denaturation followed by 6-10 cycles of 15 s at 95°C, 15 s at 60°C and 30 s at 72°C and a final extension for 5 min at 72°C. Agencourt® XP® Beads (Beckman Coulter Genomics, Inc.; Cat. No. A63882) was used to purify DNA after each enzymatic reaction. After bead purification, PCR product quantification and size distribution was determined using the Caliper GX 1K/12K/High Sensitivity Assay Labchip (Hopkinton, MA, Cat. No. 760517). Mean depth of coverage was 6.2x, with minimum coverage of 4.0x and maximum coverage of 17.4x.
3. Alignment, SNP calling and quality assessment 
Read mapping and alignment

The Illumina whole genome sequencing data of CHARGE WGS samples were mapped using BWA (v0.5.9-r16) 6[]
 against human genome reference sequences (version HG19), and went through sorting, merging, mark-duplicate etc. 
 ADDIN EN.CITE 
[7]
 using the standard Illumina data mapping and BAM finishing pipeline, namely Mercury8[]
, at BCM-HGSC.
SNP and genotype calling using SNPTools

An integrative population SNP calling, genotype and phase imputation pipeline named SNPTools9[]
 were applied to (1) perform SNP sites discovery by considering all samples together, (2) calculate genotype likelihoods at candidate SNP sites for each sample using BAM-specific Binomial Mixture Modeling (BBMM) approach, and (3) refine and impute genotypes calls and phases.
We used the default parameters of SNPTools9[]
 to process CHARGE WGS data, which were tuned in our practice of 1000 Genome project. The software and manual can be downloaded at this link (http://sourceforge.net/projects/snptools/).
SNP and genotype quality assessments

The statistics and quality assessments of the final SNP and genotype calls results are summarized in Table A. In total we genotyped 25,135,797 SNPs in 962 CHARGE WGS samples in whole genome, 22.9% are presented in dbSNP (v129). The overall Ti/Tv of all the SNPs is 2.11 and the Non-reference genotype discordance comparing against the SNP array data from 404 ARIC samples is 1.04%. These metrics show the high quality of the SNP and genotype calls.

The overall allele frequency spectrum is concordant with expectations from such a large sample: 40% of the SNPs are singletons, 30% are rare (allele frequency < 5% excluding singleton) and 30.3% of the SNPs are common. Comparing to dbSNP(v129),  64.5% of common SNPs are known, while for singleton and rare SNPs, only 9.1% and 1.6% are known.

While sample size did not affect genotype concordance rate, SNPs with higher MAF in general have higher heterozygote concordance rate, with the lowest rate of 80% for MAF=0.1-0.2%.  Singletons (MAF < 0.1%) had exceptionally high concordance rate (99%) (Figure A), due to much more stringent cutoffs applied. 
4. Principal component analysis

Principal components (PCs) estimated from SNPs of individuals from diverse populations have been shown to correspond with geographic origin20,21 and are useful for detecting population structure.  Using sequence data from the 962 individuals passing previous quality control, we estimated PCs with the SMARTPCA software10[]
.  We binned variants into two minor allele frequency (MAF) classes, rare and low frequency variants (MAF 0.5%- 5%), and common variants (MAF >5%).  To reduce the impact of linkage disequilibrium (LD) we used PLINK11[]
 to prune SNPs with a maximum pairwise r2 threshold of 0.3, and removed regions with extended LD including the HLA region on chromosome 6. Our final analysis was thus carried out on 1,494,120 rare variants and 513,690 common variants.  We then estimated PCs separately from the two variant classes. 

In both variant classes, the first PC appears as a gradient with a distinct cluster of 31 individuals (Figure D).  PC2 appears to capture different information from common and rare variants. In the common variant PCA, the second PC distinguishes individuals of the ARIC and FHS cohorts (Figure Da), while in the rare variant PCA this distinction is less clear with individuals from all three cohorts located at the negative extreme of PC2 (Figure Db). To evaluate whether the difference was due to the greater number of SNPs in the rare variant PCA, we evaluated PCs from a randomly thinned set of 598,158 rare variants.   PCs from thinned and unthinned rare variants were qualitatively similar (data not shown), indicating that the difference in common and rare variant PCA is not attributable to the number of SNPs in the analysis.

To evaluate whether the observed structure in CHARGE WGS participants corresponds to individuals of known ancestry we conducted PCA of genome-wide SNPs in the CHARGE WGS and HGDP
 ADDIN EN.CITE 
[12]
 participants. We downloaded HGDP data from the CEPH foundation website (http://www.cephb.fr/en/hgdp/), consisting of Affymetrix Human Mapping 500k array SNP data for 5 individuals per population13[]
.  Chromosome and genomic position were lifted from hg build 18 to 19 based on the UCSC liftover chain file and dbSNP build 135. CHARGE WGS variants were subsetted to include only SNPs on the Affymetrix 500k array from chromosome and physical position information.   We used PLINK to prune SNPs in LD with maximum pairwise r2 of 0.3 for a final set of 131,894 SNPs.  Due to the ascertainment of SNPs on the Affymetrix 500k array, the final set of SNPs consists primarily of common SNPs, i.e., ~82% of SNPs have MAF > 0.05 in the CHARGE WGS participants.

We plotted CHARGE WGS participants on PCs estimated from European HGDP populations (Adygei, Basque, Bergamo, French, Orcadian, Russian, Sardinian and Tuscan) and populations from Africa (Mandenka and Yoruba), East Asia (Han Chinese and Japanese), and the Middle East (Druze and Palestinian).  The 31 previously identified CHARGE WGS outlier individuals appear to share recent common ancestry with Middle Eastern reference populations (Figure E). Eight additional individuals appear to share recent common ancestry with East Asian reference populations (Figure F).  These 39 outliers were omitted, resulting in a final study size of 923 participants for subsequent analysis.
5. Evidence for capture of the recent and rare variation

Recent sequencing studies have documented a dramatic increase of the effective population size in modern humans
 ADDIN EN.CITE 
[14,15]
. One characteristic of this rapid population growth is the elevated number of very rare variants, which are very recent in origin and are enriched for deleterious mutations
 ADDIN EN.CITE 
[16]
. Capturing this recent variation is crucial to having an accurate representation of the genetic polymorphism currently segregating in the populations.

Discovery of very rare variants is better achieved with large sample size and deep coverage. In order to show that the sequencing depth in the CHARGE WGS data is sufficient to detect very rare variants, we compared the SFS of the CHARGE WGS data to the SFS of both Nelson et al. 
 ADDIN EN.CITE 
[14]
 and Tennessen et al. 
 ADDIN EN.CITE 
[15]
.

For this purpose, we simulated two populations that follow the same demographic history as in Nelson et al.
 ADDIN EN.CITE 
[14]
  and Tennessen et al.
 ADDIN EN.CITE 
[15]
, and two additional populations following the same models, but without the last epoch of growth. Of importance for demographic consideration, we restricted our analysis to the most homogenous subset of the 923 CHARGE WGS samples, excluding 39 outliers individuals from the PCA (see above). In each simulation, we also use 923 individuals to match the sample size of CHARGE WGS, because the number of rare variants detected (and therefore the shape of the SFS) depends on the sample size
 ADDIN EN.CITE 
[17,18]
. We compared the expected SFS of the simulated data with that of the CHARGE WGS data.

The results show that SFS of the CHARGE WGS data (Figure B) appears more similar to either published models than to the same models without the final growth epoch. This shows that even with the uncertainty on singletons and very rare variants attributable to the 6.2X coverage of the CHARGE WGS data, the large sample size of the CHARGE WGS data allows one to reasonably capture the recent demographic growth of human populations at a genome-wide level.

It is important to note that despite the sample size adjustment, the three SFS are not expected to be exactly identical. The variations in the SFS do not directly reflect differences in power to detect rare variation, since they are influenced by many other factors. For example, Nelson et al.
 ADDIN EN.CITE 
[14]
  and Tennessen et al.
 ADDIN EN.CITE 
[15]
 involved different individuals, have different power (different original sample size, population homogeneity), used different statistical approaches to model demography, and therefore produced different demographic models of European history. In addition, CHARGE WGS includes data from the whole genome while the other two studies are based on the exome only. The non-exome part of the genome is expected to be on average under less selection, and therefore present a slightly lower proportion of extremely rare variants
 ADDIN EN.CITE 
[16]
.

6. Functional annotation
SNPs were first annotated based on RefSeq19[]
 using the ANNOVAR program20[]
. Ancestral allele of each SNP was determined according to the ancestral reference sequence produced by the 1000 Genomes Project (www.1000genomes.org). In addition to the gene-based annotations, we aimed to annotate non-genic SNPs within known functional regions, in order to learn more about the patterns of genetic variation in these domains. We used chromatin immunoprecipitation and sequencing (ChIP-seq) data from the ENCODE project
 ADDIN EN.CITE 
[21]
, and identified putative transcription factor binding sites (TFBSs) using a motif discovery approach.  Motif discovery and binding site identification were performed using ChIP-seq peak data released by the ENCODE project
 ADDIN EN.CITE 
[21]
 and available from the UCSC genome browser version hg19 (genome.ucsc.edu).  All peaks in both the HAIB and SYDH datasets, unrestricted prior to July 2012, and excluding controls, time-course experiments, or those obtained after chemical stimulation, were downloaded.

Motif discovery was run using the MEME program22[]
. First, four subsamples of 1000 ChIP-seq peaks for each experiment and replicate (each corresponding to a given transcription factor and cell-type) were obtained and trimmed to 100 bp, either at the center of the peak region (HAIB) or centered on the position of the peak called within the region (SYDH). MEME was then run on the corresponding collection of human reference sequences for each subsample, directly and after masking repetitive sequences with RepeatMasker[
 #180" 

23
]
, for a total of eight runs per experiment and replicate. In each case, the program was configured to search for the three best scoring motifs (-nmotifs 3) between 6 and 25 bp long (-minw 6 -maxw 25), to consider both the forward and reverse strands (-revcomp), and to allow zero or one occurrence of the motif per sequence (-mod zoops).

The motifs returned by MEME for each of the eight runs in each case were then manually inspected, compared, and verified against the JASPAR 2009 (http://jaspar.genereg.net/) and UNIPROBE databases (http://the_brain.bwh.harvard.edu/uniprobe/). Any experiment where no high quality consensus motif was identified across sets, replicates, or showing disagreements for transcription factors (TFs) found in both the HAIB and SYDH datasets were discarded. The best motif for each TF was then selected to run the MAST program from the MEME Suite24[]
 for binding site identification over the full set of peak regions for each ChIP-seq experiment. Only hits with a P-value < 0.0001 and E-value < 10, both corrected for sequence composition, were retained. For the HAIB dataset, where peak regions were produced separately for each experimental replicate, transcription factor binding sites (TFBS) not found in both replicates were discarded.  At this point, degenerate positions were eliminated from the edges of all TFBS and motifs, by trimming those with an information content < 0.5 in the motif away from each side. The union of all TFBS identified for each TF, merging across both, HAIB and SYDH datasets, and cell types, were kept for further analysis. Finally, any TF with less than 500 TFBS were removed, leaving a total of 78 TFs and 2,013,074 TFBS with an average of 25,808 binding sites per TF.  In addition, we included information on non-coding developmental enhancers that were experimentally shown to drive expression in the mouse embryo25[]
, as well as long intergenic non-coding RNAs (lincRNAs), which are covered by 13,376 and 1,991,089 SNPs, respectively.

7. Detecting variants with clinical implications 

Since our sample size is relatively large for a single population sample, we have improved power to detect SNPs with large functional impact. We identified 1,372 variants in our study as disease-causing (Variant_class is annotated as “DM”) in HGMD database26[]
 (S1 Table), all of which are minor alleles. As expected, most of those mutations are relatively rare (MAF <1%), there are still 120 mutations with MAF = 1-5% and 26 mutations with MAF > 5%. On average each individual carries 21 putative disease causing alleles (minimum 10, maximum 40) (Figure C). This seems to be a huge mutation burden on individual genome. By reviewing the initial literature for the 26 common mutations (S1 Table), we found that 13 were not suggested to be functional from the original reports and 12 were suggested to be functional with partial evidence but without experimental confirmation or whose risks were suggested to be depended on other mutations. The remaining SNP (rs6092) is a non-synonymous mutation reported to cause plasminogen activator inhibitor 1 deficiency, a rare autosomal recessive hematologic disorder. As the allele has a frequency of 12% in our samples and among them 14 are homozygotes, the mutation alone should not be sufficient to produce a clinical phenotype. Another example is a mutation in the 3’ UTR region of IGF-1 gene (rs70961704). It has been reported to result in deregulated IGF-1 mRNA maturation and cause insulin-like growth factor deficiency, a rare autosomal recessive disease27[]
. The causative allele has a frequency of more than 3%. Such high frequency is not consistent with the rareness of the disease. Although we did not fully investigate all mutations, what we found from those “common” disease-causing mutations suggests that a large proportion of the mutations reported causing Mendelian type diseases may be only partially responsible for the diseases, whose penetrance depends on epistasis of other phenotype modifiers, either genetic or environmental.

8.  Natural selection pressure acting on coding and noncoding regions

Diversity and divergence analysis

Diversity (within a population) and divergence (between species) measures are powerful indicators of natural selection acting on DNA polymorphism28[]
. To investigate the selection pressure acting on different regions of different genes, we separated gene surrounding regions according to gene functions (biological process terms of Gene Ontology) as well as function domains (1 kb upstream, 5’UTR, exonic+splicing, intronic, 3’UTR and 1kb downstream). We used nucleotide diversity (π)29[]
 to measure diversity within population and the conservation score GERP++ 30[]
 to measure divergence among species (both are measured per SNP, not per region/domain). We divided GERP++ score by its corresponding neutral mutation rate to produce a normalized score (called GERP++ k), for which a smaller number indicates a lower divergence (i.e. higher conservation) on the site. To reduce the large variance in diversity and divergence based on a small number of SNPs, we limited our analysis to major gene/domain group with 100 or more SNPs observed. Figure 3 shows the average π and GERP++ k per SNP discovered in 14,501 major domains of gene groups. Many domains with both low diversity and low divergence have functions related to development, especially neural system development, and housekeeping functions (Table B showing the top 20 domains). On the other hand, many domains with both high diversity and high divergence have functions related to immune response (Table C showing the top 20 domains), which is likely shaped by balancing selection. 

Detecting signature of natural selection using diversity and divergence analysis in sliding windows
Extremely highly diverse genome regions are candidate targets of diversity-enhancing selection. To identify those regions, a sliding window analysis was conducted on SNPs discovered on 923 European originated individuals based on the PCA analysis. We applied the strict mask for high-mapping-quality from the 1000 Genomes project to the human genome and all regions outside the masked regions were filtered out. Each window is 500 bp wide and the sliding step is 250 bp (i.e. two adjacent windows have 250 bp overlap). We further removed windows with less than half sites (250 bp) masked. Watterson’s θ31[]
 HYPERLINK \l "_ENREF_12" \o "Myers, 2003 #145"  and nucleotide diversity(π)29[]
 were calculated for each window using the software jPopGen Suite32[]
. In short, 
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, where dij is the number of nucleotide differences between sequences i and j.  The lower bound of recombination events detectable from the haplotypes were calculated using Myers and Griffiths’ algorithm33[]
 with Liu and Fu’s  34[ Ra ]
 as the local bound estimation. To speed up the calculation, a maximum of 15 (window size 500 bp) haplotypes were used for each local bound estimation. The number of haplotypes in each window was counted based on SNPtools’ phasing result. 

The diversity circos figure35[]
 of the four measure along with iHS scores (see below) is shown in Figure G. By far the most diverse region on the genome is located on chromosome 6 where HLA genes cluster, as indicated by high peaks of multiple diversity measures and iHS score. Another observation of the landscapes is that the peak patterns are often coordinated in different diversity measures. We defined a window as extreme diverse if at least three out of four of its measures are 3 standard deviations larger than the means. A total of 9,297 extreme diverse windows were identified. The majority (5,779) are in intergenic regions. The remaining windows are in vicinity of ~1000 coding genes or non-coding RNAs, among which 3,274 are in intronic regions, 138 are in 1 kb upstream or downstream regions and 106 are in exonic regions of coding genes or non-coding RNAs. 

Many of the known candidate genes under balancing or positive selection have exonic or upstream/downstream windows been identified as extreme diverse, including HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, ABO, ALPK2, BLK, BTNL2/HCG23, CD6, DEFB1, IL17RC, MICA, PAMR1, PKD1L2, PSORS1C1/CDSN, OR52E2, OR5P2, OVCH2, OVGP1, SLC14A1, WWOX. Most of those windows are outside coding regions, suggesting selections acting on regulatory regions. For example, the window chr18:43302763-43303263 locates at the upstream of SLC14A1, an established candidate gene under balancing selection
 ADDIN EN.CITE 
[36]
, and overlaps with its TFBS region according to ENCODE. Another example is the intron 5 of FHIT. SNPs in this intron are associated with the risk of prostate cancer, and the intron has been suspected under balancing or positive selection in human and non-human primates, and having regulatory function
 ADDIN EN.CITE 
[37]
. We identified 12 extreme diverse windows within introns of this gene and most of them are located in intron 5, confirming this intron may be a target of balancing or positive selection. The gene with the largest number (673) of extreme diverse windows in vicinity is CSMD1 (Figure G). It is a regulator of the complement system, whose function includes response to viruses and inflammatory reactions, and its SNPs have been shown to be significant correlated with virus diversity
 ADDIN EN.CITE 
[38]
, which makes it a good candidate gene under diversity-enhancing selection. Interestingly, all extremely diverse windows of this gene are in introns, which suggests that the introns may have regulatory functions or be under some diversity-enhancing selection.       

Using iHS to detect loci that have undergone recent positive selection

In order to perform a positive selection analysis on the CHARGE WGS data, we first removed the 39 individuals identified as outliers in the principal components analysis to reduce population structure confounders.  We then removed variants below a 5% minor allele frequency threshold and performed phasing using the program SHAPEIT39[]
 version 1.532.  Using Voight’s iHS method as implemented in the R package REHH, we calculated standardized iHS values genome-wide across the sample
 ADDIN EN.CITE 
[40,41]
.  Since the iHS method does not provide a formal significance test, we selected the top 1% of the absolute value of the iHS values genome-wide to conduct the analysis with the ENCODE data.

To look for regions with a high concentration of iHS hits, we extracted windows of 50 variants that contained more than 11 loci with an absolute value iHS score greater than 2.6, the value of the minimum score of the top 1% of individual iHS hits.  We then submitted the top 1% of these windows to the program GREAT42[]
 for GO analysis.  The GO analysis reveals biological processes including detection of mechanical stimulus involved in sensory perception of sound.  One example of highly concentrated iHS scores occurred in the gene espin (ESPN) on chromosome 1.  This gene is involved in sensory transduction in mechanical and chemical stimuli and is associated with several forms of deafness
 ADDIN EN.CITE 
[43]
. 

Purifying selection acting on regulatory regions
We obtained RegulomeDB 44


[ ADDIN EN.CITE ]
 scores for all non-coding SNPs, with increasing scores suggesting stronger evidence that the SNP may affect gene regulation. We simplified the score categories by combining sub-category into three groups: category 1-2 (very likely affecting binding), category 3-6 (likely affecting some regulatory function) and no-score (likely to be neutral). Consistent with previous studies44


[ ADDIN EN.CITE ]
, we observed little difference among the SNPs of the three binned categories as to the proportions of rare (MAF<1%), low-frequency (MAF 1-5%) and common (MAF>5%) SNPs (data not shown). We further grouped the SNPs according to how strong the SNP showing deficiency of homozygote minor allele: genome-wide significant (p-value of Hardy-Weinberg test < 6 x 10-10), significant (6 x 10-10 ≤ p-value of Hardy-Weinberg test < 1x10-2) and the others. We observed significant enrichment of category 1-2 SNPs when comparing genome-wide significant group to the others group (p-value < 5 x 10-6, T test, one tail) and when comparing significant group to the others group (p-value < 6 x 10-10, T test, one tail). The enrichment of category 1-2 and 3-6 combined is even more significant, with both p-values < 1 x 10-16 when comparing the two significant groups to the others group (Figure H). These observations suggest that the majority of the SNPs located within potential protein binding regions are likely neutral while a small proportion are functional and under purifying selection. 
9. Population genomics of non-coding RNAs
A significant proportion of the human genome encodes small and large non-coding RNAs45[]
 whose patterns of diversity were well captured by these sequence data.  To detect signatures of functional constraints on the non-coding RNA regions, we performed population genomic analysis on different classes of non-coding RNAs including microRNA (miRNA), piwi-interacting RNAs (piRNAs) and large intergenic non-coding RNAs (lincRNAs).  

Functional constraints on miRNAs and target sites

The annotations of miRNA precursor and mature miRNA sequences were downloaded from miRBase46[]
 V19.   Among the 1,479 miRNA loci that are annotated in the human autosomes, with our sequencing results, we identified 1,106 SNPs (after quality filtering) in the CHARGE participants in these miRNA precursors (41.2% of these mutations are singletons and 9.6% of them are doubletons).  Functional miRNAs are usually evolutionarily conserved and highly expressed47[]
 while the non-conserved miRNAs are either evolutionarily transient 48[]
 or driven by positive Darwinian selection 
 ADDIN EN.CITE 
[49,50]
.  We defined “conserved” miRNAs by requiring the first 20 nucleotides to be identical between a human mature miRNA and a non-primate mature miRNA as annotated in miRBase46[]
 V19.  With this criterion, we identified 319 human autosomal miRNA precursors that encode conserved miRNAs and the remaining 1160 autosomal miRNA precursor are non-conserved.  Based on the miRNA deep sequencing results compiled in miRBase V19, we classified autosomal miRNAs into three categories: highly expressed, with total NGS (next generation sequencing) reads from all experiments ≥ 500; medium expressed, with NGS reads between 20 and 500; and lowly expressed, with NGS reads less than 20.  In total we identified 253, 377 and 849 highly-, median- and lowly-expressed miRNA loci, respectively.  A salient observation is that the highly expressed miRNAs are highly significantly enriched in the evolutionary conserved class and the lowly expressed miRNAs are significantly enriched in non-conserved class (P < 10-16, χ2 test, Table D).  Not surprisingly, π is significantly lower in the highly expressed miRNA precursors than in the median (P = 0.009, Kolmogorov-Smirnov test) or than in the lowly expressed miRNA precursors (P <10-4, Kolmogorov-Smirnov test, Table D).  Previous studies indicate mature miRNAs are generally under stronger selective constraints than other regions of miRNA precursors50[]
 and we also identified reduced π in mature miRNAs comparing the whole miRNA precursors (Table D). 
By polarizing mutations with the EPO multiple alignments downloaded from Ensembl database, we found that more than 40% of the derived mutations in the miRNA loci are segregating as singletons in the CHARGE WGS participants (Figure Ia).  The analysis of frequency spectra of the derived alleles indicates mutations in mature miRNAs or seed regions tend to be more skewed to low frequencies than other mutations in the miRNA precursors, consistent with the nucleotide diversity comparisons (Table D).  The pattern is more striking for the miRNA loci that are conserved between human and other non-primate species (Figure Ib).   We identified 330 mutations in total located in mature miRNAs and 144 of these (44%) are segregating as singletons in the CHARGE WGS participants.  We identified 62 derived mutations in mature miRNAs that are segregating at > 5% in the surveyed populations (20 of them are located in miRNAs derived from transposable elements and 42 mutations are remaining if we exclude these transposable-element-derived miRNAs, Table E), suggesting further studies are needed to examine roles of these mutations in human health and environmental adaptation.  

Previous studies have indicated that mutations in miRNA target sites appear to be under strong purifying selection and those mutations will significantly affect the expression patterns of the target genes by re-wiring the regulatory networks 
 ADDIN EN.CITE 
[51,52]
.  Herein we investigate the polymorphisms of the conserved miRNAs that are predicted by the TargetScan package53[]
, including canonical TargetScan based on conservation criteria  
 ADDIN EN.CITE 
[53-55]
 and the  Context Score algorithm 
 ADDIN EN.CITE 
[54]
.   We only considered the evolutionarily conserved miRNAs that are incorporated in the TargetScan database which putatively bind 552,104 target sites if we simply apply the “seed matching” rules.   We mapped the predicted target sites on the human genome release hg19 using Bowtie 56[]
.  The sites were binned with increasing PCT score (higher PCT score means increasing conservation stringency) or with decreased context scores (lower context score means higher confidence in target prediction).  The nucleotide diversity analysis indicated reduction in polymorphism in miRNA target sites than in 3’ UTRs regions that do not harbor seed-pairing sites (Figure 6). The frequency spectra analysis indicate most derived mutations in the miRNA target sites (either predicted with conservation criteria or context score) are under strong purifying selection since those derived mutations are significantly skewed towards low frequencies (Figure Ja and b).  In summary, our population genetic analysis indicates that strong purifying selection has acted on the mutations in the miRNA regulatory networks. 

Neutral (or nearly) evolutionary patterns of lincRNAs and piRNAs
We did not identify signatures of functional constrains on long intergenic non-coding RNAs (lincRNAs) and very weak signature of selective pressure on piwi-interacting RNAs (piRNAs).  lincRNAs are a large class of long intergenic RNAs that affect the expression patterns of the target genes, and they span about 129 Mb in human genomes.  The gene structure of lincRNAs are similar to protein-coding genes in terms of exons and introns, nevertheless, they lack coding capacity
 ADDIN EN.CITE 
[57]
.  The genomic coordinates and annotations of lincRNAs, other classes of non-coding RNAs and protein-coding genes were downloaded from the Ensembl (V69) database (www.ensembl.org).  The introns and exons of lincRNAs were parsed based on the genomic coordinate information.  Among the 1463 snoRNAs and 1821 snRNAs annotated in Ensembl (V69), at least 45% of these two classes of non-coding rRNAs have θπ values smaller than 1.0×10-5.   Genomic annotations of ~200 piRNA clusters identified in human testes were taken from  58[]
 and re-mapped on hg19.  The frequency spectra analysis on the derived mutations in lincRNAs and piRNAs were based on the EPO multiple alignments downloaded from the Ensembl database (Figure K).  We also calculated the genetic diversities of 11,537 pseudogenes annotated in Ensembl database, which putatively serve as a baseline for neutral evolution.  To reduce the variation in diversity comparisons, we binned the genome into 10 Mb windows for protein-coding genes, lincRNAs, and pseudogenes; for miRNAs, snoRNAs, snRNAs and piRNAs, we calculated the diversities for each locus. 
GWAS association of mutations in non-coding RNAs and diseases or traits
The SNPs that are significantly associated with human diseases or physiological traits revealed in other studies were taken from GWASdb 59[]
 and Ref 60[]
. The mutations captured in this study that are overlapping with previously identified GWAS-SNPs are presented in S2 Table. 
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Supplementary Tables
Table A. SNP calling quality summary

	 
	#SNP
	Ti/TV
	dbSNP% (V129)

	# Total SNPs
	25135797
	2.11
	22.9%

	Singleton
	9915657
	1.99
	1.6%

	Rare (MAF ≤ 5%)
	7606990
	2.39
	9.1%

	Common (>5%)
	7613150
	2.02
	64.5%


Table B. Top 20 domains with both low diversity and low divergence.

	GO term (gene group)
	Nvar
	ave_k
	se_k
	ave_pi
	se_pi
	Domain

	post-embryonic camera-type eye development
	119
	0.39
	0.052
	0.011
	0.0036
	exonic+splicing

	regulation of keratinocyte proliferation
	102
	0.42
	0.061
	0.014
	0.0057
	exonic+splicing

	noradrenergic neuron differentiation
	103
	0.41
	0.060
	0.020
	0.0034
	exonic+splicing

	neuroligin clustering
	100
	0.34
	0.053
	0.024
	0.0074
	exonic+splicing

	organ formation
	140
	0.48
	0.051
	0.019
	0.0040
	exonic+splicing

	gephyrin clustering
	155
	0.38
	0.049
	0.028
	0.0068
	exonic+splicing

	peripheral nervous system neuron development
	147
	0.34
	0.049
	0.029
	0.0067
	exonic+splicing

	lung saccule development
	121
	0.49
	0.063
	0.018
	0.0031
	exonic+splicing

	paraxial mesodermal cell fate commitment
	107
	0.42
	0.058
	0.027
	0.0050
	exonic+splicing

	postsynaptic membrane assembly
	163
	0.40
	0.050
	0.029
	0.0067
	exonic+splicing

	postsynaptic density protein 95 clustering
	163
	0.40
	0.050
	0.029
	0.0067
	exonic+splicing

	chromatin-mediated maintenance of transcription
	221
	0.48
	0.051
	0.022
	0.0042
	exonic+splicing

	negative regulation of pathway-restricted SMAD protein phosphorylation
	118
	0.52
	0.071
	0.015
	0.0038
	exonic+splicing

	striatal medium spiny neuron differentiation
	139
	0.47
	0.058
	0.025
	0.0058
	exonic+splicing

	negative regulation of proteasomal ubiquitin-dependent protein catabolic process
	114
	0.52
	0.068
	0.018
	0.0068
	exonic+splicing

	regulation of actin filament polymerization
	102
	0.43
	0.066
	0.029
	0.0085
	exonic+splicing

	alternative nuclear mRNA splicing; via spliceosome
	133
	0.53
	0.057
	0.016
	0.0045
	exonic+splicing

	neural tube formation
	171
	0.49
	0.058
	0.026
	0.0060
	exonic+splicing

	nucleosome disassembly
	223
	0.50
	0.052
	0.024
	0.0048
	exonic+splicing

	positive regulation of transporter activity
	114
	0.53
	0.065
	0.018
	0.0059
	exonic+splicing


Note: nvar: number of SNPs in the domain; ave_k: average of GERP++ k per SNP; se_k: standard error of ave_k; ave_pi: average of nucleotide diversity per SNP; se_pi: standard error of ave_pi.

Table C. Top 20 domains with both high diversity and high divergence.

	GO term (gene group)
	nvar
	ave_k
	se_k
	ave_pi
	se_pi
	Domain

	antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-independent
	307
	1.40
	0.062
	0.22
	0.0099
	Exonic
+splicing

	antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-independent
	234
	1.31
	0.067
	0.22
	0.012
	Upstream

	detection of bacterium
	211
	1.31
	0.066
	0.22
	0.013
	Upstream

	antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-independent
	204
	1.55
	0.077
	0.20
	0.011
	Downstream

	regulation of interleukin-4 production
	344
	1.51
	0.054
	0.20
	0.0096
	Intronic

	regulation of interleukin-10 secretion
	344
	1.51
	0.054
	0.20
	0.0096
	Intronic

	positive regulation of metalloenzyme activity
	116
	1.30
	0.098
	0.21
	0.020
	3'UTR

	positive regulation of transferase activity
	146
	1.39
	0.088
	0.21
	0.018
	3'UTR

	immune response-activating cell surface receptor signaling pathway
	140
	1.43
	0.11
	0.20
	0.014
	Intronic

	embryo development ending in birth or egg hatching
	110
	1.28
	0.11
	0.21
	0.021
	3'UTR

	antigen processing and presentation of peptide or polysaccharide antigen via MHC class II
	2157
	1.46
	0.022
	0.19
	0.0037
	Intronic

	antigen processing and presentation of peptide or polysaccharide antigen via MHC class II
	341
	1.34
	0.051
	0.19
	0.0094
	3'UTR

	positive regulation of regulatory T cell differentiation
	162
	1.73
	0.082
	0.16
	0.016
	Intronic

	detection of bacterium
	178
	1.62
	0.076
	0.17
	0.012
	Downstream

	heme export
	317
	1.19
	0.067
	0.20
	0.011
	Intronic

	regulation of microtubule polymerization
	1198
	1.33
	0.031
	0.19
	0.0051
	Intronic

	negative regulation of smoothened signaling pathway involved in ventral spinal cord patterning
	395
	1.26
	0.063
	0.19
	0.011
	Intronic

	bronchus morphogenesis
	395
	1.26
	0.063
	0.19
	0.011
	Intronic

	defense response to tumor cell
	121
	1.60
	0.10
	0.16
	0.017
	Intronic

	gamma-delta T cell activation
	369
	1.45
	0.064
	0.18
	0.0087
	Intronic


Note: nvar: number of SNPs in the domain; ave_k: average of GERP++ k per SNP; se_k: standard error of ave_k; ave_pi: average of nucleotide diversity per SNP; se_pi: standard error of ave_pi.

Table D. Highly expressed miRNAs are generally conserved across species and have lower diversity in CHARGE WGS participants
	Expression Levels
	miRNA conservationa
	π (x 1000) in miRNA precursors
	π (x 1000) in mature miRNAs

	
	# of conserved

miRNAs
	# of non-conserved

miRNAs
	Ratio of Conserved /

Non-conserved
	Median
	Mean
	sd
	Median
	Mean
	Sd

	High
	188
	65
	2.89
	0
	0.379
	1.39
	0
	0.311
	2.45

	Median
	83
	294
	0.28
	0
	0.681
	1.92
	0
	0.570
	2.80

	Low
	48
	801
	0.06
	0.0092
	0.737
	1.90
	0
	0.551
	2.94

	Total miRNAs
	319
	1160
	0.28
	0
	0.662
	1.83
	0
	0.493
	2.75


a Conserved miRNA means  the first 20 nucleotide of a mature miRNA is conserved between human and at least one non-primate species.

Table E.  42 mutations re-captured in this study are located in mature miRNAs and are segregating at intermediate to high frequencies (derived allele frequency >5% in the CHARGE WGS participants).

	Chr.
	Position
of SNP
	Ancestral
allele
	Derived
allele
	Frequency of

derived allele
	Mature
MiRNA

	1
	54519800
	A
	G
	0.979
	hsa-miR-4781-3p

	1
	67094171
	G
	A
	0.161
	hsa-miR-3117-3p

	1
	98510847
	T
	C
	0.977
	hsa-miR-2682-3p

	1
	2.28E+08
	C
	T
	0.085
	hsa-miR-3620-5p

	2
	64567916
	C
	G
	0.281
	hsa-miR-4433-5p

	2
	1.03E+08
	C
	T
	0.084
	hsa-miR-4772-5p

	2
	1.61E+08
	G
	A
	0.082
	hsa-miR-4785

	2
	1.61E+08
	C
	T
	0.124
	hsa-miR-4785

	5
	54466544
	A
	G
	0.104
	hsa-miR-449b-5p

	5
	54468124
	A
	T
	0.323
	hsa-miR-449c-3p

	5
	72174432
	G
	C
	0.146
	hsa-miR-4804-5p

	5
	1.51E+08
	C
	T
	0.087
	hsa-miR-6499-5p

	5
	1.6E+08
	G
	C
	0.235
	hsa-miR-146a-3p

	5
	1.69E+08
	C
	T
	0.063
	hsa-miR-585

	6
	1.2E+08
	G
	A
	0.227
	hsa-miR-3144-3p

	7
	1.02E+08
	G
	A
	0.133
	hsa-miR-5090

	7
	1.02E+08
	G
	A
	0.457
	hsa-miR-4467

	8
	1765425
	T
	C
	0.101
	hsa-miR-596

	8
	27559214
	G
	A
	0.221
	hsa-miR-3622b-3p

	8
	27559214
	G
	A
	0.221
	hsa-miR-3622a-5p

	9
	18573360
	G
	A
	0.323
	hsa-miR-3152-3p

	10
	29891260
	C
	T
	0.272
	hsa-miR-938

	10
	1.03E+08
	G
	C
	0.804
	hsa-miR-608

	10
	1.06E+08
	G
	A
	0.302
	hsa-miR-4482-5p

	11
	79133220
	T
	C
	0.175
	hsa-miR-5579-3p

	12
	26026988
	G
	A
	0.13
	hsa-miR-4302

	12
	54385599
	C
	T
	0.393
	hsa-miR-196a-3p

	12
	94955585
	T
	C
	0.083
	hsa-miR-5700

	12
	1.05E+08
	G
	A
	0.27
	hsa-miR-3922-5p

	12
	1.2E+08
	C
	T
	0.966
	hsa-miR-1178-5p

	14
	23426182
	C
	A
	0.518
	hsa-miR-4707-3p

	14
	1.02E+08
	A
	G
	0.476
	hsa-miR-412

	15
	70371778
	A
	G
	0.999
	hsa-miR-629-5p

	15
	75081078
	G
	A
	0.657
	hsa-miR-4513

	16
	81644970
	T
	C
	0.121
	hsa-miR-6504-5p

	17
	6558768
	C
	T
	0.468
	hsa-miR-4520a-3p

	17
	6558768
	C
	T
	0.468
	hsa-miR-4520b-5p

	19
	804959
	C
	T
	0.098
	hsa-miR-4745-5p

	19
	8454236
	A
	G
	0.304
	hsa-miR-4999-5p

	20
	33578251
	A
	G
	0.206
	hsa-miR-499a-3p

	20
	33578251
	A
	G
	0.206
	hsa-miR-499b-5p

	20
	58883605
	T
	G
	0.078
	hsa-miR-646


Supplementary Figures

Figure A. Heterozygous concordance when comparing SNPs from WGS and WECS data. 
Concordance rates of heterozygote genotypes of SNPs belong to different MAF bins. Each point is an average of 100 random subsampling from 886 individuals (total sample).
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Figure B.  Site Frequency Spectrum (SFS) of the CHARGE WGS data compared to published demographic models. 
a) comparison to Nelson et al.
 ADDIN EN.CITE 
[14]
 (with growth, dark blue) and Nelson et al 
 ADDIN EN.CITE 
[14]
 without the last epoch of growth (no growth, brown). b) comparison with Tennessen et al
 ADDIN EN.CITE 
[15]
 (with growth, dark blue) and Tennessen et al 
 ADDIN EN.CITE 
[15]
 without the last epoch of growth (no growth, brown). In both panels, the proportions of all possible derived allele counts, ranging from 1 to 2n-1, sum up to 1, although only those for 1 through 15 are represented. Simulated SFS are based on 10,000 simulations. Sample size in all simulations matches the CHARGE WGS data sample size (923 individuals) used to derive the SFS. This sample size represents the full CHARGE WGS sample after excluding 39 individuals that showed a lack of homogeneity on the PCA.
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Figure C. Distribution of the number of disease-causing alleles an individual carries in 962 CHARGE WGS participants.  
Diseasing-causing alleles were defined as those recorded in HGMD with a “Variant_class” of “DM”. On average each individual carries 21.37 (sd =4.47) disease-causing alleles. 
[image: image7.emf]
Figure D. Principal components of genetic variation in CHARGE WGS participants estimated from (a) common variants (minor allele frequency > 5%) and (b) rare variants (minor allele frequency between 0.5-5%). 
In (a) PC’s 1 and 2 account for 0.29% and 0.15% of the total variance, respectively. In (b)  PC’s 1 and 2 account for 0.21% and 0.13% of the total variance, respectively. Coordinates on PC 1 have been inverted so as to be comparable to Figure S4a. 
(a)
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(b)
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Figure E. Principal components of genetic variation in HGDP participants with European or Middle Eastern ancestry with CHARGE WGS participants projected onto the PCs.  
Thirty-one individuals labeled 'OutlierME' were identified as outliers in the whole genome rare-variant PCA analysis and appear to share recent common ancestry with Middle Eastern reference populations. PCs 1 and 2 account for 1.4 and 1.2% of the total variance, respectively.  
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Figure F. Principal components of genetic variation in HGDP participants with European or East Asian ancestry with CHARGE WGS participants projected onto the PCs.  
Eight outlier individuals labeled 'OutlierEA' appear to share recent common ancestry with East Asian reference populations. PCs 1 and 2 account for 4.2 and 1.1% of the total variance, respectively.
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Figure G. Four diversity measures of 500 bp sliding windows and iHS scores across 22 autosomes.

Blue: nucleotide diversity,(π); Green: Watterson’s θ; Orange: number of haplotypes; Purple: low bound of the number of recombination events; Red: iHS score.
[image: image8.png]



Figure H. Enrichment of SNPs residing in regulatory regions in the group of SNPs showing deficiency of homozygote of minor allele. 
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Figure I. The distributions of derived allele frequencies (DAF) in miRNA precursor, mature miRNA and seed regions.   
A is the distributions of derived allele frequencies (DAF) in all the miRNA loci. B is the distributions of derived allele frequencies (DAF) in the evolutionarily-conserved miRNA loci. For comparisons, the expected allele frequencies under neutral evolution of a Fisher-Wright population is plotted in both A and B.  DAF of the introns of the protein-coding genes are also provided in both figures.  The x-axis is the number of chromosomes carrying the derived mutations out of 1924 chromosomes (all the 962 participants were considered) and the y-axis is the percentage of the segregating sites for that mutation. 
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B
Figure J. Distributions of derived allele frequencies (DAF) in 3’ UTRs and miRNA target sites.   

For comparisons, the expected allele frequencies under neutral evolution of a Fisher-Wright population is plotted.  DAF of the introns of the protein-coding genes are also provided.  The x-axis is the number of chromosomes carrying the derived mutations out of 1924 chromosomes (all of the 962 participates are included) and the y-axis is the percentage of the segregating sites for that mutation.  (a) the target sites of the conserved miRNAs that are identified with conservation criteria of miRNA:target pairing.  Higher PCT score means higher stringency criteria.  (b) the target sites of the conserved miRNAs that are identified with the context score (CS) of the miRNA pairing.  Smaller context scores mean the target sites have high probability to be regulated by miRNAs.   
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b. 
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Figure K. Distributions of derived allele frequencies (DAF) in introns and exons of lincRNAs, piRNAs and introns of coding regions.   

The DAF analysis suggests piRNAs and lincRNAs evolving neutrally in the human populations.
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