Supporting Information

Information S1

Here, we prove the other main result of this paper which is the inequality:

$$
\begin{equation*}
I_{c}^{K P}<I_{c}<H_{\mathrm{KS}} \tag{1}
\end{equation*}
$$

and thus explain the result of Fig. 3 of the manuscript. In Ref. [1], the authors discuss about the existence of the spectrum of the Lyapunov exponents in the thermodynamic limit and investigate numerically this existence in the FPU- β model given by Eq. (3) in the manuscript. They show that the shape of the Lyapunov spectrum for energy densities $\epsilon=E / N$ well above the equipartition threshold allows someone to express H_{KS} in terms of the largest Lyapunov exponent λ_{1} only:

$$
\begin{equation*}
H_{\mathrm{KS}}=\int_{0}^{\lambda_{1}} \lambda C N d \lambda=\frac{N}{2} \lambda_{1} \tag{2}
\end{equation*}
$$

where $C=1 / \lambda_{1}$.
By applying the above ideas in our case for $E \in\left(E_{\mathrm{u}}, E_{\mathrm{r}}\right)$ and using Eq. (2) we have:

$$
\begin{align*}
H_{\mathrm{KS}} & =\int_{0}^{\lambda_{1}} \lambda C N d \lambda \Rightarrow \tag{3}\\
H_{\mathrm{KS}} & =\int_{0}^{\lambda_{N / 2}} \lambda C N d \lambda+\int_{\lambda_{N / 2}}^{\lambda_{1}} \lambda C N d \lambda \Rightarrow \\
H_{\mathrm{KS}} & =\frac{N}{2 \lambda_{1}}\left(\lambda^{2}\right)_{0}^{\lambda_{N / 2}}+\tilde{H} \Rightarrow \\
\tilde{H} & =H_{\mathrm{KS}}-\frac{N}{2 \lambda_{1}}\left(\lambda_{N / 2}\right)^{2} \tag{4}
\end{align*}
$$

where we have used $C=1 / \lambda_{1}$ and $\bar{H}=\int_{\lambda_{N / 2}}^{\lambda_{1}} \lambda C N d \lambda$. Term $\lambda_{N / 2}$ is the ($N / 2$)th positive Lyapunov exponent of Hamiltonian (3) of the manuscript when sorting them in descending order (i.e. $\lambda_{1}>\lambda_{2}>$ $\ldots>\lambda_{N / 2}>\ldots>\lambda_{N}=0$). It comes from the fact that in Eq. (3) we integrate over all positive Lyapunov exponents and that we want to relate H_{KS} with \tilde{H} of Eq. (18) of the manuscript which is defined as the sum over the first $N / 2$ positive Lyapunov exponents when they are sorted in descending order.

By substituting Eq. (4) in Eq. (18) of the manuscript we have:

$$
\begin{align*}
I_{c} & =2 \tilde{H}-H_{\mathrm{KS}} \Rightarrow \\
I_{c} & =H_{\mathrm{KS}}-\frac{N}{\lambda_{1}}\left(\lambda_{N / 2}\right)^{2} \tag{5}
\end{align*}
$$

and so we obtain:

$$
\begin{equation*}
I_{c}<H_{\mathrm{KS}} \tag{6}
\end{equation*}
$$

which is the right hand side inequality of Eq. (1).
By combining Eqs. (2), (5) and setting $I_{c}^{K P}=\lambda_{1}$, we obtain:

$$
\begin{align*}
I_{c} & =\frac{N}{2} \lambda_{1}-\frac{N}{\lambda_{1}}\left(\lambda_{N / 2}\right)^{2} \Rightarrow \\
I_{c} & =\frac{N}{2} I_{c}^{K P}-\frac{N}{I_{c}^{K P}}\left(\lambda_{N / 2}\right)^{2} . \tag{7}
\end{align*}
$$

The last equation links the upper bound of information transfer in the phase space of the Hamiltonian with the upper bound of the information that can be transferred in the $K P$ space. Moreover, an important consequence of Eq. (5) is that $I_{c}=H_{\mathrm{KS}}$ when $\lambda_{N / 2}=0$ implying that this can happen when there are at least $N / 2$ integrals of motion and leading to the conclusion that it should be $\lambda_{N / 2}=\lambda_{(N / 2)+1}=\ldots=$ $\lambda_{N}=0$. However, this is not happening in our case since all Lyapunov exponents are positive but the last one $\lambda_{N}=0$ as the Hamiltonian is an integral of the motion.

Next, we prove the left hand side inequality of Eq. (1):

$$
\begin{equation*}
I_{c}^{K P}<I_{c} . \tag{8}
\end{equation*}
$$

To do so, let us suppose that:

$$
\begin{equation*}
I_{c}-I_{c}^{K P}=0 \tag{9}
\end{equation*}
$$

and check under which assumptions for $I_{c}^{K P}$ Eq. (8) holds. For this, we substitute Eq. (7) for I_{c} into Eq. (9) and have:

$$
\begin{equation*}
\left(\frac{N-2}{2}\right)\left(I_{c}^{K P}\right)^{2}-N\left(\lambda_{N / 2}\right)^{2}=0 \tag{10}
\end{equation*}
$$

The last equation is a second degree polynomial with respect to $I_{c}^{K P}$. Its determinant is given by:

$$
\mathcal{D}=2 N(N-2)\left(\lambda_{N / 2}\right)^{2}
$$

which is positive for $N>2$ and thus, the two discrete real roots are:

$$
\begin{align*}
I_{c}^{K P} & =\frac{\lambda_{N / 2} \sqrt{2 N(N-2)}}{N-2}>0 \text { and } \tag{11}\\
I_{c}^{K P} & =-\frac{\lambda_{N / 2} \sqrt{2 N(N-2)}}{N-2}<0 .
\end{align*}
$$

By theory, we know that Eq. (10) is positive and thus inequality in Eq. (8) is true when $I_{c}^{K P}>$ $\frac{\lambda_{N / 2} \sqrt{2 N(N-2)}}{N-2}$ since the term $\frac{N-2}{2}$ of $I_{c}^{K P}$ is positive for $N>2$.

The second root is not physically possible to exist since it would imply that $I_{c}^{K P}<0$ for $N>$ 3 contradicting to the fact that $I_{c}^{K P}$ is positively defined. Thus, Eq. (9) is positive when $I_{c}^{K P}>$ $\frac{\lambda_{N / 2} \sqrt{2 N(N-2)}}{N-2}$, which is always true, since $\lambda_{N / 2} \ll 1$ and:

$$
\lim _{N \rightarrow \infty} \frac{\sqrt{2 N(N-2)}}{N-2}=\sqrt{2}
$$

Thus, we have proved that:

$$
\begin{equation*}
I_{c}^{K P}<I_{c} . \tag{12}
\end{equation*}
$$

Combining Eqs. (6) and (12), we obtain:

$$
\begin{equation*}
I_{c}^{K P}<I_{c}<H_{\mathrm{KS}} \tag{13}
\end{equation*}
$$

The way I_{c} is defined (see Eq. (18) of the manuscript) implies that $I_{c}<H_{\mathrm{KS}}$ since $\tilde{H}<H_{\mathrm{KS}}$. In panel A of Fig. 3 of the manuscript we can check that indeed inequality (13) is fulfilled.

Finally, it worths mentioning that according to Eq. (11) it is possible to have:

$$
I_{c}^{K P}=I_{c}
$$

that is, the upper bounds of information transfer in the bi-dimensional subspace and in the Hamiltonian
to be equal when it happens that:

$$
I_{c}^{K P}=\frac{\lambda_{N / 2} \sqrt{2 N(N-2)}}{N-2}=\sqrt{2} \lambda_{N / 2} .
$$

The last equation provides an alternative estimation of $I_{c}^{K P}$ valid when:

$$
I_{c}^{K P}=\lambda_{1}=\sqrt{2} \lambda_{N / 2}
$$

References

1. Livi R, Politi A, Ruffo S (1986) Distribution of characteristic exponents in the thermodynamic limit. J Phys A: Math Gen 19: 2033-2040.
