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Abstract

Current research aims at identifying voluntary brain activation in patients who are behaviorally diagnosed as being
unconscious, but are able to perform commands by modulating their brain activity patterns. This involves machine learning
techniques and feature extraction methods such as applied in brain computer interfaces. In this study, we try to answer the
question if features/classification methods which show advantages in healthy participants are also accurate when applied to
data of patients with disorders of consciousness. A sample of healthy participants (N = 22), patients in a minimally conscious
state (MCS; N = 5), and with unresponsive wakefulness syndrome (UWS; N = 9) was examined with a motor imagery task
which involved imagery of moving both hands and an instruction to hold both hands firm. We extracted a set of 20 features
from the electroencephalogram and used linear discriminant analysis, k-nearest neighbor classification, and support vector
machines (SVM) as classification methods. In healthy participants, the best classification accuracies were seen with
coherences (mean = .79; range = .532.94) and power spectra (mean = .69; range = .402.85). The coherence patterns in
healthy participants did not match the expectation of central modulated m-rhythm. Instead, coherence involved mainly
frontal regions. In healthy participants, the best classification tool was SVM. Five patients had at least one feature-classifier
outcome with pv0.05 (none of which were coherence or power spectra), though none remained significant after false-
discovery rate correction for multiple comparisons. The present work suggests the use of coherences in patients with
disorders of consciousness because they show high reliability among healthy subjects and patient groups. However, feature
extraction and classification is a challenging task in unresponsive patients because there is no ground truth to validate the
results.
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Introduction

Voluntary brain activation has been extensively examined in

disorders of consciousness (DOC). The goal of these endeavors is

to develop a diagnostic tool to distinguish unresponsive from

responsive patients if the latter are severely paralyzed and cannot

react behaviorally to external stimuli. In these studies, simple

instructions were presented which can be carried out by thought

[1–13]. A possible command-following can be detected in the

resulting brain activation with imaging methods (functional

Magnetic Resonance Imaging, fMRI) or neurophysiology (Elec-

troencephalogram, EEG). The perhaps most promising approach

to apply such a diagnostic tool is based upon techniques from

brain computer interface (BCI) research. Cruse et al. [3]

developed a procedure, in which the patients’ responses were

classified with machine learning techniques. A support vector

machine classified bandpass-filtered activity as recorded by central

positioned channels of the EEG. Most interestingly, single patients

seemed to show command following. However, the results of this

research are not undisputed. Goldfine et al. [14] demonstrated

that the data in this study did not meet the assumption of the

statistical model, which led to artificially low p-values. By use of an

appropriate permutation test the authors showed that there was no

evidence for command following in any of these patients. Indeed,

false positives are a major problem when applying machine

learning techniques to patients with DOC. In BCI research, it is

evident that the participants of the studies are performing the tests.

In DOC research, we hardly know whether a patient follows the

command or not. In addition, data from DOC patients differs

from usual BCI-data because of the many artifact-sources such as

stereotypical movements but also pathologic brain activity. These

circumstances pose extraordinary demands on the data-analysis.

Cruse et al. [3] used bandpass-filtered data and a support vector

machine (SVM) for classification. The healthy participant group
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yielded an average classification accuracy of .68 in those cases

which could be classified significantly above chance. This average

did not include three subjects who showed a classification accuracy

between .44 and .53. Thus, the average on all 12 participants may

be around .63+. The goal of this study was to start the discussion

on EEG-features for detection of voluntary brain activation in

patients with DOC. Therefore, we investigated the accuracy of

other markers and other classification methods in healthy

participants and applied them to the data of DOC patients.

A meaningful feature/classifier yields a high accuracy among

healthy participants and is reliable among healthy subjects, i.e.,

classifies the data of healthy participants above chance. The higher

the sensitivity of a marker in healthy participants is, the higher is

the sensitivity in patients with DOC. In other words, in healthy

participants there should be no below-chance classification

accuracy. Although a lot of BCI research concerning the optimal

feature and best classifier selection has been conducted, this is

seldom the case because there is a high inter-individual variability

between subjects in the brain activity during motor imagery [15].

There are subjects without significant alternation of the m-rhythm,

and thus, it is possible that classification of motor-imagery related

activation fails. However, there can be other relevant sources of

information in the recorded EEG of these subjects, perhaps

allowing to classify the data even without modulation of the m-

rhythm. To take this option into account we used a nearly full

montage of EEG-electrodes instead of a small number of central

electrodes, which would capture only the activity of the motor

cortex. In addition, for frequency-based features, we included

frequencies ranging from delta to high-beta, to capture, e.g., non

m-frequency activity related to executive functions which are

involved in imaginary tasks.

In addition to a high accuracy and a low rate of non-responders,

a good feature should show up with a small variance between

participants, i.e., a small range and a small standard deviation

(SD). Generally, these questions were and are subject of BCI

research, and there are numerous studies comparing different

features to each other in healthy participants. However, the

examination of different features in DOC patients poses some

additional demands. As stated above, false-positive results in

patients are undesirable. Based on the assumption that the

conducted behavioral diagnosis, carried out with the Coma-

Recovery-Scale revised (CRS-R) by trained experts, which is the

gold standard, is highly accurate [16], we assumed that DOC

patients are not able to perform motor imagery and, thus, should

not reveal above chance accuracies in the discrimination of motor

imagery vs. rest trials. However, because of classification failures,

for example, in unbalanced data sets, it is possible to obtain

artificial high classification accuracies. This possibility and the

multiple comparison problem require an adequate correction for

false discoveries. We examined both, results with and without

false-discovery-rate (FDR) correction since correcting the alpha

level depresses the probability of Type I error but increases the

probability of Type II error. We searched for features which reveal

high classification accuracies in healthy participants which are

significantly above chance (after FDR correction) and yield

consistent results in patients. We considered results as consistent

if they were significant despite correcting for multiple comparisons.

In the presented study, we recorded the EEG in healthy

participants, patients in a minimally conscious state (MCS), and

with unresponsive wakefulness syndrome (UWS) during imagery

of moving both hands and during a rest condition (for details, see

Figure 1). We extracted EEG-features to measure synchrony,

complexity/entropy and to describe frequency characteristics.

These features were chosen because of evidence for their value as

features, for feature reduction or similar applications in BCIs or

DOC (e.g. Hjorth parameters [17], brainrate [17], Wackermann

features [17], power spectra [5,17], coherence [18,19], directed

transfer function (DTF) [20,21], approximate entropy [22],

Shannon entropy [23], Bhattacharyya distance [24]) or in other

fields of EEG-research (e.g. [25]).

We compared 3 common algorithms as classification methods,

discriminant analysis with a diagonal quadratic function (DADF),

k-nearest neighbor classification (knn) with k = 1 and k = 3, and a

support vector machine (SVM) with a linear kernel function.

Previous work examined similar comparisons of classification

methods and found no differences [26] or found differences which

depend on the examined subject and feature [27]. There are

results supporting the use of Bayesian linear discriminant analysis

[28] or a stepwise linear discriminant analysis [29]. Other

researchers report a slight advantage of nonlinear classification

methods such as SVM over linear ones such as linear discriminant

analysis [30]. There is also evidence that SVM perform much

better than knn [31], but we supposed that the choice of k may

influence the results.

In this study, we wanted to investigate which classification

methods and features resulted in best accuracies in healthy

subjects. In addition, we examined the effect of the choice of a

particular feature in patients compared to healthy controls to

address the question if specific features are more appropriate when

investigating patients with DOC.

Results

Classification methods
Healthy participants. The results in the healthy participant

group differed depending whether or not FDR was applied to the

proportional chance (cprop) criterion. The results of the Wilcoxon

signed-rank tests comparing the different classification methods to

each other in healthy participants are shown in Table 1. Without

FDR-correction, it becomes evident that SVM classification (mean

accuracy = 0.59) yields significantly better results than knn

classification with k = 1 (mean accuracy = 0.56) and k = 3 (mean

accuracy = 0.57). The reason for a high p-value in the test between

DADF (mean accuracy = 0.57) and SVM may be that those

features resulting in the highest classification results (coherence)

did not work in DADF and thus, decreased the degrees of freedom

and did not influence the test result. This problem biased also the

results of the comparisons with FDR correction. However, with

FDR-correction a lower number of participants yielded above

chance accuracies with DADF classification in the feature-set

without coherences, demonstrating that DADF yields poor results.

In summary, the differences between classification methods are

rather small, but the best classification result was achieved with

SVM classification.

Patient groups. There were no significant differences

between classification methods in the patient groups (with p-

values ranging from .5 to 1), neither with nor without FDR

correction. Therefore, we chose the classification method which

worked best in healthy participants for the comparison of features

to each other. That is, the comparison was carried out on the

SVM-results.

Features
Classification accuracies. Table 2 shows the SVM results,

i.e., for each feature the average accuracies, SD, and range for all

three groups (healthy subjects, MCS, and UWS). For the

explanation of the features we refer to the Methods section. Note

that the average accuracies of some healthy participants and

Classification of Motor Imagery in DOC-Patients
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patients in certain features (e.g., Wackermann features) yielded

below-chance accuracies.

Table 3 shows the average p-values and the average improve-

ment over chance criterion (IOCC)-values for each group and

each feature. Note that the p-value is also low for significant

below-chance accuracy. Such a result is indicated by a negative

effect size, i.e., a negative IOCC value.

Healthy participants. As can be seen in Table 2, in healthy

subjects coherence yielded the highest average classification

accuracy followed by FFT.

The lowest SD in the healthy participants group was found for

coherence, Hurst exponent, and brainrate. However, Hurst

exponent and brainrate showed very low classification accuracies

in the healthy participant group.

The smallest range in the healthy participant group was found

for Hjorth activity and complexity, and, again, for Hurst exponent

and brainrate. Hjorth complexity had a rather small classification

accuracy.

Patient groups. In patients in MCS, the highest average

accuracy was found for DTF, followed by Hurst exponent and

brainrate. In UWS patients, the highest average accuracy was

found for brainrate.

In patients in MCS, the lowest SD was found for Tsallis knn,

followed by coherence and Hjorth complexity. In UWS patients,

the lowest SD was found for Hjorth activity, followed by Granger

causality (Granger GW).

In patients in MCS, the significantly lowest ranges corresponded

with the lowest SDs. In UWS patients, the lowest range was found

for Hjorth activity, followed by partial directed coherence (PDC)

and Granger GW.

Above-chance classification. The numbers of participants

with above chance accuracy are shown in Table 4.

Healthy participants. The highest number of healthy

participants with above chance accuracy without FDR-correction

was found for coherence, followed by FFT. Both of these features

yielded significantly higher numbers of above chance accuracies

than the other features. Figures 2, 3, and 4 show the differences in

power spectra between the two conditions in healthy participants,

patients in MCS, and with UWS, respectively. Figures 5, 6 and 7

show the coherence-statistics for healthy participants, patients in

MCS, and with UWS, respectively.

The number of healthy participants showing above-chance

accuracy decreased considerably after FDR-correction. Only

coherences still yielded a significantly higher number of above-

chance accuracies compared to the other features (see Table 4,

FDR-columns).

Patient groups. Most interestingly, there were no patients

with above chance accuracies in power spectra and coherence.

Without FDR-correction, three MCS patients had an above

chance accuracy in the features Hjorth activity (patient MCS3),

brainrate (patient MCS2), and DTF (patient MCS5). Among

UWS patients, two patients had an above chance accuracy in the

features Bhattacharyya knn (patient UWS5) and CorrEntr KDE

Figure 1. Procedure of data preprocessing, feature extraction, classification, and classification evaluation.
doi:10.1371/journal.pone.0080479.g001
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direct (patient UWS4). Because of the occasional occurrence of

above-chance accuracies in the patient groups, all of these values

different from zero were significant compared to the other values.

We examined the patients with above-chance accuracies a bit

closer. The above-chance accuracy in brainrate (MCS2) turned

out to be a classification-error since there was only one value

(brainrate = 10) for all channels and all trials. Thus, there was no

difference between imagery trials and rest trials. For the other

patients (MCS3, MCS5, UWS4, and UWS5), there was no

obvious anomaly in the data of the respective features.

However, all of the positive results in patients were not

significant after FDR-correction.

Discussion

In this study we evaluated several features and classification

methods to answer the question if there are features and/or

classification methods which are better suited for examining motor

imagery in patients with DOC. SVM classification yielded the best

results compared to knn classification in healthy participants. In

the group of healthy participants we found best results for

coherences and advantageous results for FFTs. Most interestingly,

the coherence-results exceed classification accuracies reported

previously [3]. In the following we discuss that a higher accuracy

in healthy subjects is not the only reason why we suggest to use

coherences with DOC-patients.

Coherences and power spectra in DOC
We found that coherences and power spectra yield high

classification accuracies in healthy subjects. After FDR-correction,

this advantage remains for coherences, only. Our results demon-

strate that the possible value of coherences might have been

underestimated so far. BCI-projects commonly use frequency

analysis as revealed by FFT-power spectra [5], wavelet transform

[32], or bandpass filtering [3], while studies involving coherences

are rather rare. Coherences, like power spectra, use spectral

information and treat the signal as stationary within the analyzed

window and thus, allow to detect also pathologically delayed

responses in patients [5]. The additional information in coher-

ences over power spectra are connectivity patterns, i.e., brain

regions showing synchronized frequency activity.

The use of coherences for BCI control has been shown to be a

good option [18,19]. However, the pattern of coherences may

differ between healthy participants and patients with severe motor

disabilities [33]. The reason for distinctive patterns between

patients and healthy participants was interpreted by Nam et al.

[33] as reduced cortical differentiation and specialization in

patients, reflected by a compensatory recruitment of more cortical

regions. This difference may lead to lower performance of a BCI-

system and thus, decrease the classification accuracy in patients.

Against this background, one could argue that coherences are

rather unsuited for use in DOC-patients because they may

underestimate a patient’s ability to perform motor imagery.

However, the classification accuracy of features such as power

spectra and coherence possibly depend also on the electrode

positions used for classification [34]. Krusienski et al. [34] reported

that FFT and coherence yield comparable classification accuracies

in healthy participants with central electrode positions covering

the motor cortex. Nevertheless, the authors state that it is very

likely that electrodes positioned over all brain regions could yield

different results (i.e., advantages for coherences or phase locking

values). Such a montage could detect task-related activity which

increases classification accuracy but does not stem from the motor

cortex. For example, one could expect a strong activation of

frontal regions due to executive functions involved in task

performance. This is what we found in healthy participants, i.e.,

significant differences between rest and imagery coherences

between frontal and other brain regions. This alternative source

of brain activity could be relevant in patient groups. For example,

patients with spinal cord injury suffer from deafferentiation and

thereby negative neuroplasticity in the sensorimotor cortex. This

may explain the rather low classification accuracies in BCI-systems

in tetraplegic patients [35].

Coherences could yield the possibility to recognize motor-

imagery related activation even without typical activation of the

motor cortex. Indeed, our approach of using a full montage

revealed that healthy subjects show frontal connectivity patterns in

coherences, suggesting that the high classification accuracy in this

group stems not only from central activations. Thus, the way we

applied coherences should be able to detect voluntary brain

activation in patients with DOC even if they suffer from negative

neuroplasticity in the motor cortex. A similar approach could be

achieved also by features such as Granger causality (Granger GW).

However, Granger causality requires a fine tuning of the lag length

and produces a longer data vector, possibly causing a small-

sample-size problem.

Another advantage of coherences is that they yield small SDs

and rather small ranges, which makes them better suited to

distinguish participants which do and do not perform motor

imagery. In fact, after FDR-correction only 2 healthy participants

yielded below-chance accuracy. There were also other features

with small ranges or small SDs but only coherences had a small

variance combined with high accuracy in the healthy participants

group.

False positives
Without FDR-correction, there were some patients showing

above chance accuracies in some of the features. These

occurrences in the patient groups did not exceed the FDR-

corrected threshold. Most interestingly, features which yielded

Table 1. Comparison of classification methods.

comparison z-value p-value rank

without FDR correction

DADF vs. knn k = 1 21.22 .22 51

DADF vs. knn k = 3 20.15 .88 82

DADF vs. SVM 21.92 .05 42

knn k = 1 vs. knn k = 3 21.32 .19 49

knn k = 1 vs. SVM 23.25 .001* 15

knn k = 3 vs. SVM 22.45 .01* 21

with FDR correction

DADF vs. knn k = 1 23.87 .0001* 0

DADF vs. knn k = 3 24.47 v.0001* 0

DADF vs. SVM 23.98 v.0001* 0

knn k = 1 vs. knn k = 3 n.a. .29 9

knn k = 1 vs. SVM n.a. .53 16

knn k = 3 vs. SVM n.a. .11 3.5

Results of Wilcoxon-tests comparing the number of healthy participants with
above-chance accuracies.
Upper set based on above-chance numbers without FDR-correction, lower set
with FDR-correction.
*significance at FDR-corrected level pƒ.01 n.a. not available.
doi:10.1371/journal.pone.0080479.t001
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above-chance accuracies in patients did not match with those

features showing the highest classification accuracies in the healthy

participant group. If the above chance accuracies in patients

would have occurred in those features which yielded best results in

the healthy participant group the results would have been more

thrustworthy. Indeed, the brainrate-results turned out to be a

severe classification error.

Only recently Goldfine et al. [14] found that noise in the data

[3] may lead to failure of the classifier. Most importantly, several

above-chance accuracies in healthy participants as well as in

patients were not significant anymore after FDR-correction. As

Goldfine et al. [14] point out, based on the statistical criterion of

pv.05, a classifier could yield positive results in 5% of the tests

even if these datasets were random. In the present data, in 14

patients and 20 features there were 5 above-chance accuracies

before an FDR-correction was applied. Based on the assumption

that the diagnosis with the CRS-R is highly accurate [16], we

considered above-chance accuracies as false positives if they did

not reach significance at the FDR-corrected level. Still, the CRS-R

is the gold standard, but there is no ground truth to truly ascertain

the results in studies involving DOC. Therefore, we need features

which are robust against artifacts and classification errors.

Perhaps just because of the possibility of false positives in other

features we see the clear advantage of coherences. There were no

above-chance accuracies with or without FDR correction in

patients despite a high number of above-chance accuracies was

found in healthy subjects. We consider it a main advantage of the

coherences that they seem to be robust against erroneous

classifications.

However, examining the healthy participant group showed that

interpreting coherence-patterns is not straightforward. Analysis of

motor-imagery-related EEG data is usually done on central

positions, only, because they represent the central m-rhythm. Thus,

we expected to find significant coherences involving central

positions in healthy participants. In contrast, there are more

healthy participants showing significant differences in the coher-

ences between frontal and other (frontal, central, parietal) regions

than participants showing significant differences between central

regions. With respect to power spectra, the difference between

motor-imagery and rest is obvious above central, parietal, and

occipital regions in healthy participants, but with a high SD in the

range of the m-rhythm. This inter-individual difference in

activation patterns is well in line with previous research involving

simple stimuli such as an oddball [36,37], subject’s own name

[38,39], but also complex tasks such as music [40], and specifically

motor imagery [15,41], in which healthy participants show

contradictory patterns of activation. As a consequence, visually

exploring the pattern of coherences cannot specify whether a

patient was performing the task or not. This becomes obvious

when comparing the coherence-distribution in the patient groups

to the distribution in the group of healthy participants. The

attempt to compare power spectra between patients and healthy

participants seems to be more useful. However, power spectra

achieved a low number of above-chance classification in healthy

participants after FDR-correction. Therefore, classification results

in power spectra may underestimate a patients’ task performance.

Finally, we want to mention that we cannot rule out that

patients without below-chance accuracies in coherences (as in any

other feature) are conscious. First, it is possible that patients were

actually performing the task and the coherence feature failed to

classify them correctly as reported previously for severely motor

disabled patients [33]. The statistical procedure could have failed

Table 2. Results SVM classification.

healthy MCS UWS

feature mean SD range mean SD range mean SD range

Hjorth activity .65 .11 *.49–.85 .45 .15 .30–.69 .46 *.04 *.40–.51

Hjorth complexity .57 *.10 *.39–.74 .49 *.04 *.43–.53 .47 *.07 *.35–.55

Hjorth mobility .59 .11 .37–.80 .41 .09 .28–.49 .47 .10 .33–.60

FFT *.69 .13 .40–.85 *.50 .11 .35–.60 .41 *.07 *.29–.49

coherence *.78 *.09 .53–.94 .49 *.03 *.45–.55 .43 .11 .28–.63

Hurst .53 *.09 *.36–.73 *.54 *.06 .45–.62 *.48 .08 .33–.57

brainrate .50 *.09 *.33–.70 *.53 .10 .43–.68 *.52 .09 .37–.65

Wackermann s .47 .23 0–.79 .47 .12 .28–.57 .36 .16 0–.51

Wackermann w .43 .20 0–.79 .34 .16 .15–.51 .44 .10 .24–.54

Wackermann v .43 .22 0–.79 .35 .25 0–.59 .37 .14 .09–.57

Granger GW .64 .15 .29–.91 .43 .09 .33–.57 .37 *.05 *.30–.48

Granger pp *.66 .12 .41–.87 .48 .09 .38–59 .43 .08 .31–.54

PDC .57 *.10 .30–.78 .49 .17 .23–.64 .40 *.07 *.33–.50

DTF .60 .12 .34–.84 *.55 .08 .48–.67 .40 *.06 *.33–.51

approximate entropy .61 .11 .43–.83 .48 .10 .38–.63 .48 .09 .33–.62

Renyi spacingV *.65 .12 *.47–.85 .41 *.06 *.32–.46 *.51 *.06 *.43–.62

Tsallis knn .63 .12 .45–.85 .46 *.03 *.43–.49 *.48 .10 .31–.60

Shannon spacingV *.65 .12 *.47–.85 .41 *.06 *.32–.46 *.50 *.07 *.43–.62

Bhattacharyya knn .60 .11 .40–.80 .42 *.06 *.36–.51 *.50 .12 .33–.72

CorrEntr KDE direct *.65 .13 .28–.87 .46 *.06 *.38–.51 *.51 .14 .30–.67

*significantly better than other features of same column (FDR pv0.0242).
doi:10.1371/journal.pone.0080479.t002

Classification of Motor Imagery in DOC-Patients
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to reveal the motor imagery related brain activation or the patients

are simply not be able or willing to follow the task instructions.

Patients with dementia, for example, are surely conscious but at a

certain stage of the progressive disease they may have difficulties in

performing even such a simple task.

Classification problems: Overfitting
We have found many accuracies smaller than .50 in the patient

groups and some in the healthy participant group. It is very likely

that the below-chance values are due to overfitting of the data. It is

known that the risk for overfitting the system to a particular class

rises when the number of samples used for the different classes is

not well balanced. That is, the classifier will assign images more

likely to the class which contains the most samples within the

training set. In addition, overfitting is especially a problem with

high dimensional data, i.e., long feature vectors. In EEG-data, this

problem of long feature vectors is very common and there exist

approaches to reduce e.g. the number of frequencies [42]. Finally,

overfitting is also a problem in noisy data, because random

variability in the data leads to an inaccurate model. In the worst

case, overfitting leads to zero classification accuracy. This may

happen in the case that both classes (motor imagery and rest) have

equal numbers of trials. Let this number be N. With the leave-one-

out cross-validation one trial x of class A is classified and all of the

other trials of class A and B serve as training data. The training

data includes N trials of class B and N-1 trials of class A. Because

of overfitting, the classifier assigns the wrong class B to the trial x.

As such, each trial is assigned to the wrong class and the

classification accuracy is 0. In a similar way overfitting could lead

to above-chance accuracy if there are strongly unbalanced data-

sets.

The main reason for overfitting in DOC patients and, thus,

below-chance accuracies, may be that the data contains no task-

related information. For the classifier, non-task-related informa-

tion is equivalent to noise. In fact, if a patient does not perform

motor imagery there is no model to build for distinguishing the

motor-imagery trials from rest trials.

We believe that coherences are robust against overfitting. In

healthy participants, coherences were the only feature with no

subjects with below-chance accuracy. The lowest accuracy for

coherence among healthy participants was .53 while in all other

features the lowest value was below .5. This is also reflected by the

fact that coherences had a very small standard deviation and a

rather small range both in patients and healthy participants. The

accuracies do not vary extremely between participants. This makes

the results more reliable and leads to the assumption that a

coherence value is better predictable than, e.g., a Wackermann

feature, which yielded many below-chance accuracies and a high

between-subject variability.

Choosing SVM as a classifier for EEG-data in DOC
We found no significant difference between classifiers in

patients. Therefore, the deciding factor for choosing a classifier

remains the classification accuracy in healthy participants. But also

in healthy participants the differences between classifiers were

rather small.

Table 3. Average p-values and effect sizes (IOCCM) for
comparison of achieved accuracy to chance level in the SVM
classification.

healthy MCS UWS

feature p IOCCM p IOCCM p IOCCM

Hjorth activity .14 .30 .14 2.10 .32 2.08

Hjorth complexity .18 .14 .35 2.01 .29 2.07

Hjorth mobility .20 .17 .23 2.19 .22 2.06

FFT Hz .09 .37 .21 2.01 .21 2.18

coherence .02 .56 .35 2.03 .24 2.15

Hurst .24 .06 .27 .09 .29 2.03

brainrate .27 20 .25 .05 .27 .03

Wackermann s .14 2.06 .25 2.06 .19 2.28

Wackermann w .24 2.14 .16 2.33 .26 2.11

Wackermann v .20 2.14 .19 2.30 .13 2.25

Granger GW .11 .27 .19 2.15 .16 2.22

Granger pp .12 .32 .26 2.04 .21 2.14

PDC .20 .13 .15 2.02 .18 2.20

DTF .13 .20 .29 .10 .16 2.21

approximate entropy .20 .21 .24 2.05 .26 2.04

Renyi spacingV .15 .30 .21 2.18 .31 .01

Tsallis knn .16 .26 .34 2.08 .23 2.03

Shannon spacingV .15 .30 .23 2.17 .30 .01

Bhattacharyya knn .17 .19 .21 2.16 .22 0

CorrEntr KDE direct .10 .30 .31 2.08 .14 .02

doi:10.1371/journal.pone.0080479.t003

Table 4. Numbers of above-chance accuracies in the SVM
classification.

healthy MCS UWS

feature Cprop FDR Cprop FDR Cprop FDR

Hjorth activity 11 2 *1 0 0 0

Hjorth complexity 5 1 0 0 0 0

Hjorth mobility 6 2 0 0 0 0

FFT Hz *16 2 0 0 0 0

coherence *21 *20 0 0 0 0

Hurst 3 1 0 0 0 0

brainrate 1 1 *1 0 0 0

Wackermann s 4 1 0 0 0 0

Wackermann w 1 1 0 0 0 0

Wackermann v 2 1 0 0 0 0

Granger GW 12 1 0 0 0 0

Granger pp 11 2 0 0 0 0

PDC 3 1 0 0 0 0

DTF 6 1 *1 0 0 0

approximate entropy 5 2 0 0 0 0

Renyi spacingV 11 1 0 0 0 0

Tsallis knn 9 1 0 0 0 0

Shannon spacingV 11 1 0 0 0 0

Bhattacharyya knn 9 0 0 0 *1 0

CorrEntr KDE direct 10 1 0 0 *1 0

numbers of participants significantly above Cprop for each group; numbers
without and with FDR-correction.
*significantly higher compared to other features of same column with FDR-
corrected level of significance pv0.0069.
doi:10.1371/journal.pone.0080479.t004
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SVM yielded best results for healthy participants in our study,

which is not surprising given the results of previous research

[31,43]. SVM has been used for synchronous brain computer

interfaces [32] and for classifying motor imagery in patients with

DOC [3]. The main drawback of SVM is that it is slower than

other classification methods. However, for the diagnosis of DOC

this is not critical because data are usually analyzed off-line. If used

for BCI in patients with DOC or SCI, SVM can still be fast

enough to reach real-time performance [32]. Nevertheless, the

differences of the classification accuracies were rather small and

the difference between SVM and DADF were not significant

because of a smaller number of degrees of freedom (despite the

average accuracy of DADF was the same as for knn k = 3, which

was boarder-significantly different from SVM). These results are

well in line with previous research, reporting only a slightly better

result for SVM than linear discriminant analysis [30]. This

suggests that the differences between the classifiers are not very

wide and comparing SVM with other classification methods, e.g.,

a Bayesian classifier may yield no difference between classification

results [44]. It is important to note that the kernel of the SVM

plays an important role. We used a linear kernel function, but a

non-linear kernel function allows a more flexible decision

boundary in the data space [32] and also a Gaussian kernel

function was shown to be advantageous [44]. However, when

applying a non-linear kernel function we found that the classifier

did not converge to a solution for each participant’s data in certain

features. Thus, when choosing a classifier and tuning the

classifier’s parameters there is a trade-off between best classifica-

tion results and reliability of the algorithm to converge.

Conclusion

In this study we compared the use of different features and

different classifiers in healthy participants and patients with DOC.

SVM classification yielded the best results in healthy participants

among the options we tested. Classification accuracies of

coherences were found to be better than those of all other features.

In DOC patients, though, we recommend to examine

coherences over the whole scalp since they identify a more

distributed network activity reflecting the cognitive processes

involved in motor imagery. This advantage could be crucial when

examining severely-disabled patients since the individual response

patterns can differ drastically from those of healthy people because

of neuroplastic changes. Without FDR-correction we found

above-chance accuracies for patients in other features. At least

one of these occurrences was identified as failure of the

classification method. We suggest that coherences are more robust

Figure 2. Differences in power spectra (rest-imagery) in healthy participants. Thick line indicates the mean of the sample, the thin lines
indicate the standard deviation.
doi:10.1371/journal.pone.0080479.g002
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against artifactual data. This claim is also supported by a small

variability of accuracies in coherences, suggesting a good

predictability of the classification values.

Future studies should examine if classification accuracies of

coherences calculated on a full montage are affected by

neuroplastic changes in severely motor disabled patients.

Methods

Ethics
The study was approved by the local Ethics Committee (Ethics

Commission Salzburg/Ethikkommission Land Salzburg; number

415-E/952) and was designed according to the Declaration of

Helsinki. Written informed consent was obtained from all control

subjects and from the families or guardianship of all patients.

Subjects
Over the course of 2 years (2010–2012), 16 patients were

assessed at the Christian-Doppler-Clinic in Salzburg (Austria).

Inclusion criteria for patients were a diagnosis of UWS (n = 10) or

MCS (n = 6) based on neuropsychological assessment of trained

experts with the CRS-R [45]. Due to artifacts resulting from

stereotypical movement patterns, the data of 2 subjects (1 UWS; 1

MCS) were excluded. The remaining sample of 9 UWS patients

and 5 MCS patients is described in Table 5.

Cd, code: diagnosis and patient number; WHIM, value on

Wessex Head Injury Matrix; CRS-R, value on Coma Recovery

Scale -Revised; Dur, duration in months of the disorder at the time

of assessment since onset; N.A., not available; H, haemorrhage.A

sample of 22 high school graduated subjects (age: 20–26 years;

mean = 22.86 years; SD = 1.81; 6 male) was recruited for the

healthy subject group. None of the participants reported any

history of neurological or psychiatric diseases, nor were they

receiving any psychoactive medication. Healthy subjects were

remunerated for their expenditure of time. The data of the healthy

subject group was analyzed and published recently [15].

Experiment
The experiment consisted of three conditions. There were 24

trials for each condition. In the imagery-condition the participants

were asked to imagine to open and close both hands. The resting

condition consisted of no movement and no imagery but was

preceded by the instruction to hold both hands firm. With this

special ‘‘resting task’’ we controlled for speech-related activations,

which are common in patients with DOC and do not reflect

consciousness [46,47]. To ensure that the participants performed

the task in the movement- and the imagery-condition during a

certain period of time, they were instructed to perform the task

while hearing a tone sequence of 2 tones. Both tones were

alternatingly recurring once per second. Thus, the participants

Figure 3. Differences in power spectra (rest-imagery) in patients in MCS. Thick line indicates the mean of the sample, the thin lines indicate
the standard deviation.
doi:10.1371/journal.pone.0080479.g003
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imagined to open and close their hands once per second. The

instructions had durations of 6, 6.5, and 9.5 sec for the rest, move,

and imagery conditions, respectively. After each instruction, there

was an interval of 5 sec during which the participants were

expected to follow the instruction (i.e., to move in the movement-

condition, to imagine a movement in the imagery-condition, and

to hold the hands firm in the rest-condition). To avoid expectation

effects, conditions were ordered pseudo-randomly. Instructions

were presented verbally and binaurally through earphones using

Presentation software (Neurobehavioral Systems, version 12). The

auditory material was recorded and processed with Audacity

(version 1.2.6). The instructions were normalized to an equal

sound level. Healthy participants were asked to look straight ahead

during the experiment. Patients were awake during the experiment

with eyes open. The presented data are based on these two

conditions while the third condition, the movement condition, was

excluded from analysis because of limited information content in

the patient groups.

Data registration
EEG-Data was recorded using a BrainCap with a 10–20 system

and a BrainAmp (Brain Products GmbH, Germany) 16-bit ADC

amplifier. The sampling rate was 250 Hz for the healthy

participants and 1000 Hz for the patients. Of the 32 recorded

channels, 2 were used to monitor the left and right horizontal

electrooculogram. One was used to monitor lower-site vertical

electrooculogram. Two were positioned at the mastoids for re-

referencing purposes to remove the bias of the original reference,

which was placed at Fcz. The other electrodes were Fp1, Fp2, F3,

F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz,

FC1, FC2, CP1, CP2, FC5, FC6, CP5, and CP6. Data analysis

was conducted for data collected from the electrodes F3, F4, C3,

C4, P3, P4, O1, O2, F7, F8, Fz, Cz, Pz, FC1, FC2, CP1, CP2,

FC5, FC6, CP5, and CP6. Impedances were kept below 10 kV.

Data preparation
An overview of this and the following steps is given in the

flowchart in Figure 1. Data were pre-processed with Brain Vision

Analyzer (Version 1.05.0005, Brain Products GmbH). In order to

re-reference all channels, a new reference was built by averaging

the signal of mastoid electrodes. To obtain a bipolar vertical

electrooculogram, the average of Fp1 and Fp2 was used as a

reference for the lower-site vertical electrooculogram. Butterworth

Zero Phase Filters from 1 to 48 Hz (time constant 0.1592s, 48dB/

oct) were applied to reduce noise.

Independent component analysis (ICA) was applied to detect

and remove ocular, muscular, and cardiac artifactual sources [48–

50]. The ICA was calculated on the entire dataset, on all channels,

including the prepared electrooculographic channels. An experi-

enced researcher identified the components containing ocular,

cardiac, or muscle artifacts by visual inspection. These compo-

nents were removed by performing the corresponding ICA back-

transformation.

An automatic data inspection was carried out in order to

exclude remaining artifacts. Maximal allowed voltage step per

sampling point was 50 mV (exceeding values were excluded with a

Figure 4. Differences in power spectra (rest-imagery) in patients with UWS. Thick line indicates the mean of the sample, the thin lines
indicate the standard deviation.
doi:10.1371/journal.pone.0080479.g004
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surrounding of +100ms); maximal allowed absolute difference on

an interval of 200ms was 200 mV and lowest allowed absolute

difference on an interval of 100ms was 0.5 mV (exceeding values

were excluded with a surrounding of +500ms).

To extract features of individual trials, data was segmented into

4 sec epochs for each trial. These segments started at the end of the

acoustic instruction and ended 1 sec before the next instruction to

avoid expectancy effects. The preprocessed segments were

exported into a generic data format and imported to MatlabH
(The Mathworks). These segments were first spatially filtered to

common average reference [51].

Patient’s data was first downsampled to 250Hz to have the same

sampling frequency as data collected from healthy participants.

Feature extraction
In the following, we list the features and refer to the software we

used to compute them.

Hjorth parameters. The BioSig implementation [52] of the

Hjorth features as proposed by Hjorth [53,54] was used. Hjorth

parameters include activity, mobility, and complexity. Each of

these features was evaluated in stationary mode separately for each

channel to the whole segment (4 sec). Thus, the result was a feature

per channel and, as a whole, a feature vector. Classification was

carried out separately for the three Hjorth feature vectors.

Brainrate. The BioSig implementation [52] of the brainrate

[55] was used. The brainrate was calculated in stationary mode for

each channel over the whole segment.

Wackermann. The BioSig toolbox [52] provides a function

to calculate the global field strength s, the global frequency w, and

a measure of spatial complexity v [56,57]. Each of these features

was evaluated in stationary mode separately for each channel over

the whole segment. Classification was carried out separately for

the three Wackermann feature vectors.

Hurst exponent. The BioSig toolbox [52] includes a function

to estimate the Hurst parameter via the rescaled range [58]. The

Hurst exponent, also known as index of long-range dependence,

was calculated for each channel over the whole segment.

FFT. The FFT was calculated with the matlab function fft.m.

To reduce the length of the feature vector (124 frequency steps

between 1 and 30Hz for each channel), we calculated the average

value at 2.44Hz frequency steps between 1 and 28Hz (12 values

for each channel).

Coherence. Coherence was calculated with the matlab

function mscohere.m. To reduce the length of the feature vector

(124 frequency steps between 1 and 30Hz for each channel|-

channel combination) we calculated the average value at 2.44Hz

frequency steps between 1 and 28Hz (12 values for each

channel|channel combination).

Granger causality. Spectral granger causality [59,60] was

calculated with the function cca_pwcausal.m in Seth’s toolbox [61]

which was applied to each single segment. This function returns

the log-ratio of granger-causalities for each frequency step (GW,

i.e., a matrix with channels in rows and columns for each

frequency step), analogously values of coherence, and the power

spectrum for each channel (pp). We used 2.44 Hz frequency steps

between 1 and 28 Hz. Note that the information of these

coherence values overlaps with the information in the Coher-

ence-feature vectors as calculated with the function mscohere.m.

Figure 5. Numbers of healthy participants with significant (FDR-corrected) coherences.
doi:10.1371/journal.pone.0080479.g005
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Therefore, only GW and pp were used for classification (each of

them separately).

PDC and DTF. The PDC [62] and DTF [63] were calculated

with functions provided by Omidvarnia [64] including also

functions from the BioSig toolbox [52] and the arfit toolbox

[65,66] with 12 2.44 Hz frequency steps between 1 and 28 Hz.

For computing the time-varying PDC and DTF measures we used

the optimum model order as estimated with the arfit toolbox

between 1 and 20 for each trial.

Entropy. A large set of entropy measure calculations was first

examined. Shannon entropy was calculated with the matlab

function wentropy, approximate entropy was calculated with the

function ApEn provided by Kijoon Lee in Matlab central file

exchange with a tolerance of r~2 � SD. All of the other entropy

features (again Shannon entropy but by knn estimation, with

multivariate Edgeworth expansion, locally linear regression,

approximate slope of the inverse distribution function with and

without piecewise constant or linear correction as well as with and

without bias correction; Rényi entropy estimated by knn, weighted

knn, empiric entropy estimator of order m, approximate slope of

the inverse distribution function, and continuously differentiable

sample spacing (CDSS); Tsallis entropy estimated with k-nearest

neighbors) were calculated with Szabó’s Octave/Matlab Toolbox

for Information Theoretical Estimators [67,68]. All of these

entropies were then classified in all groups and we chose the

Shannon entropy and the Rényi entropy with highest classification

accuracies in the healthy participant group since the values in

patient groups did not differ systematically. The highest accuracies

were reached with the estimation with approximate slope of the

inverse distribution (spacingV). Thus, we used 4 entropy measures:

Shannon and Rényi entropy estimated by spacingV, Tsallis

entropy estimated with k-nearest neighbors, and approximate

entropy.

Bhattacharyya distance. Bhattacharyya distance to mea-

sure the divergence, i.e. the distance between to probability

densities, was calculated with the with k-nearest neighbors

implementation of Szabó’s Octave/Matlab Toolbox for Informa-

tion Theoretical Estimators [67,68].

Correlation Entropy. Correlation entropy (CorrEntr KDE

direct), an association measure, was calculated with Szabó’s

Octave/Matlab Toolbox for Information Theoretical Estimators

[67,68].

Classification
Trials of each participant were classified with the leave-one-out

cross-validation. Each trial was used once as validation data with

the remaining trials as the training data. This was repeated such

that each trial was used once as the validation data. Then, we

calculated the percent of correctly classified trials. This proportion

is called hereafter the classification accuracy.

For classification we used three algorithms (MATLAB-func-

tions):

discriminant analysis with a diagonal quadratic function

(DADF). Each trial was classified by a specified discriminant

function. In the present case, this function was ‘‘diagonal

quadratic’’. In this function multivariate normal densities are fit

with a diagonal covariance matrix estimate (naive Bayes classifiers)

stratified by group.

Figure 6. Numbers of patients in MCS with significant (FDR-corrected) coherences.
doi:10.1371/journal.pone.0080479.g006
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k-nearest neighbor classification (knn). Each trial was

classified by knn classification with Euclidean distance metric. We

applied the knn-classifier twice, with k~1 and with k~3. These

two values were chosen because with k~1 we produced the

special case of the nearest neighbor algorithm and with k~3 we

chose an odd number, which avoids tied votes in binary

classification problems and this value for k is still small so that

the boundaries between classes can be quite distinct.

support vector machine classifier (SVM). Classification

with SVM technique was used with a linear kernel function.

Figure 7. Numbers of patients with UWS with significant (FDR-corrected) coherences.
doi:10.1371/journal.pone.0080479.g007
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Above-chance classification
Thus, we got a classification accuracy for each participant.

Based on the individuals’ classification accuracies, we estimated

the number of healthy participants, UWS-patients, and MCS-

patients who showed above chance accuracies, separately for the 4

classification methods and for each of the 20 features. We used a

proportional chance criteria and an adequate measure of

significance and effect size, as described in [69], for assessing if

the features’ accuracies reflected task performance, that is, if they

classified motor imagery and rest-trials with an accuracy that is

significantly above chance. The proportional chance criteria

HCprop is calculated by summing the squared proportion that

each number of trials represents in the whole trial set:

HCprop~(0:5 �Nrz0:5 �Ni) ð1Þ

where Nr is the number of resting-trials and Ni is the number of

motor imagery trials. We required that the accuracy should be

significantly better than the chance criteria [69]. That is, an

accuracy is considered as reflecting task performance if the

improvement over chance criterion was significant as assessed by a

z-statistic:.

z~
H0{HC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HC(N{HC)=N

p ð2Þ

where H0 is the number of correctly classified trials and N is the

total number of trials in both categories. Note that the z-test

assumes that the data are independently sampled from a normal

distribution, which was proved with both the Chi-square

goodness-of-fit test (Matlab function chi2 g of.m) and the Lilliefors

test (Matlab function lillietest.m; [70]).The significance of z is

determined according to the critical values from a standard

normal distribution. This was done by computing the probability

density function of the normal distribution with mean 0 and

standard deviation 1 at the resulting z-values. A false discovery

rate (FDR) correction [71] for correcting multiple comparisons (20

features, 4 classification methods, and 36 participants) was applied

to the critical alpha level of .05. This resulted in a critical alpha

level of pƒ.0086.

In addition, the effect size of this improvement can be measured

directly with the improvement over chance criterion (IOCC):

IOCC~
H0=N{HC=N

1{HC=N
ð3Þ

For each group and each feature we reported the average p-

values and average IOCC-values. To compare the classification

methods (discriminant analysis, knn classification with k = 1 and

k = 3, SVM), we compared the number of significantly above-

chance accuracies for Cprop of the features separately in each

participant group and separately for the numbers with and without

FDR-correction. Normal distribution of these numbers was

evaluated with the Kolmogorov-Smirnov test. Since the numbers

were not distributed normally in any of the result-sets of the 4

classification methods and 3 participant groups, a non-parametric

Wilcoxon signed rank test was used for the comparisons. The

resulting p-values were interpreted at the FDR-corrected threshold

of significance. For interpretation of significant results, we

calculated also the mean accuracy over all features for each

classification method result set (i.e., the mean over the 20 features

for each classification method). The feature comparisons were

then carried out for the best classification method, only.

We calculated the mean, standard deviation (SD), and the range

(maximum-minimum) of each feature, separately for each group.

To find out which features had significantly higher average

accuracy, lower SD, and lower range of accuracies than the other

features, i.e., which features were significantly better than all other

features, we calculated one-sample Wilcoxon signed rank tests for

each feature vs. all other features on average accuracy, SD, and

range. These 180 results were interpreted at the FDR-corrected

threshold of significance pƒ.0242.

The same procedure was applied to the number of participants

showing above-chance accuracy. That is, we evaluated separately

for the Cprop results with and without FDR-correction and

separately for the 3 participant groups which features yielded

significantly more above-chance accuracies than the other

features. The level of significance was FDR corrected for these

120 comparisons and resulted in pƒ.0069.

Preparation of figures
For graphical purposes, we calculated the group-average and

group-standard deviation of the difference in power spectra

between the resting and imagery condition. These values were

plotted for each electrode position of a subset of 13 electrodes.

This subset was chosen to ensure that the graphics are not

overloaded.

In addition, a graphical representation of coherences was

prepared. We evaluated the difference between rest and imagery

in the coherences statistically. This was done by first calculating

the coherence over all trials instead of individually for each trial

and then converting each coefficient for imagery and rest of each

channel | channel combination and each frequency into a z-

score using Fisher’s r-to-z transformation. Then, taking into

account the number of samples and trials for each condition

(imagery and rest), these z-scores were compared using formula

2.8.5 from Cohen and Cohen [72].

Table 5. Summary of patients.

Diagn WHIM CRS-R Sex Age Dur Etiology

MCS-1 12 8 m 40 62 traumatic brain injury

MCS-2 15 9 m 52 4 subarachnoidal +
intracerebral H

MCS-3 15 11 w 71 12 subarachnoidal H

MCS-4 10 8 w 56 20 subarachnoidal H

MCS-5 13 9 w 65 7 intracerebral H

UWS-1 6 6 w 38 18 hypoxic encephalopathy

UWS-2 1 1 m 55 2 cardiopulmonary
resuscitation

UWS-3 2 4 w 32 30 basilarthrombosis

UWS-4 4 3 m 73 2 traumatic brain injury

UWS-5 5 4 m 60 2 traumatic brain injury

UWS-6 4 6 m 47 119 cardiopulmonary
resuscitation

UWS-7 3 3 m 61 2 thalamic H

UWS-8 3 7 w 36 14 status epilepticus

UWS-9 5 5 m 31 2 traumatic brain injury

doi:10.1371/journal.pone.0080479.t005
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Then, we calculated the number of subjects with significantly

different coherences with a threshold of the FDR-corrected level of

significance pv:0036 for a subset of 13 electrodes (the same subset

as for power spectra). The graphics were constructed by ordering

the electrode positions in a scalp-like manner for each frequency

and by coding the numbers of participants with significantly

different coherences with line-thickness and coloring.
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