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We present three sets of supplemental materials:

S1 Description of the experimental arrangement and sequences of images captured from video
recordings of the unloading of stretched bi-strips. Details are given in the figure captions.

S2 Details of the finite element simulations used to produce the simulation results presented in
the text.

S3 Full details of the Kirchhoff analysis as well as the stability and instability to perturbations
that leads to the analytical findings presented in the text.
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S1 Experimental loading arrangement, video sequences and phase
diagram obtained under non-rotating end conditions

Figure S1: Experimental configuration used to alter the force stretching the bi-strip while allow-
ing both ends of the bi-strip to freely rotate. The gravitational force on the weight attached to
the bottom of the bi-strip stretches it. The weight consists of a container filled with either water
or ball bearings. As the water or metal balls flow out of the container, the gravitational force
applied to the bi-strip through the nylon fiber gradually decreases. The same configuration,
with metal balls, was used to perform some experiments in water rather than in air to dampen
transients.
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Figure S2: Sequence of images as the stretching force applied to the ends of a bi-strip is slowly
reduced showing the formation of a hemihelix with eleven perversions. Width w=3mm, thickness
h=2.5mm, length L =50 cm, and χ = 1.5 (Video S1). The distance between the two ends of
the bi-strip indicated at the side of each image, decreases as the force is decreased. Perversions
appear to form immediately unloading commences and while their amplitude steadily increases,
their number remains unchanged.
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Figure S3: Similar images to those in figure S2 for a bistrip of the same dimensions except that
the thickness is h=8mm (Video S2). As the distance between the two ends decreases, the bi-strip
initially remains straight and flat but then a single perversion begins to form in the middle and
grows to separate two helices of opposite chirality.
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Figure S4: A sequence of images illustrating the formation of a simple helix upon unloading.
(Video S3). Images of the unloading of a similar strip as in figure S2 and S3 except the strip
had a greater thickness, h = 12 mm. At first, although the bi-strip rotates about its long axis,
it remains straight and flat. As the distance is decreased further, an initial twist develops near
the right-hand end, grows and then propagates along the bi-strip to form a simple helix.
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Figure S5: Phase diagram obtained when both ends of the bi-strip are clamped to prevent them
from rotating. Compared to the phase diagram when the ends are free to rotate, the main
difference is that helices do not form. Also, the number of perversions formed can be slightly
different. For example, for h/w = 2.67 and χ = 1.5 , there is only one perversion when the ends
can rotate but two perversions when they are clamped. The length, L, is 50 cm for each bi-strip.
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Figure S6: Images of the unloading of the same strip as in figure S4, but under a fixed boundary
condition at the left end and free to rotate at the right end end (Video S7). In the process of
forming a helix, a single perversion, marked by the arrow, begins to form but is then eliminated.
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S2 Finite Element Simulations

To study the formation of the helices and hemi-helices and the conditions under which they
form, the combination of twisting, compression and bending, together with the highly nonlinear
constitutive behavior of elastomer need to be included. To simulate this complicated behavior,
we first use finite element numerical simulations. Before describing these simulations in detail,
the constitutive behavior of the elastomer is presented.

S2.1 The material model

Uniaxial tensile stress-strain tests performed on the bulk material show that it exhibits a large
strain elastic behavior typical of elastomers with significant stiffening [1]. To capture the ob-
served deformation response we modeled the material as a hyper-elastic solid and computed the
stresses and elastic energies using the nearly-incompressible Gent model [10]. Here we briefly
review the mathematical description of the model as well as basic concepts in the theory of large
deformation.

Formally, we denote X as the position vector of a material point in the undeformed config-
uration. During deformation, the material point gains a new position, which is marked by x.
The mapping matrix F = ∂x/∂X, named the deformation gradient, therefore connects the un-
deformed and deformed states. The determinant of the matrix J = det(F) represents the local
volume change of the bulk material. For an isotropic hyperelastic material, the strain energy
density W , is a function of the invariants of the left Cauchy-Green tensor B = FFT :

W = W (I1, I2, I3), (S1)

where
I1 = tr(B), I2 = [(trB)2 − trB2], I3 = det(B) = J2. (S2)

Consequently, the Cauchy stress, a measure of the force acting on an element of area in the
deformed material, is given by:

σ =
2

J

∂W

∂I1
B +

∂W

∂J
I, (S3)

where I is the identity tensor.
Particularly, for the Gent model, the strain energy density is,

W = −µ
2
Jm ln

(
1− I1 − 3

Jm

)
− µ ln J +

(
K

2
− µ

Jm

)
(J − 1)2, (S4)

where µ and K are the initial shear and bulk moduli, respectively, and Jm is a parameter related
with the strain saturation. Eqn. (S3) then suggests the Cauchy stress is:

σ =
µJm

J(Jm − I1 + 3)
B− µ

J
I +

(
K − 2µ

Jm

)
(J − 1)I. (S5)

Additionally, we can obtain the nominal stress s = Jσ · F−T , which measures the force acting
on an element of area in the undeformed configuration,

s =
µJm

Jm − I1 + 3
F− µF−T +

(
K − 2µ

Jm

)
J(J − 1)F−T . (S6)

The parameters µ, K, and Jm are obtained by fitting to the experimental tensile load-displacement
curves, yielding values µ = 0.06MPa, K = 24MPa and Jm = 28.2 [1].
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To account for the prestrain ratio χ, we decompose the deformation gradient into a load-
induced part FL and a prestretch induced part FS following the multiplicative decomposition
method originally introduced by Kroner and Lee [11, 12],

F = FLFS , with FS = diag(χ+ 1, 1/
√
χ+ 1, 1/

√
χ+ 1). (S7)

S2.2 Numerical Analysis

The commercial FE software Abaqus FEA was used for the analysis, employing the the Abaqus/Explicit
solver. The material model was implemented into Abaqus/Explicit through user defined subrou-
tine VUMAT. Three-dimensional models are built using 3D linear reduced integration elements
(ABAQUS element type C3D8R). The accuracy of each mesh was ascertained through a mesh
refinement study. Thereafter, dynamic explicit simulations were performed and quasi-static con-
ditions were ensured by monitoring the kinetic energy and introducing a small damping factor.
The analyses were performed under force control.

S3 Analytical Model

S3.1 The Kirchhoff model

The Kirchhoff model provides a well-established framework to study the statics and dynamics
of elastic rods [13, 14]. In this section we introduce the basic notations, briefly review the
derivation of the Kirchhoff equations and finally summarize how the stability of a rod can be
investigated by studying perturbed states of the system.

S3.1.1 Kinematics

We consider an inextensible and unshearable rod in the 3D space [3, 7, 8], whose centerline is
described by a position vector x(s, t), where s is the arc-length and t is the time (see Fig. S7).
Note that due to the inextensible assumption, the total length L of the rod does not change
during deformation, so that s ∈ [0, L]. In addition, a local director basis

(d1, d2, d3) = (d1(s, t)), d2(s, t), d3(s, t)), (S8)

is associated to the rod and the vector d3 is identified as the unit tangent vector to the curve,

d3 ≡ x′, (S9)

where here and in what follows (·)′ = ∂(·)/∂s. Furthermore, d1 and d2 are two unit vectors
in the plane normal to d3, so that (d1, d2, d3) forms a right-handed triad (i.e. d2 = d3 × d1,
d1 = d2 × d3). For the sake of simplicity, d1 and d2 are chosen to lie along the principal axes
of inertia of the cross-section.

The condition of orthonormality implies the existence of a twist vector κ = κ1d1+κ2d2+κ3d3

satisfying
d′i = κ× di, i = 1, 2, 3, (S10)

so that
d′1 = −κ2d3 + κ3d2, d′2 = κ1d3 − κ3d1, d′3 = −κ1d2 + κ2d1. (S11)

κ1 and κ2 are called material curvatures and express how much the frame (d1, d2, d3) rotates
about the directions d1 and d2 of the cross section. In contrast, κ3 is called the twist density
and expresses how much the director frame rotates about the direction d3.
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Figure S7: The configuration of an elastic rod is represented by a curve x(s, t) and by a local
director basis (d1, d2, d3).

S3.1.2 Dynamics

In Kirchhoff’s theory of elastic rods all physically relevant stresses are considered as cross-
sectional averages at each point along the axis of the rod. Kirchhoff equations relate the resultant
force F and moment M acting on the cross section to the director basis.

Let p = p(s, X1, X2, t) be the Piola stress vector, where X1 and X2 are the coordinates
along the principal directions on the cross-section. The Piola stress vector p gives the density of
the elastic forces exerted on the material surface Ω(s) by the material on the side of increasing
s at the point with material coordinates (s, X1, X2). The resultant force acting on the cross
section Ω(s) is then given by

F = F(s, t) =

∫∫
Ω(s)

p dX1dX2. (S12)

Similarly, the resultant moment about x(s, t) of the stresses acting on Ω(s) is

M = M(s, t) =

∫∫
Ω(s)

r× p dX1dX2, (S13)

where the vector r is defined so that

y(s,X1, X2, t) = x(s, t) + r(s,X1, X2, t), (S14)

with y denoting the position vector of an arbitrary material point on the cross-section.
When no external forces/moments are applied, the balance laws for linear and angular mo-

mentum yield

dF

ds
=

∫∫
Ω(s)

ρ ÿ dX1dX2, (S15)

dM

ds
+

dx

ds
× F =

∫∫
Ω(s)

ρ r× ÿ dX1dX2,

where ˙(·) = ∂(·)/∂t and ρ is the density (mass per unit volume) that is taken to be constant
during deformation. Since for an unshearable rod (i.e. a rod for whose cross-section only
undergoes rigid body motion during deformation) the position of a material point y on the
cross-section is given by

y(s,X1, X2, t) = x(s, t) + r(s,X1, X2, t) = x(s, t) +X1d1(s, t) +X2d2(s, t), (S16)
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Eqns. (S15) become

F′ = ρA ẍ, (S17)

M′ + d3 × F = ρ
(
I2d1 × d̈1 + I1d2 × d̈2

)
, (S18)

where A is the cross-sectional area and I1 and I2 are the principal moments of inertial of the
cross section. Note that after differentiation with respect to s and use of Eqn. (S9), Eqn. (S17)
can be rewritten as

F′′ = ρA d̈3. (S19)

The Kirchhoff equations are then completed by the linear constitutive relation

M = E I1(κ1 − κ(u)
1 )d1 + E I2(κ2 − κ(u)

2 )d2 +GJ(κ3 − κ(u)
3 )d3, (S20)

where J is the torsion constant which depends on the cross sectional shape, E and G are the
Young’s and shear modulus of the material, respectively. Moreover, in Eqn. (S20) we have

introduced the intrinsic curvature κ(u) = κ
(u)
1 d1 + κ

(u)
2 d2 + κ

(u)
3 d3 to describe a rod which in

its unstressed state has a locally non-vanishing curvature. Finally, we note that the torsion
constant J is defined as

J =

∫∫
Ω(s)

(
X2

1 +X2
2 +X1

∂Φ

∂X2
−X2

∂Φ

∂X1

)
dX1dX2, (S21)

where Φ is the warping function for torsion given by the linear theory of elasticity. It has been
shown that for a rectangular cross-section, J can be well approximated by [4]

J ≈ ab3
(

1

3
− 0.21

b

a

(
1− b4

12a4

))
, (S22)

where a and b denote the length of the long and short side of the rectangular, respectively.

S3.1.3 Statics

If the system is in static equilibrium, the right-hand sides of eqns. (S17)–(S18) are zero, so that

F′ = 0, (S23)

M′ + d3 × F = 0.

Writing the resultant force as F = F1d1 + F2d2 + F3d3 and projecting Eqns. (S23) along the
director basis we obtain:

F ′1 − F2κ3 + F3κ2 = 0, (S24)

F ′2 − F3κ1 + F1κ3 = 0,

F ′3 − F1κ2 + F2κ1 = 0,

EI1κ
′
1 − EI2(κ2 − κ(u)

2 )κ3 +GJ(κ3 − κ(u)
3 )κ2 − F2 = 0,

EI2κ
′
2 −GJ(κ3 − κ(u)

3 )κ1 + EI1(κ1 − κ(u)
1 )κ3 + F1 = 0,

GJκ′3 − EI1(κ1 − κ(u)
1 )κ2 + EI2(κ2 − κ(u)

2 )κ1 = 0.
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S3.1.4 Stability

If the exact solution of the Kirchhoff equations is known, the stability of the configuration can
be investigated by studying perturbed states of the systems in a small neighborhood of the
reference solution [5, 6]. This can be systematically done by expanding the relevant variables
di and Fi as power series in a small parameter ε, which characterizes the distance from the
reference configuration,

di = d
(0)
i + εd

(1)
i + ε2 d

(2)
i + · · · i = 1, 2, 3, (S25)

Fi = F
(0)
i + ε F

(1)
i + ε2 F

(2)
i + · · · i = 1, 2, 3, (S26)

where d
(0)
i and F

(0)
i denote the reference (unperturbed) director basis and force components,

respectively. Since the orthonormality condition requires di · dj = δij , the perturbed basis d
(j)
i

can be expressed in terms of the unperturbed basis d
(0)
i as

d
(1)
i =

3∑
j=1

A
(1)
ij d

(0)
j , (S27)

d
(2)
i =

3∑
j=1

(A
(2)
ij + S

(2)
ij )d

(0)
j , (S28)

...

d
(n)
i =

3∑
j=1

(A
(n)
ij + S

(n)
ij )d

(0)
j , (S29)

where A(k) is an antisymmetric matrix

A(k) =

 0 α
(k)
3 −α(k)

2

−α(k)
3 0 α

(k)
1

α
(k)
2 −α(k)

1 0

 . (S30)

Furthermore, S(k) is a symmetric matrix whose entries are only a function of α
(j)
i with j < k.

In particular, S(2) can be obtained explicitly as

S(2) =
1

2

 −(α
(1)
2 )2 − (α

(1)
3 )2 α

(1)
1 α

(1)
2 α

(1)
1 α

(1)
3

α
(1)
1 α

(1)
2 −(α

(1)
3 )2 − (α

(1)
1 )2 α

(1)
2 α

(1)
3

α
(1)
1 α

(1)
3 α

(1)
2 α

(1)
3 −(α

(1)
1 )2 − (α

(1)
2 )2

 . (S31)

We also notice that the components of the twist vector κ = κ1d1 + κ2d2 + κ3d3 can be written
in terms of the perturbed variables as [9]:

K =

(
B K(0) +

∂B

∂s

)
B−1, (S32)

where

K =

 0 κ3 −κ2

−κ3 0 κ1

κ2 −κ1 0

 , K(0) =

 0 κ
(0)
3 −κ(0)

2

−κ(0)
3 0 κ

(0)
1

κ
(0)
2 −κ(0)

1 0

 , (S33)
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and
B = I + εA(1) + ε2

(
A(2) + S(2)

)
+ · · · (S34)

Substituting (S25) and (S26) into the governing equations (S18) and (S19), and defining the sta-

tionary configuration in terms of the six-dimensional vector µ(0) =
(
α

(0)
1 , α

(0)
2 , α

(0)
3 , F

(0)
1 , F

(0)
2 , F

(0)
3

)
,

the Kirchhoff equations to order k are obtained as

O(ε0) : E(µ(0)) = 0, (S35)

O(ε1) : L(µ(0)) · µ(1) = 0, (S36)

O(ε2) : L(µ(0)) · µ(2) = H2(µ(1)), (S37)

...

where µ(k) =
(
α

(k)
1 , α

(k)
2 , α

(k)
3 F

(k)
1 , F

(k)
2 , F

(k)
3

)
, E(µ(0)) = 0 describes the trivial static solution,

L(·) is a linear operator and H2(·) is a quadratic operator. It is worth noting that eqns. (S35),
(S36) and (S37) have to be solved sequentially.

Finally, we note that when µ(1) and µ(2) are known, the solution x = x(0) + εx(1) + ε2 x(2)

can be reconstructed as

x =

∫
d3ds =

∫ (
d

(0)
3 + εd

(1)
3 + ε2 d

(2)
3

)
ds. (S38)

In Section S3.2.3 we will show that all the 3D complex shapes observed during the release
process in our experiments can be captured conducing the stability analysis outlined above.

S3.2 Modeling of pre-strained elastomeric bi-strips

This study focuses on the investigation of the complex shapes that can be produced by a simple
generic process consisting of pre-straining one elastomeric strip, joining it side-by-side to another
and then releasing the bi-strip. To predict such shapes analytically, the pre-strained elastomeric
bi-strip is modeled as a rod with homogeneous rectangular cross section and intrinsic curvature,
so that its response can be described by Kirchhoff equations. In this section we first describe how
the intrinsic curvature of the equivalent rod can be obtained (Section S3.2.1), then investigate
two simple equilibrium solutions to the Kirchhoff equations (Section S3.2.2) and finally study
the stability of the rod (Section S3.2.3) and the mode selection process (Section S3.2.4) as the
tension is slowly released.

S3.2.1 Intrinsic curvature of the equivalent rod

In the physical system considered in this study we have two strips: one non-prestretched and
one prestretched. For the sake of clarity, in this section we use the subscripts a and b to denote
quantities related to the non-prestretched and prestretched strips, respectively. Note that La,
wa and ha correspond to L, w and h in the main text (which are the length, width and height,
respectively), while Lb, wb and hb are denoted as L′, w′ and h in the main document. The
two strips are different in initial length so that La 6= Lb. When the shorter strip is stretched
to the length of the longer one and bonded to it, it is expected that they together will curve
along the bonding layer and form an arc with angle θ and curvature K, as shown in Fig.
S8(a). Therefore, the bi-strip can be modeled as a rod with homogeneous cross-section, intrinsic

curvature (κ
(u)
1 , κ

(u)
2 , κ

(u)
3 ) = (K, 0, 0) and length L∗ = Rθ (see Fig. S8(b)), with R denoting the

radius from the center of the arc to the interface of the two bonded strips. Now we determine
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the curvature K and the length L∗ as functions of the dimensions and material properties of the
two strips.

Figure S8: (a) The pre-straining operation used to form the bi-strip. Strip b is stretched until
it has the same length as strip a. Then two strips are then glued together and curve along
the bonding layer, forming an arc with angle θ, curvature K and length L∗. (b) The bi-strip is

modeled as a rod with homogeneous cross-section, intrinsic curvature (κ
(u)
1 , κ

(u)
2 , κ

(u)
3 ) = (K, 0, 0)

and length L∗ = Rθ.

Let y denote the width coordinate with y = 0 at the interface of the two bonded strips.
According to the elastic beam theory and the assumption of pure bending, the longitudinal
strain ε at an arbitrary point on the cross section of the two strips is given by

ε =


(R+ y)θ − La

La
=
L∗ + yθ

La
− 1, y > 0 for strip a,

(R+ y)θ − Lb
Lb

=
L∗ + yθ

Lb
− 1, y < 0 for strip b.

(S39)

This deformation will result in a uniaxial state of stress, where only the normal stress σ along
the longitudinal direction is non-vanishing. Mechanical equilibrium requires that the net forces
and moments are zero, yielding∫

σdA =

∫ wa

0
σaha dy +

∫ 0

−wb

σbhb dy = 0, (S40)∫
σydA =

∫ wa

0
σay ha dy +

∫ 0

−wb

σby hb dy = 0,

which can be solved to obtain K and L∗. Finally, we note that since in our physical system
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ha = hb, Eqns. (S40) simplify to∫ wa

0
σa dy +

∫ 0

−wb

σb dy = 0, (S41)∫ wa

0
σay dy +

∫ 0

−wb

σby dy = 0.

Linear model. For a linear elastic material, the axial stress in the strips is given by

σ =


E

(
L∗ + yθ

La
− 1

)
, y > 0 for strip a

E

(
L∗ + yθ

Lb
− 1

)
, y < 0 for strip b

(S42)

Substitution of Eqns. (S42) into the equilibrium equations (S41) yields

∫ wa

0

(
L∗ + yθ

La
− 1

)
dy +

∫ 0

−wb

(
L∗ + yθ

Lb
− 1

)
dy = 0, (S43)∫ wa

0

(
L∗ + yθ

La
− 1

)
dy +

∫ 0

−wb

(
L∗ + yθ

Lb
− 1

)
dy = 0.

For the sake of simplicity, here we neglect the effect of the prestrain on the width of the
strips and assume wa = wb = w, so that Eqns. (S43) reduce to

L∗

(
2

La
+

2

Lb

)
+ θ

(
w

La
− w

Lb

)
− 4 = 0, (S44)

L∗

(
3

La
− 3

Lb

)
+ θ

(
2w

La
+

2w

Lb

)
= 0,

from which L∗, θ and K can be obtained as

L∗ = La
8 (2 + χ)

2 + 14χ+ (χ+ 1)2
, (S45)

θ =
La
w

12χ

2 + 14χ+ (χ+ 1)2
,

K =
1

w

12χ

8 (2 + χ)
.

where χ = La/Lb − 1 denotes the pre-strain.

Non-linear model. Following Huang et al. [1], we assume a fully incompressible elas-
tomer (i.e. det(F) = 1), so that the state of deformation in each strip is fully characterized
by

F = diag(λ, 1/
√
λ, 1/

√
λ), (S46)

where F is the deformation gradient and λ is the stretch

λ = ε+ 1 =


θ(R+ y)

La
=
L∗ + yθ

La
, y > 0 for strip a,

θ(R+ y)

Lb
=
L∗ + yθ

Lb
, y < 0 for strip b.

(S47)
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To capture the response of the elastomeric strips, we use the incompressible Gent model [10], so
that the uniaxial stress is given by

σ =

(
λ2 − 1

λ

)
µJm

Jm − I1 + 3
, (S48)

where µ = E/3 is the initial shear modulus, Jm is a constant related to the strain saturation of
the material and I1 = λ2 + 2/λ. Moreover, the width of each strip entering the evaluation of
the integrals in Eqns. (S40) is calculated using the longitudinal stretch at the mid-plane in the
current state,

wa =
w√

λa(y = wa/2)
, wb =

w√
λb(y = −wb/2)

. (S49)

Unlike the linear model, Eqns. (S40), (S48) and (S49) cannot be solved analytically, so the
trust-region-dogleg algorithm within Matlab software is used to solve numerically for K and L∗.

Results. We consider a bi-strip characterized by w = 3mm and La = 500mm. In Fig.
S9 we report the evolution of K and L∗ as a function of the pre-strain χ for both the linear
and non-linear model. The results show a good agreement between the two models. Therefore,
for the sake of simplicity the linear model will be used in the stability analysis described in the
following sections.

Figure S9: The curvature K and the length L∗ as a function of the prestrain (χ = La/Lb−1) for
a bi-strip with h=3mm, w=3mm, La = 500mm. The continuous blue line and the red markers
correspond to the predictions from the linear and non-linear model, respectively.

S3.2.2 Equilibrium configurations of the equivalent rod

We now seek solutions of the static equilibrium equations (S24) for the equivalent rod with
homogeneous rectangular cross section with edges 2w and h, length L∗ and intrinsic curvature
K given by (S45). Our starting point is the fully stretched state obtained by applying the tensile
force P . Here, we first show that both the straight and helical configurations are equilibrium
configurations for the system and then demonstrate that for large values of applied tension P
the straight configuration is energetically favorable, while below a critical tensile force Pcr, the
helical configuration grows.
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Straight configuration A straight configuration (without twist) is characterized by,

d1 = e1, d2 = e2, d3 = e3, (S50)

so that
κ1 = κ2 = κ3 = 0, (S51)

where ei is the basis director of the global coordinate system. Substitution of Eqns. (S50) and
(S51) into the static equilibrium equations (S24) yields

F ′3 = 0, F1 = F2 = 0. (S52)

Therefore, the rod is subjected to a uniform internal force F = P d3, where P represents the
loading parameter during the releasing process. Moreover, the constitutive relation (S20) implies
that

M = −E I1Kd1. (S53)

Conclusively, a straight rod with internal force F = P d3 and moment M = −E I1Kd1 is an
equilibrium state. As a result, the energy density (total energy per length) of the straight
configuration is given by

E =
1

2
EI1K

2 − P. (S54)

Helical configuration An helical configuration with curvature κ and torsion τ is defined by
the position vector

x =
κ

γ2
sin(γs)e1 +

κ

γ2
(cos(γs)− 1) e2 +

τ

γ
s e3, (S55)

where γ =
√
τ2 + κ2. If the helix is untwisted 1, the director basis can be calculated as

d3 = x′ =
κ

γ
cos(γs)e1 −

κ

γ
sin(γs)e2 +

τ

γ
e3, (S56)

d2 =
d′3
‖d′3‖

= − sin(γs)e1 − cos(γs)e2, (S57)

d1 = d2 × d3 = −τ
γ

cos(γs)e1 +
τ

γ
sin(γs)e2 +

κ

γ
e3, (S58)

so that the curvature κ is given by
κ = κd1 + τd3. (S59)

Substitution of Eqns. (S59) into the equilibrium equations (S24) yields

F2 = 0, F ′1 = F ′3 = 0, −F3κ+ F1τ = 0, (S60)

−GJτκ+ EI1(κ−K)τ + F1 = 0. (S61)

Therefore, the force F in the global coordinates can be written as

F = F1d1 + F2d2 + F3d3 =
F1κ+ F3τ

γ
e3 = Pe3, (S62)

indicating that there are no forces acting in the directions spanned by e1 and e2. This is
consistent with the experimental setup, where only a tensile force in the longitudinal direction

1It has been proved that only untwisted helix can satisfy the equilibrium equations [2].
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spanned by e3 is applied. Moreover, Eqns. (S60)-(S62) indicate that in an equilibrated helix
the values of torsion τ , curvature κ and applied force P are related through

−GJτκ+ EI1(κ−K)τ +
κ

γ
P = 0. (S63)

Therefore, a helical rod satisfying Eqn. (S63) is also an equilibrium configuration. It is important
to note that since in our physical experiments we only control the applied force P , Eqn. (S63) is
not sufficient to determine the curvature κ and torsion τ characterizing the helical configuration.
To evaluate the evolution of κ and τ as a function of the applied force P, we minimize the total
energy (density) of the helix

E = Eb + Eτ + Up, (S64)

where Eb, Eτ and Up are the bending energy, twisting energy and force potential, respectively:

Eb =
1

2
EI1 (κ−K)2 , (S65)

Eτ =
1

2
GJτ2, (S66)

Up = − P
L∗

τ L∗
γ

, (S67)

with τ L∗/γ being the end-to-end distance of the helix. The energy minimization criterion
requires that

∂E
∂κ

= 0 : EI1(κ−K) + P
κτ

γ3
= 0, (S68)

∂E
∂τ

= 0 : GJτ − P κ
2

γ3
= 0, (S69)

which can be solved to obtain κ and τ as a function of the applied force P . Eliminating P from
Eqns. (S68) and (S69), we have

EI1(κ−K)κ+GJτ2 = 0, (S70)

from which we can calculate κ as

κ =
1

2
(K −Q) , with Q =

√
K2 − 4GJτ2

EI1
. (S71)

Substitution of Eqn. (S71) into Eqn. (S68) yields

1

2
EI1 (−K +Q) +

Pτ (K +Q)

2

(
τ2 +

1

4
(K +Q)2

)3/2
= 0, (S72)

which can be solved numerically to obtain the curvature κ as a function of P .
Note that the constitutive equation (S20) indicates that a stable helix is subjected to a

twisting moment GJτ and a bending moment EI1(κ − K), which are not controlled in our
experiments. In fact, since experimentally both ends are free to rotate, the twisting moment
cannot be supported by our samples 2. Furthermore, we note that in a perfect helix the ends of

2Note that the bending moment is approximately supported by the non-uniform stress distribution in the
bi-strip system.
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the rod are not aligned. Such misalignment cannot be supported by our physical samples during
the releasing process, since the gravity acts against it (see the experimental section for more
details). Therefore, during the growth of the helix a transition region dominated by boundary
effects near the strip ends may form and non-negligible dynamic effects may arise. Nonetheless,
our experiments show that the transitional region near the ends is very short. Moreover, since the
releasing process is slow, no significant dynamics effects are observed, so that Eqns. (S71)-(S72)
can be used to describe the response of our system with good accuracy.

Transition from straight to helical configurations Although both straight and helical
configurations represent equilibrium states for the equivalent rod, our experimental observations
suggest that for large values of the applied force P the straight configuration is stable. However,
when the applied force P is gradually released, the rod (a thick one) is found to evolve from a
straight to a helical configuration.

Interestingly, we note that for large values of the applied force P , Eqn. (S72) does not
admit a real, positive solution κ. Therefore, for large values of P helical configurations are not
supported by the rod. However, a critical value of the applied force Pcr can be identified for
which Eqn. (S72) starts to admit a real and positive solution κ. Hence, for P < Pcr helical
configurations are expected to emerge. The critical force Pcr can be obtained by taking the limit
κ→ 0 in Eqn. (S72),

Pcr =
(EI1K)2

GJ
. (S73)

Finally, to further highlight the transition from straight to helical configurations, we compare
the energies of both states as a function of the applied force P . The results reported in Fig. S10
clearly show that when P < Pcr the helix has lower energy than the straight configuration.

Figure S10: Left: Curvature κ and torsion τ as a function of the applied force P for a bi-strip
with χ = 1.5, h = 6mm, w = 3mm, La = 500mm. Note that these parameters result in a rod
with K = 0.2143mm−1 and L∗ = 331.4mm. Right: Energy density difference Estraight − Ehelix
as a function of the applied force P for the straight and helical configurations. In both plots the
vertical dashed line correspond to Pcr.

S3.2.3 Stability of the equivalent rod

In the section above, we have proved that as the applied force P is gradually released at a
critical point the straight configuration becomes unstable and the rod assumes an helical shape.
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However, in the experiments during the release process we observe the formation not only of
helices, but also of hemihelices with multiple reversal of chirality. Here, we show that all these
complex 3D shapes can be captured conducting the general stability analysis described in Section
S3.1.4. Interestingly, the analysis reveals that the helical transition studied in Section S3.2.2
can be recovered as a special case of the bifurcation branches obtained by this general stability
analysis.

To understand and analyze the complex shapes observed during the release process in the
pre-strained bi-strip, we start by considering a straight rod under tension, so that F = P d3.
The rod has an homogeneous rectangular cross section with edges 2w and h and is characterized
by a length L∗ and intrinsic curvature K given by (S45). In Section S3.2.2 we have shown that
the straight configuration characterized by

(κ
(0)
1 , κ

(0)
2 , κ

(0)
3 ) = (0, 0, 0), (F

(0)
1 , F

(0)
2 , F

(0)
3 ) = (0, 0, P ), (κ

(u)
1 , κ

(u)
2 , κ

(u)
3 ) = (K, 0, 0), (S74)

identically satisfies the equilibrium equations (S24). However, the experiments show that a
critical tension exists for which the straight filament loses its stability and bifurcate into new
solutions. To capture the bifurcation, we focus on the first order equilibrium equations (S36)
and express the solution µ(1) as

µ(1) = c exp(iωns), (S75)

where c is the amplitude vector and ωn = nπ/L∗ is the angular frequency of the corresponding
mode. Substituting Eqns. (S74) and (S86) into (S36), the first order equilibrium equations can
be rewritten as

L c = 0, (S76)

where L is given by

L =



0 −Pω2
n 0 −ω2

n 0 0
Pω2

n 0 0 0 −ω2
n 0

0 0 0 0 0 −ω2
n

−I1Eω
2
n 0 0 0 −1 0

0 −I2Eω
2
n −iEI1Kωn 1 0 0

0 iEI1Kωn −GJω2
n 0 0 0

 . (S77)

Note that L not only depends on the material properties, but also on the applied force P . In
general, for large values of P the matrix L is non-singular, so that only the trivial straight
solution (i.e. c=0) exists. However, during the release process non-trivial solutions for µ(1) are
supported when

det(L) = −ω2
n

[
ω2
n

(
P + (Eω2

n)I1

)] [
GJω4

n

(
P + Eω2

nI2

)
− E2ω4

nI
2
1K

2
]

= 0. (S78)

Therefore, the critical value of the applied force Pcr is obtained as

Pcr =
(EI1K)2

GJ
− EI2ω

2
n =

(EI1K)2

GJ
− EI2

n2π2

L2
∗
. (S79)

Next, we construct the solution corresponding to different modes. First, we use Eqn. (S87)
to calculate the eigenvector c corresponding to a given pair (Pcr, ωn). Then, we substitute the
solution Eqn. (S75) in Eqn. (S38) to determine the mode shape up to the first order. Moreover,
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to obtain the mode shape more accurately, we solve the second order equilibrium equations
(S37), where

H2 = exp(2iωns) ·

−2(Pc1c3 − 2c3c5 + 2c2c6)ω2
n

−2(Pc2c3 + 2c3c4 − 2c1c6)ω2
n

2
[
P (c2

1 + c2
2) + 2c2c4 − 2c1c5

]
ω2
n

iEI1Kc
2
2ωn + iEI1Kc

2
3ωn − c3[c4 + 2c2(−EI2 +GJ)ω2

n]
−iEI1Kc1c2ωn − c3

[
c5 − 2c1(−EI1 +GJ)ω2

n

]
c2c5 + c1

[
c4 − 2I2c2Eω

2
n + I1(−iEKc3ωn + 2Ec2ω

2
n)
]

 , (S80)

ci being the i-th component of the vector c determined from the first order equilibrium. The
solution µ(2) can be obtained as

µ(2) = L−1 ·H2, (S81)

and used to determine the director basis di up to the second order. Finally, the position vector
for each bifurcation mode is obtained using Eqn. (S38) as

x =



−GJXn sin(ωns)

EI1K

G2J2(2EI1 + EI2 −GJ)X2
nω

2
n(cos(2ωns)− 1)

2E3I3
1K

3 + 2E2GI1(4I1 − I2)JKω2
n

s− G2J2X2
nωn sin(2ωns)

4E2I2
1K

2


, (S82)

where Xn is the mode amplitude. In Fig. S11 we report the shapes of modes characterized by
n = 1, 4, 7. The modes clearly resemble the 3D curls (hemi-helices) observed in the experiments
and consist of multiple, periodic and alternating helical sections of opposite chiralities, separated
by perversions. The first mode is characterized by two regions of opposite chiralities with one
perversion, the second mode consists of a sequence of three regions of opposite chiralities and two
perversions, the third mode consists of four regions of opposite chirality with three perversions
and so on with the number of perversions monotonically increasing linearly with the mode
number.

Figure S11: Reconstructions of modes characterized by n = 1, 4, 7.
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The special case of the helix Experimental observations clearly show that for thick strips,
helices and not hemihelices form during release. Here, we show that at the bifurcation onset the
helix can be recovered as a special case of the hemi-helix.

In fact, at the onset of bifurcation the magnitude of both the curvature and the torsion of the
helix is small, so that κ � 1 and τ � 1. Substituting Eqn. (S71) into Eqns. (S55), expanding
the nonlinear terms in Taylor series and retaining only first order terms, the position vector of
the helix can be written as

x1 =
κ

γ2
sin(γs) ∼ GJ

EI1K
τs+O(τ3) (S83)

x2 =
κ

γ2
(cos(γs)− 1) ∼ O(τ2)

x3 =
τ

γ
s ∼ s+O(τ2)

On the other hand, if we assume that ωn = nπ/L∗ � 1 in Eqns. (S82), expand the nonlinear
terms in Taylor series and retain only first order terms, the position vector of the hemihelix can
be expressed as

x1 = −GJXn sin(ωns)

EI1K
∼ − GJ

EI1K
Xnωns+O(ω3

n) (S84)

x2 =
G2J2(2EI1 + EI2 −GJ)X2

nω
2
n(cos(2ωns)− 1)

2E3I3
1K

3 + 2E2GI1(4I1 − I2)JKω2
n

∼ O(ω2
n)

x3 = s− G2J2X2
nωn sin(2ωns)

4E2I2
1K

2
∼ s+O(ω2

n)

It is easy to see that Eqns. (S83) and (S84) coincide if τ = −Xnωn. Therefore, our analysis
reveals that at the onset of bifurcation the helix can be described as an hemihelix characterized
by small mode number n.

This can be further illustrated by directly comparing the mode shapes obtained using Eqns.
(S82) for different values of n, as shown in Fig. S12. Since an hemi-helix consists of helical
sections of opposite chiralities separated by perversions, if n < 1 the perversion lies outside the
strip and the rod deforms into a single helical segment. Therefore, we expect to observe the
formation of helices during the release process if n < 1.

Figure S12: Reconstructions of modes characterized by n = 1, 0.5, 0.25. Note that for case
n = 1, the reconstruction shows the segment between the perversions, so that the perversion
lies at each end of the strip.

Finally, by taking the limit for ωn → 0 in Eqn. (S79) we obtain

Pcr =
(EI1K)2

GJ
, (S85)
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which coincides with the critical force previously calculated for an helix (see Eqn. (S73)). This
further confirms the close relationship between hemi-helices and helices.

S3.2.4 Mode selection

The stability analysis conducted in the previous section shows when P ≤ Pcr the straight
configuration is unstable and the rod assumes a 3D shape. In Fig. S13 we report the evolution
of Pcr as a function of the dimensionless cross-sectional parameter h/w for different modes (i.e.
different values of n).

Figure S13: Critical load Pcr as a function of the cross-sectional aspect ratio h/w for different
mode numbers n. A bi-strip characterize by w = 3mm, χ = 1.5 and L = 500mm is considered.

The results clearly show that the mode characterized by n = 1 is always the first to be
excited. However, it is important to note that for low values of h/w the modes are closely
spaced, while as h/w increases, the critical values for different modes become more and more
separated. Therefore, for a thick strip low number modes are more likely to dominate, since
they may evolve before higher number modes are triggered. Differently, for low values of h/w
we do not expect to necessarily observe the mode with n = 1, but that which grows faster than
the others.

Here, to determine the mode selected by the rod with a simple analysis, we assume that
the fastest growing mode at the onset of the instability is the one that dominates. Although
this approach neglects the contribution of geometric non-linearities and the possible interactions
between different modes, it has already been successfully used to determine the mode selected
by rods in a variety of contexts [5, 15, 16, 17, 18]. Moreover, we will show that the predictions
obtained using this simple analysis nicely agree with both our experimental and numerical
results.

Therefore, to determine the mode selected by the rod we focus on the first order equilibrium
equations (S36) and express the solution µ(1) as

µ(1) = c exp(σt+ iωns), (S86)

where σ is the growth rate of the bifurcation mode. Substituting Eqns. (S74) and (S86) into
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(S36), the first order equilibrium equations can be rewritten as

L c = 0, (S87)

where L is given by

L =



0 −Aρσ2 − Pω2
n 0 −ω2

n 0 0
Aρσ2 + Pω2

n 0 0 0 −ω2
n 0

0 0 0 0 0 −ω2
n

−I1(ρσ2 + Eω2
n) 0 0 0 −1 0

0 −I2(ρσ2 + Eω2
n) −iEI1Kωn 1 0 0

0 iEI1Kωn −(I1 + I2)ρσ2 −GJω2
n 0 0 0

 .

(S88)
During the release process non-trivial solutions for µ(1) are supported when

∆(σ, ωn) = det(L) = −ω2
n

(
ρσ2A+ ω2

n

(
P + (ρσ2 + Eω2

n)I1

))
· (S89)((

ρσ2I1 + ρσ2I2 +GJω2
n

) (
ρσ2A+ ω2

n

(
P + (ρσ2 + Eω2

n)I2

))
− E2ω4

nI
2
1K

2
)

= 0.

Therefore, to determine the mode selected by the rod we calculate the growth rate σ by
solving equation (S89) for a given value of P and ωn. When P < Pcr solutions with positive real
values of σ are found, identifying perturbations that grow exponentially with time. These modes
are the solutions that grow exponentially from small perturbations and are those observed in
experiments. Intuitively, as a consequence of their exponential growth, we expect the modes
with the highest growth rate σ to dominate the morphological evolution. In contrast, for P > Pcr
solutions with imaginary or negative σ are obtained; these will be of the order of the perturbation
itself, cannot grow and hence will not be observed. Finally, when P = Pcr we find that σ = 0
and the solution reduces to that considered in the stability analysis in Section S3.2.3.

In Fig. S14 we report the growth rate as a function of the mode number n for strips with
different aspect ratio h/w. The results clearly show that the fastest growing mode in a thick
strip with h/w = 2 is characterized by n = 3. Differently, for a thin strip with h/w = 1 the
mode with n = 9 is the fastest to evolve and is expected to dominate. These observations nicely
agree with the experimental results reported in Fig. 3 in the main text, where it is clearly shown
that the mode number monotonically decreases as a function of h/w.

S3.2.5 Results and discussion

The analyses conducted in the previous sections show that during the release process a critical
value of applied force Pcr exists below which the straight configuration is unstable. For P < Pcr
the analysis predicts the formation of hemi-helices consisting of helical sections of opposite
chiralities separated by perversions. To determine the number n of perversions that form in
the rod, the growth rate σ for different modes can be calculated and compared. The mode
characterized by the highest growth rate σ is expected to grow faster and to dominate.

We perform a series of stability analyses on rods characterized by different values of prestrain
χ and cross-sectional aspect ratio h/w and find the mode n that has the maximum growth rate
σ. The results are reported in Fig. S15 as contour map. The color in the contour plot represents
the associated value of n for which the growth rate is maximum and therefore correspond to the
number of perversions np we expect to observe in the system. This parametric study reveals
that the number of perversions in the rod after bifurcation is only moderately affected by the
pre-strain χ, while the aspect ratio h/w is found to have a significant effect. In thin strips with
h/w ' 1 the formation of 10 perversions is observed. The number of perversions np is then

S24



Figure S14: Growth rate σ as a function of the mode number n for three different strips charac-
terized by h/w = 1, 1.5, 2, w = 3mm , χ = 1.5 and L = 500mm. The growth rate is determined
for an applied force P = 0.981Pcr.

found to monotonically decrease as a function of h/w. In particular, the dashed red line in the
plot marks the configurations for which np = 1. As highlighted in the previous section, if np < 1
the perversion lies outside the rod, so that the system deforms into a single helical segment and
the formation of helices is expected during the release process. Therefore, the red line defines
the boundary between hemi-helices and helices. It is worth noting that, since the growth rate σ
depends also on the applied force P , the number of perversions predicted by the analysis is also
a function of P . To clarify this aspect in Fig. S16 we report the contour map for np calculated
for different values of P . Although the value of P is found to slightly alter np and therefore to
shift the phase boundary between hemihelices and helices, all the contour maps share the same
key features.

In conclusion, the results of our analysis not only enable us to explain the evolution of the
number of perversions as a function of χ and h/w observed experimentally in the bi-strip, but
also, and most importantly, capture the transition from hemihelices to helices.
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Figure S15: Contour plots showing the value of n for which the growth rate is maximum as
function to χ and h/w. The growth rates are calculated for P = 0.986Pcr. Black dotted lines
show the boundaries between modes with different number of perversions np, while the red
dashed line corresponds to np = 1 and separates hemi-helices (to its left) from helices (to its
right).

Figure S16: Contour plots showing the values of np for different values of applied force,
P = 0.981Pcr and P = 0.976Pcr. P is found to slightly alter the boundaries between modes char-
acterized by different values of np and therefore to shift the phase boundary between hemihelices
and helices. However, all the contour maps show the same key features.
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