Text S1 - A Problem Solver Interface

We use a general interface for iterative problem solvers, also called solvers in the following. It allows
a unified handling of algorithms that can be composed as described in the next section. The interface
comprises two basic methods: the method init is responsible for initializing the problem solver, i.e.,
setting it up for the problem solving process. The method solve realizes the problem solving process
itself. It is detailed in the following.

As explained in the introduction, problem solving in simulation experiments usually follows a general
scheme that is based on a simple input/output behavior. An example for this is a steady state estimator,
which estimates a steady state statistic (e.g., mean) of a given time series. The input is the information
obtained about the problem so far, e.g., the available data points of a time series that have been generated
by executing simulation steps. The output is the result produced by the problem solver when applied on
the received input, e.g., the estimated steady state statistic produced by a steady state estimator.

This input/output behavior is mirrored in the solve function’s signature, which, given a problem space
P (e.g., the set of possible time series) and a set of possible results RES (e.g., the possible estimated
steady states), could be described by:

solve : P — RES (1)

This signature, however, does not incorporate iterated problem solving that is necessary in cases
where not all required information about the problem might be initially available. In these cases, problem
solvers need the ability to request further information to handle the problem in additional iterations®.
For instance, in steady state estimation, the time series is generated iteratively by a simulation algorithm.
If the length of the time series is not sufficient for a confident estimation, more time points have to be
generated to produce additional data for the estimator, and the estimation has to be repeated.

We use a request-answer scheme, for enabling problem solvers to request for additional data. A
problem solver can formulate a request from the set of possible requests REQ (in the steady state
estimation case, requests for additional time points of the time series).

To consider problem iterations, instead of static problems, a problem solver may need a state for
storing (partial) results of previous iterations, e.g., many steady state estimators keep track of previous
results to avoid recalculations. The state of the previous iteration can be considered as input, and the
resulting state of the current iteration as output. Consequently, the state includes all information that
have to be available for the problem solver: algorithm state information (AS) comprising all relevant
information for the next iteration, result information (RES) representing the solution of the current
iteration, and request information (REQ) representing additional data required for the next iteration.
The set of problem solver states S can, thus, be defined as:

S = {(as, res,req)|as € AS,
res € RES,req € REQ}, (2)

All in all, given a set of problem solver states S, the solve function of an iterated problem solver P.S
has the following signature:

solve : Py x S — S (3)

Iterated problems from P include the initial problem description, and a request-answer history H €
H. The history is a sequence H = hy, ..., h, with h; € (REQ, ANS), i.e., it holds issued requests from
REQ and corresponding answers from the set of possible answers AN.S comprising additional information
about the problem. The set of iterated problems P;; is defined by:

P;; =P x H, (4)

1Problem solvers that do not work iteratively can be treated as iterative problem solvers needing only one iteration.

To generate answers for requests, an answer function 7 is applied:
n: REQ — ANS (5)

The answer function is not part of the problem solver itself, but rather a part of the problem description
and consequently depends on the kind of problem to be solved. For instance, the data points of the prob-
lem time series of a steady state estimation are usually generated by simulation, making the simulation
engine the answer function.

Managing the problem solving process To solve a problem effectively, requests as well as answers
have to be integrated in the problem definition in each iteration. To make that happen, a management
component (e.g., a predefined workflow) is necessary that interacts with the interface of the problem solver
PS and the answer function 7. Figure S1 shows a sequence diagram for all three components when solving

Problem Solver PS
T

Problem Solver Management Answer Function n
: init() i i

U initial state s°
__ 9

solve(p;”, s°)

U problem solver state s’
__ 9

init()

problem iteration pi‘°

> finished(s") == false

getAnswer(s'.req)

problem iteration
> pi' = updateHistory(py,
1
solve(pi‘l, &) s".request, ans)

U problem solver state s’
__ 9

Figure S1. Sequence diagram depicting the iterated communication between answer function
(Equation 5), e.g., representing simulator, and a problem solver, e.g., steady state estimator. The
communication is controlled by a managing component that is also responsible for updating the
problem description p € Py;.

a problem p € Py, iteratively. During the initialization of the problem solver PS, an initial state sy € S is
generated. Similarly, the representation of the first problem iteration, p%, € P;;, only includes the problem
itself and an empty request history; it is created by initializing the answer function 7. Figure S2 depicts a

Answer ans Iterated Problem p;,

initial | answer to
Simulator | request

(answer function n)

Steady State
Estimator —
(problem solver PS)

A 2

output
State of the Steady
State Estimator
(problem solver
t state s) Steady State

—result Mean

Figure S2. Example scheme for managing the communication between a simulator producing time
series for a steady state estimator. The steady state estimator works on its previous state and a time
series, generated by the simulator, as input. After each estimation iteration, the estimator returns its
state, comprising a request for the simulator, which executes the next simulation steps. Thereby, a new
segment of the time series is generated and added to the problem time series, which is used in the next
estimation iteration.

steady state estimation example, where the initial problem is a time series. With both elements, problem
solver state sp and problem iteration pg, the solve method (Equation 3) of the problem solver is called.
It returns a successor state holding the request for getting additional information about the problem,
e.g., in steady state estimation, this would be a boolean value denoting that additional data points of the
time series are required. Afterwards, the answer function 7 (Equation 5) is called by the management
component. The resulting answer (an additional segment of the time series in the steady state estimation
example) in combination with the request is added to the request history of the problem, leading to a new
problem iteration, which now includes the initial problem description and a request history comprising the
first request-answer pair. After each iteration, the management component calls the method finished
to check whether a final problem solver state is reached. This function highly depends on the problem
at hand, e.g., if the problem is a time series where the steady state shall be estimated, finished would
return true, as soon as an estimate can be given, whereas in optimization the problem solving is usually
finished when given cancel criteria are met. The whole process is repeated until finished returns true.

Text S2 - Base-Line Steady State Estimator Results on the Train-
ing Data

Figure S3 shows the performance results of the investigated steady state estimators applied on the problem
data described in Section 5.1.5. Performance measures include the mean deviations between estimated
and real steady state, as well as the success rates, i.e., the ratio between successful detections of the
time series warm-up phases and overall estimator applications. It is visible that the used steady state
estimators behave differently. The goodness of fit steady state estimator has by far the best deviation
of less than 0.002, but also the worst success rate with 0.5. The good accuracy of this estimator might
result from the rare cases where it finds the warm-up phase’s end (which might be more easy to handle).
This explanation is supported by the fact that the cases where this estimator is unsuccessful are all false
negatives.

The stop crossing and batch means estimators seem to have an opposite behavior. Both produce false
positives in cases where they are unsuccessful in finding the end of the warm-up phase. However, the

) W False Positives W False Negatives Success
1.0
18 09 I
16 0.8
i 07
® 12 0.6
2 °
a8t 505
©
Fo8 04
206 03
0.4 0.2
0.2 0.1
0 0.0 7 — 7 | E— — -
S & & ® B N eé‘ R (.1\(\% RIS & &S o8 oé <® o
& N3 &Y &S S & < SR S &S & &
29 <« & R o < o <« o C
Steady State Estimators Steady State Estimators

Figure S3. Mean deviation and success rate of the tested steady state estimators applied on problem
data.

success rate of more than 0.5 indicates that they do not always find an end of the warm-up phase and
that they are very reliable in these cases. This could be an important feature to consider for composition.

Schruben’s steady state estimator has the best success rate (0.78) of all tested estimators and the
second best deviation (0.43) The remaining steady state estimators represent different trade-offs between
success rate and deviation.

Altogether, the ability of detecting the end of the warm-up phase seems to have an impact on the
quality of steady state mean estimates.

Furthermore, different features of time series influence the performance of steady state estimators,
as the following examination of estimators performance on trajectories with different induced noises
illustrates. Figure S4 shows the results of the steady state estimators on time series with 0 and 10
percent noise. For the MSER steady state mean estimator, the fact whether noise exists at all, has a
high impact on the estimation results. This is visible at the mean deviation (between estimated and real
steady state) being much higher on time series without noise than with noise (independently from the
concrete amount of noise). Furthermore, if noise exists, the MSER estimator has a much better success
rate and does not produce false any negatives. With respect to success rates, this estimator is the most
reliable of the tested estimators, when working on time series that comprise noise. Only the euclidean
distance estimator is slightly better (< 3 percent) on time series with a noise of 5 percent, however it
performs worse as the noise is increased. Similar to the MSER estimator, the crossing mean estimator
performs better with noise than without noise, as its success rate rises from 0.33 without noise to above
0.65 if noise exists in the time series.

In contrast to MSER and crossing mean estimator, the goodness of fit estimator performs better
without noise than with noise. It has a success rate of 1.0 on time series without noise and does not find
any steady state in time series where noise exists (unsuccessful cases are always false negatives).

The performance of Schruben’s estimator depends on the noise, as its mean deviation between esti-
mated steady state mean and real steady state rises with the noise level in the time series it is applied
to.

All in all, the amount of noise seems to be an interesting feature for finding the most suitable steady
state estimator. For instance, if no noise can be found it might be reasonable to use the goodness of
fit estimator to find the end of the warm-up phase. With low amounts of noise (around 5 percent) the
euclidean distance estimator should be used, while MSER could be a good choice with higher amounts of
noise. However, noise needs to be measured properly to make such decisions. This can be challenging, if
the noise cannot be derived from the time series generator, which is the case in most real-world scenarios.

Noise 0 Percent

Noise 0 Percent

35 ™ False Positives o False Negatives Success
’ =
53 |
=]
i, -
i |
IR g |
s 1 ||
0s | =
0 [|
& SR & S & S R
Q;b‘s. ‘:)oz d\\c K & &0 3 & é}e & s & o‘;}o
A RS S 5 S
Steady State Estimators Steady State Estimators
Noise 10 Percent Noise 10 Percent
2 M False Positives M False Negatives W Success
1.8
16
§ 14
&12 g
g1 g
£08 - 2 «
@
206 -
0.4 -
0.2 +
0!
& Q& > o &
& & & & & S Ql\'\& o‘;}&
s Y& PR EEMNe

Steady State Estimators

Steady State Estimators

Figure S4. Mean deviation and success rates of the tested steady state estimators applied on time

series with different amounts of noise.

Table S1 - Steady State Estimator Evaluation Results on Simu-

lation Data

MgCI2 NaCI kNa2Cl
Steady State Estimator | Deviation | Chunks | Deviation | Chunks | Deviation | Chunks
Batch Means 0.16678 -2.23 0.04820 1.25 0.05450 -0.91
Schruben’s Test 0.04095 1.11 0.03342 2.74 0.04798 -0.75
Moving Windows 0.00434 3.48 0.01112 3.93 0.01301 3.35
Running Mean NaN 10 0.05253 1.85 0.06355 2.94
MSER 0.30774 -3.82 0.06069 0.68 0.08334 -1.72
Euclidean Distance 0.46379 6.7 NaN 10 NaN 10
Balancing Mean 0.23564 -3 0.03673 1.92 0.06023 -0.97
Goodness of Fit 0.13081 1.3 NaN 10 0.09618 5.88
Stop Crossing Mean 0.07449 9.96 NaN 10 NaN 10
Crossing Mean NaN 10 NaN 10 NaN 10
Synthetic 0.00280 2.62 0.00711 2.43 0.01014 1.55
HC1 Mapk TCR
Steady State Estimator | Deviation | Chunks | Deviation Chunks Deviation | Chunks
Batch Means 0.00006 0.03 0.04565 -2 0.27655 3
Schruben’s Test 0.00382 0.99 0.05388 -2.03 0.94547 -1
Moving Windows 0.00232 3 0.03451 -1.28 NaN 10
Running Mean 0.00447 -0.05 NaN 10 NaN 10
MSER 0.00025 0.07 0.04711 -1.7 0.94547 -1
Euclidean Distance NaN 10 NaN 10 NaN 10
Balancing Mean 0.00206 0.15 0.08645 -2.18 NaN 10
Goodness of Fit NaN 10 0.31742 9.74 NaN 10
Stop Crossing Mean NaN 10 NaN 10 NaN 10
Crossing Mean NaN 10 NaN 10 NaN 10
Synthetic 0.00099 0.29 0.01489 0.82 0.05453 5

