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Reversible catalytic model for longitudinal data

The original model proposed by Bekessy et al. [I] assumes that infection follows
a Markov process where an individual in period ¢ can either be positive or negative.
Their status can either stay the same in time ¢+ 1 or they can change states (either from
positive to negative, or vice versa). The model assumes that the probability of converting
between states follows a binomial process and that the process has no “memory” — the
transition probabilities between ¢ and ¢ 4 1 use no information for time periods before ¢.
After solving a system of differential equations Bekessy et al. [I] show that under the

model, the probability of infection in period t is:

A

Pi(t) = Tt [1 —exp(—(A+ p)t)] (1)

and the probability of recovery in period  is:

P
Pr(t)= ——[1 —exp(—(A+ p)t 2
(t) = 55 (L= exp(~(A+ )] @
In both probabilities, A is the incidence rate and p is the recovery rate. With sero-
logical antibody data, the incidence rate is estimated by seroconversion, and recovery by
seroreversion. The parameters can be estimated empirically using maximum likelihood.
For a binomial random variable Y; ; that indicates infection status for individual ¢ at time

t, the part of likelihood function that depends the probabilities of infection and recovery



under the model is:
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where P;(t) and Pg(t) are the transition probabilities in equations 1| and [2| and
Y +(st, st41) are indicator variables for the status of individual i (O=negative, 1=positive)

at the beginning and end of the period. The log likelihood is:

n T;

00) = Z > Y;4(0,1) log Pr(t) + Y;,(0,0) log[1 — Py(t)] +

i=1t=1

Y;+(1,0)log Pr(t) + Y;:(1,1)log[l — Pg(t)] (4)

We estimated the seroconversion and seroreversion rates by maximizing the likelihood
in equation [4] given the observed data. The R function used for the likelihood is at the
end of this appendix. To estimate the variance of prevalence estimates and model-based
seroconversion and seroreversion rates in the longitudinal cohort, we used a clustered
bootstrapped approach where we resampled individuals with replacement 10,000 times,
and in each iteration estimated the parameters using maximum likelihood. This preserved
the within-child correlation in outcome measurements. The SD of the bootstrap distri-
bution was used to estimate the SE of the parameters, and the 2.5 and 97.5 percentiles

of the bootstrap distribution were used as the 95% confidence intervals.

Estimating seroconversion rates using cross-sectional data

With cross-sectional data, direct information about seroconversion and seroreversion
is unknown since we do not observe the same individual at two points in time and cannot
identify incident cases. Instead, we only have current status information for an individual
at one point in time when they are a particular age. Investigators have used a model

similar to the one described in the last section to model the age-specific probability of



infection [2, 3]. The probability of infection at age a is modeled as:

A
Pla)=—— 11 —exp(—(A+ p)a 5
(@) = 5 1= exp(=(A+ p)a) )
Note that this is similar to equation [I} but rather than modeling incident seroconversions
and using person-time in a period of observation (t), here the equation summarizes the
prevalence at age (a). Since there is only one probability in the model, the log likelihood

function is identical in form to equation [4] but without the last two terms.

{(0) =>_Yilog P(a) + (1 — Y;)log[l — P(a)] (6)
i=1
where Y; is an indicator variable equal to 1 if individual i is positive and P(a) is the
probability of infection described in equation . Estimates of \ and p in a population can
be obtained by maximizing the likelihood function given the observed status Y;.
We fit the age-specific prevalence model to the cross-sectional dataset using all in-
dividuals aged 0 - 90 years old, and separately for individuals ages 0-11 years old for a

direct comparison with the longitudinal data.

Estimating 2 seroconversion rates using cross-sectional data

One extension to the basic model for cross sectional data is to allow the seroconversion
rate to differ for different age groups, and investigators have chosen the breakpoint for
allowing the rate to change at a point that maximizes the overall likelihood (identified
with a profile likelihood plot) [4-7]. We used a similar approach, but used cross-validation
to select the break point in age to avoid the potential for choosing a break point that
overfitted the data [8],[9]. If the entire dataset were used to choose a breakpoint parameter
that maximizes the likelihood, it is possible for the model to overfit the data. Instead,
choosing model parameters such as the breakpoint age for where the seroconversion rate
should change using V-fold cross validation should be far less sensitive to overfitting.
Hastie et al. [8] provide details of V/-fold cross-validation; in brief, the approach randomly
splits the data into V' roughly equal sized parts. For the vth part, the model is fit on the
other V' —1 parts of the data, and loss (prediction error) is calculated on the vth part that



is left out as the test set. The process is repeated for each of the V' splits, and the loss
function is averaged over the V splits. In this particular application, we used V=5 data
splits in the cross validation and the negative log likelihood as the loss function. Finally,
we fit a single seroreversion rate across all ages in the survey (not separately for each
age group). The standard maximum likelihood approach and cross validation approach
produced highly comparable loss functions in this dataset (Figure . Both functions
were maximized with a split at age 8 years. Figure[S2]plots the model predictions allowing

for two seroconversion rates along with observed seroprevalence.
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Figure S1: Profile log likelihood plot (top panel) and cross-validated log likelihood plot
(bottom panel) allowing seroconversion rates to vary at different age splits
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Figure S2: Seroprevalence estimates from the cross-sectional survey plotted at the mid-
point of age categories in Table 2 (points) and predicted prevalence from the reverse
catalytic model (line). The model fitted to the data allowed for different seroconversion
rates below and above age 8 (chosen through cross-validation). For ages < 8 years, the
seroconversion rate was 0.020 (0.006, 0.033) and the seroconversion rate for ages >8
years was 0.043 (0.034, 0.051). The model estimated a single seroreversion rate over the
entire population: 0.024 (0.005, 0.043).



R functions used for maximum likelihood estimation

R function for maximum likelihood estimation of a reversible catalytic model fit to

cross-sectional data, using an example from Williams [10].

Lceml <- function(theta,data) {
# theta : vector of length two, including h, r (parameters to be maximized)
# h = seroconversion rate, r = seroreversion rate

(to maximize over a single parameter, e.g. h, replace theta with

<- h/(r+h)*(1-exp(-(r+h) *t))

negative log likelihood function

# separate args for h and r and pass an r value to the function)
# data : data frame with columns = age / n / k

h <- rep(theta[l],nrow(data))

r <- rep(theta[2],nrow(data))

t <- datal,1]

n <- datal,2]

k <- datal,3]

P

#

sum( - (k)*log(p) - (n-k)*log(l-p) )

}

# data from Table 2 of Williams 1994

dog <- data.frame(
age=c(3.71,10.76,21.00,38.89,64.07,106.82),
n=c(100,74,114,110,55,27),

k=c(14,30,63,59,37,14)

)

# MLE solution

dogll <- optim(c(0.1,0.1),fn=Lccml,data=dog,hessian=TRUE)

R function for maximum likelihood estimation of a reversible catalytic model fit to

longitudinal data, following Annex 1 of Bekessy [1].



Lcem2 <- function(theta,data) {

# theta : vector of length two, including h, r (parameters to be maximized)

# h = seroconversion rate, r = seroreversion rate
# data : data frame with cols = interval of the period t to t+l1
# / status at time t / status at time t+1

h <- rep(theta[1l],nrow(data))

r <- rep(theta[2],nrow(data))

t <- datal,1]

St <- datal,2]

Stt <- datal,3]

Nn <- ifelse(St==0,1,0)

Nnp <- ifelse(St==0 & Stt==1,1,0)
Np <- ifelse(St==1,1,0)

Npn <- ifelse(St==1 & Stt==0,1,0)
ph <= h/(r+h)*(1-exp(-(r+h)*t))

pr <- r/(r+h)*(1-exp(-(r+h)*t))

# negative log likelihood function
sum( -(Npn)*log(pr) - (Np-Npn)*log(l-pr) - (Nnp)*log(ph) - (Nn-Nnp)*log(l-ph) )
}
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