Figure S5: Results for each follow-up interverval, longest follow-up, and subgroup analyses

Analyses included

Analysis 1: ER (number); results at longest follow-up Analysis 2: ER (number); at each follow-up interval Analysis 3: ER (number); focus of visit subgroups Analysis 4: ER (number); age of participants subgroups Analysis 5: ER (number); type of visitor subgroups Analysis 6: ER (number); number of visits subgroups Analysis 7: ER (people); results at longest follow-up Analysis 8: ER (people); at each follow-up interval Analysis 9: ER (people); focus of visit subgroups Analysis 10: ER (people); age of participants subgroups Analysis 11: ER (people); type of visitor subgroups Analysis 12: ER (people); number of visits subgroups Analysis 13: Falls (number); results at longest follow-up Analysis 14: Falls (number); at each follow-up interval Analysis 15: Falls (number); focus of visit subgroups Analysis 16: Falls (number); age of participants subgroups Analysis 17: Falls (number); type of visitor subgroups Analysis 18: Falls (number); number of visits subgroups Analysis 19: Falls (people) at each follow-up interval Analysis 20: Falls (people); focus of visit subgroups Analysis 21: Falls (people); age of participants subgroups Analysis 22: Falls (people); type of visitor subgroups Analysis 23: Falls (people); number of visits subgroups Analysis 24: Falls (subjective), results at longest follow-up Analysis 25: Falls (subjective) at each follow-up interval Analysis 26: Falls (subjective): focus of visit subgroups Analysis 27: Falls (subjective): age of participants subgroups Analysis 28: Falls (subjective); type of visitor subgroups Analysis 29: Falls (subjective); number of visits subgroups Analysis 30: Functioning ADL/IADL at each follow-up interval Analysis 31: Functioning ADL/IADL; focus of visit subgroups Analysis 32: Functioning ADL/IADL; age of participants subgroups Analysis 33: Functioning ADL/IADL; type of visitor subgroups Analysis 34: Functioning ADL/IADL; number of visits subgroups Analysis 35: Cognitive functioning, results at longest follow-up Analysis 36: Quality of life at each follow-up interval Analysis 37: Quality of life; focus of visit subgroups Analysis 38: Quality of life; age of participants subgroups Analysis 39: Quality of life; type of visitor subgroups Analysis 40: Quality of life; number of visits subgroups Analysis 41: Hospitalisation Admissions, results at longest follow-up Analysis 42: Hospitalisation Admissions at each follow-up interval Analysis 43: Hospitalisation Admissions; focus of visit subgroups Analysis 44: Hospitalisation Admissions; age of participants subgroups Analysis 45: Hospitalisation Admissions; type of visitor subgroups Analysis 46: Hospitalisation Admissions; number of visits subgroups Analysis 47: Hospitalisation (days), results at longest follow-up Analysis 48: Hospitalisation (days) at each follow-up interval Analysis 49: Hospitalisation (days); focus of visit subgroups Analysis 50: Hospitalisation (days); age of participants subgroups Analysis 51: Hospitalisation (days); type of visitor subgroups Analysis 52: Hospitalisation (days); number of visits subgroups Analysis 53: Hospitalisation (people) at each follow-up interval Analysis 54: Hospitalisation (people); focus of visit subgroups Analysis 55: Hospitalisation (people); age of participants subgroups Analysis 56: Hospitalisation (people); type of visitor subgroups Analysis 57: Hospitalisation (people); number of visits subgroups Analysis 58: Injuries (number), results at longest follow-up Analysis 59: Injuries (people), results at longest follow-up Analysis 60: Injuries (people) at each follow-up interval Analysis 61: Injuries (people); focus of visit subgroups Analysis 62: Injuries (people); age of participants subgroups

Analysis 63: Injuries (people); type of visitor subgroups Analysis 64: Injuries (people); number of visits subgroups Analysis 65: Institutionalisation (days), results at longest follow-up Analysis 66: Institutionalisation (people) at each follow-up interval Analysis 67: Institutionalisation (people); focus of visit subgroups Analysis 68: Institutionalisation (people); age of participants subgroups Analysis 69: Institutionalisation (people); type of visitor subgroups Analysis 70: Institutionalisation (people); number of visits subgroups Analysis 71: Mortality (Focus of visits subgroups) Analysis 72: Mortality; age of participants subgroups Analysis 73: Mortality; type of visitor subgroups Analysis 74: Mortality; number of visits subgroups Analysis 75: Psychiatric (anxiety and depression), results at longest follow-up Analysis 76: Psychiatric (anxiety and depression) at each follow-up interval Analysis 77: Psychiatric (anxiety and depression); focus of visit subgroups Analysis 78: Psychiatric (anxiety and depression); age of participants subgroups

Analysis 79: Psychiatric (anxiety and depression); type of visitor subgroups

Analysis 80: Psychiatric (anxiety and depression); number of visits subgroups

Analysis 1: ER (number); results at longest follow-up

			Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Tota	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
van Haastregt 2000	0.3791478	0.34503278	120	115	3.1%	1.46 [0.74, 2.87]]
Robertson 2001a	-0.40578434	0.30662207	121	119	3.8%	0.67 [0.37, 1.22]]
Tinetti 1994	-0.39176342	0.26034166	147	144	4.9%	0.68 [0.41, 1.13]]
Dalby 2000	-0.23794986	0.25436154	70	69	5.1%	0.79 [0.48, 1.30]]
Campbell 2005	-0.10167807	0.25413251	98	96	5.1%	0.90 [0.55, 1.49]]
Stevens 2001	-0.02020271	0.20078915	635	1244	7.1%	0.98 [0.66, 1.45]]
Holland 2005	0.25147785	0.09945593	437	435	14.3%	1.29 [1.06, 1.56]]
Caplan 2004	-0.2555538	0.07224321	370	369	16.8%	0.77 [0.67, 0.89]]
Counsell 2007	-0.18817955	0.03555452	474	477	19.9%	0.83 [0.77, 0.89]] —
Bouman 2008	0	0.03541811	160	170	19.9%	1.00 [0.93, 1.07]	1 +
Total (95% CI)			2632	3238	100.0%	0.92 [0.81, 1.04]	1 🔸
Heterogeneity: Tau ² =	= 0.02; Chi ² = 35.	81, df = 9 (P -	< 0.0001); I ² :	= 75%			05071152
Test for overall effect:	Z = 1.31 (P = 0.1)	19)					0.5 0.7 1 1.5 2
		,					Favours home visits Favours control

Analysis 2: ER (number); at each follow-up interval

Churcher and Carls and an			Home visits		W-1-6	Rate Ratio	Rate Ratio
Study or Subgroup 1.2.1 01-11 months	log[Rate Ratio]	SE	Total	Total	weight	IV, Random, 95% CI	IV, Random, 95% CI
				105	100.000	1 20 /1 00 1 50	
Holland 2005 Subtotal (95% CI)	0.25147785	0.09945593	437 437		100.0% 100.0%		
Heterogeneity: Not ap	plicable						
Test for overall effect	Z = 2.53 (P = 0.1)	01)					
1.2.2 12-23 months							
van Haastregt 2000	0.3791478	0.34503278	120	115	2.4%	1.46 [0.74, 2.87]	
Robertson 2001a	-0.40578434	0.30662207	121	119	2.9%	0.67 [0.37, 1.22]	
Tinetti 1994	-0.39176342	0.26034166	147	144	3.9%	0.68 [0.41, 1.13]	
Dalby 2000	-0.23794986	0.25436154	70	69	4.1%	0.79 [0.48, 1.30]	
Campbell 2005	-0.10167807	0.25413251	98	96	4.1%	0.90 [0.55, 1.49]	
Stevens 2001	-0.02020271	0.20078915	635	1244	6.1%	0.98 [0.66, 1.45]	
Caplan 2004	-0.2555538	0.07224321	370	369	21.0%	0.77 [0.67, 0.89]	
Counsell 2007	-0.125449	0.04777345	474	477	26.4%	0.88 [0.80, 0.97]	
Bouman 2008	0	0.03541811	160	170	29.0%	1.00 [0.93, 1.07]	+
Subtotal (95% CI)			2195	2803	100.0%	0.89 [0.80, 0.99]	•
Heterogeneity: Tau2 =	= 0.01; Chi ² = 16.	71, df = 8 (P =	$= 0.03$; $I^2 = 5$	2%			
Test for overall effect	Z = 2.19 (P = 0.)	03)					
1.2.3 24-35 months							
Counsell 2007	-0.18817955	0.03555452	474	477	50.0%	0.83 [0.77, 0.89]	=
Bouman 2008	0	0.03541811	160	170	50.0%	1.00 [0.93, 1.07]	+
Subtotal (95% CI)			634	647	100.0%	0.91 [0.76, 1.09]	
Heterogeneity: Tau2 =	= 0.02; Chi ² = 14.	06, df = 1 (P =	= 0.0002); I ² =	= 93%			
Test for overall effect:	Z = 1.00 (P = 0.	32)					
						_	

0.5 0.7 1 1.5 2 Favours home visits Favours control

Analysis 3: ER (number); focus of visit subgroups

			Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.3.1 Falls Only							
Robertson 2001a	-0.40578434				3.8%		
Campbell 2005	-0.10167807				5.1%		
Stevens 2001 Subtotal (95% CI)	-0.02020271	0.20078915	635 854		7.1% 16.0%		
Heterogeneity: Tau ² =	0.00; Chi ² = 1.1	2, df = 2 (P =	$(0.57); I^2 = 0\%$	6			
Test for overall effect:	Z = 0.90 (P = 0.1)	37)					
1.3.2 MGA Only							
Dalby 2000	-0.23794986	0.25436154	70	69	5.1%	0.79 [0.48, 1.30]	
Caplan 2004	-0.2555538	0.07224321	370	369	16.8%	0.77 [0.67, 0.89]	
Counsell 2007	-0.18817955	0.03555452	474	477	19.9%	0.83 [0.77, 0.89]	+
Bouman 2008 Subtotal (95% CI)	0	0.03541811	160 1074		19.9% 61.7%		
Heterogeneity: Tau ² =	0.01; Chi ² = 18.	78, df = 3 (P =	= 0.0003); I ² =	= 84%			-
Test for overall effect:	Z = 2.01 (P = 0.0)	04)					
1.3.3 Both							
van Haastregt 2000	0.3791478	0.34503278	120	115	3.1%	1.46 [0.74, 2.87]	
Tinetti 1994	-0.39176342	0.26034166			4.9%		
Subtotal (95% CI)			267		8.0%	0.96 [0.45, 2.04]	
Heterogeneity: Tau ² = Test for overall effect:			0.07); l* = 69	%			
1.3.4 Neither							
	0.05147705		437	435	14.20/	1 20 (1 00 1 00)	_
Holland 2005 Subtotal (95% CI)	0.25147785	0.09945593	437 437		14.3% 14.3%		
Heterogeneity: Not ap	nlicable		457	455	1-1.3/0	1.25 [1.00, 1.50]	-
Test for overall effect:		01)					
Total (95% CI)			2632	3238	100.0%	0.92 [0.81, 1.04]	•
Heterogeneity: Tau ² =	0.02; Chi ² = 35.	81, df = 9 (P ·	< 0.0001); I ² =	= 75%			0.5 0.7 1 1.5 2
Test for overall effect:	Z = 1.31 (P = 0.1)	19)					0.5 0.7 1 1.5 2 Favours home visits Favours control
Test for subgroup diff	erences: Chi ² = 1	1.03, df = 3 (F	$P = 0.01$, $I^2 =$	72.8%			

Analysis 4: ER (number); age of participants subgroups

		I	Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.4.2 71-75							
Counsell 2007	-0.18817955	0.03555452	474		19.9%		÷
Subtotal (95% CI)			474	477	19.9%	0.83 [0.77, 0.89]	◆
Heterogeneity: Not ap							
Test for overall effect	Z = 5.29 (P < 0.5)	00001)					
1.4.3 76-80							
van Haastregt 2000	0.3791478	0.34503278	120	115	3.1%	1.46 [0.74, 2.87]	
Tinetti 1994	-0.39176342	0.26034166	147	144	4.9%	0.68 [0.41, 1.13]	
Dalby 2000	-0.23794986	0.25436154	70	69	5.1%	0.79 [0.48, 1.30]	
Stevens 2001	-0.02020271	0.20078915	635	1244	7.1%	0.98 [0.66, 1.45]	
Bouman 2008	0	0.03541811	160	170	19.9%		±
Subtotal (95% CI)			1132	1742	40.1%	0.98 [0.88, 1.09]	•
Heterogeneity: Tau ² =).37); I ² = 7%				
Test for overall effect	Z = 0.36 (P = 0.1)	72)					
1.4.4 81-85							
Robertson 2001a	-0.40578434	0.30662207	121	119	3.8%	0.67 [0.37, 1.22]	
Campbell 2005	-0.10167807	0.25413251	98	96	5.1%	0.90 [0.55, 1.49]	
Holland 2005		0.09945593	437	435	14.3%		
Caplan 2004	-0.2555538	0.07224321	370	369	16.8%		
Subtotal (95% CI)			1026	1019	40.0%	0.91 [0.65, 1.28]	-
Heterogeneity: Tau ² =			0.0004); I ² =	83%			
Test for overall effect	Z = 0.53 (P = 0.5)	59)					
Total (95% CI)			2632		100.0%	0.92 [0.81, 1.04]	•
Heterogeneity: Tau2 =			0.0001); I ² =	75%			0.5 0.7 1 1.5 2
Test for overall effect						1	Favours home visits Favours contro
Test for subgroup dif	ferences: Chi ² = 6	61, df = 2 (P =	0.04 , $I^2 = 6$	9.7%			arour fine fishes furbury contro

Analysis 5: ER (number); type of visitor subgroups

			Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.5.1 Nurse							
van Haastregt 2000	0.3791478	0.34503278	120	115	3.1%	1.46 [0.74, 2.87]	
Robertson 2001a	-0.40578434	0.30662207	121	119	3.8%	0.67 [0.37, 1.22]	
Dalby 2000	-0.23794986	0.25436154	70	69	5.1%	0.79 [0.48, 1.30]	
Stevens 2001	-0.02020271	0.20078915	635	1244	7.1%	0.98 [0.66, 1.45]	
Caplan 2004	-0.2555538	0.07224321	370	369	16.8%	0.77 [0.67, 0.89]	
Bouman 2008	0	0.03541811	160		19.9%		
Subtotal (95% CI)			1476	2086	55.8%	0.90 [0.75, 1.07]	◆
Heterogeneity: Tau ² =	0.02; Chi ² = 13.	55, df = 5 (P =	= 0.02); I ² = 6	3%			
Test for overall effect:	Z = 1.21 (P = 0.3)	23)					
1.5.2 Other							
Holland 2005	0.25147785	0.09945593	437	435	14.3%		_ _ _
Subtotal (95% CI)			437	435	14.3%	1.29 [1.06, 1.56]	◆
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 2.53 (P = 0.0)	01)					
1.5.3 Combined							
Tinetti 1994	-0.39176342	0.26034166	147	144	4.9%	0.68 [0.41, 1.13]	
Campbell 2005	-0.10167807	0.25413251	98	96	5.1%	0.90 [0.55, 1.49]	
Counsell 2007	-0.18817955	0.03555452	474		19.9%	0.83 [0.77, 0.89]	+
Subtotal (95% CI)			719	717	29.9%	0.83 [0.77, 0.89]	▲
Heterogeneity: Tau ² =			0.70 ; $I^2 = 0$ %	6			
Test for overall effect:	Z = 5.45 (P < 0.00)	00001)					
Total (95% CI)			2632	3238	100.0%	0.92 [0.81, 1.04]	•
Heterogeneity: Tau ² =	0.02; Chi ² = 35.	81, df = 9 (P <	< 0.0001); I ² =	= 75%			0.5 0.7 1 1.5 2
Test for overall effect:	Z = 1.31 (P = 0.	19)					0.5 0.7 1 1.5 2 Favours home visits Favours control
Test for subgroup diff	erences: Chi ² = 1	7.69, df = 2 (F	P = 0.0001), f	$^{2} = 88.7\%$			ravours nome visits Favours control

Analysis 6: ER (number); number of visits subgroups

			Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
1.6.1 1 Visit							
Stevens 2001 Subtotal (95% CI)	-0.02020271	0.20078915	635 635	1244 1244	7.1% 7.1%	0.98 [0.66, 1.45] 0.98 [0.66, 1.45]	
Heterogeneity: Not ap	plicable						T T
Test for overall effect:		92)					
1.6.2 2-4 Visits							
	0 2270 4000		70	6.0	F 10/	0 70 /0 /0 1 20	
Dalby 2000	-0.23794986		70		5.1%		
Holland 2005	0.25147785		437		14.3%	1.29 [1.06, 1.56]	
Caplan 2004 Subtotal (95% CI)	-0.2555538	0.07224321	370 877		16.8% 36.2%	0.77 [0.67, 0.89] 0.94 [0.63, 1.39]	
	0.10 (1)2 17				50.2%	0.94 [0.05, 1.59]	
Heterogeneity: Tau ² =			= 0.0002); F =	= 88%			
Test for overall effect:	Z = 0.32 (P = 0.1)	(5)					
1.6.3 5 or More Visit	s						
van Haastregt 2000	0.3791478	0.34503278	120	115	3.1%	1.46 [0.74, 2.87]	1
Robertson 2001a	-0.40578434	0.30662207	121	119	3.8%	0.67 [0.37, 1.22]	i
Tinetti 1994	-0.39176342	0.26034166	147	144	4.9%	0.68 [0.41, 1.13]	i
Campbell 2005	-0.10167807	0.25413251	98	96	5.1%	0.90 [0.55, 1.49]	i
Counsell 2007	-0.18817955	0.03555452	474	477	19.9%	0.83 [0.77, 0.89]	i 🗕
Bouman 2008	0	0.03541811	160	170	19.9%	1.00 [0.93, 1.07]	i +
Subtotal (95% CI)			1120	1121	56.7%	0.89 [0.77, 1.04]	i 🔶
Heterogeneity: Tau2 =	0.02; Chi ² = 18.	28, df = 5 (P =	= 0.003); I ² =	73%			
Test for overall effect:	Z = 1.43 (P = 0.1)	15)					
Total (95% CI)			2632	3728	100.0%	0.92 [0.81, 1.04]	
Heterogeneity: Tau ² =	0.02: Chi ² - 25	81 df = 0 /P <			100.0/0	0.52 [0.01, 1.04]	· · · · · · · · · · · · · · · · · · ·
Test for overall effect:			. 0.0001); 1 -	- / 3/6			0.5 0.7 1 1.5 2
Test for subgroup diff	(0.00) 12 - 1	20/			Favours home visits Favours control

Analysis 7: ER (people); results at longest follow-up

			Home visits	Control		Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Hogan 2001	0.17915198	0.45994361	79	84	1.8%	1.20 [0.49, 2.95]	
Bernabei 1998	-1.03140354	0.45319884	99	100	1.8%	0.36 [0.15, 0.87]	·
Vetter 1992	0	0.35355339	240	210	2.9%	1.00 [0.50, 2.00]	
Ciechanowski 2004	-0.36480123	0.27139692	69	62	4.6%	0.69 [0.41, 1.18]	
Tinetti 1994	-0.23419339	0.26894873	147	144	4.7%	0.79 [0.47, 1.34]	
Davison 2005	-0.10891264	0.25348417	159	154	5.2%	0.90 [0.55, 1.47]	
Sommers 2000	0.33216897	0.23700287	238	227	5.8%	1.39 [0.88, 2.22]	
Luukinen 2006	-0.00048004	0.1715891	133	142	9.4%	1.00 [0.71, 1.40]	
Lightbody 2002	-0.27376381	0.16660214	155	159	9.8%	0.76 [0.55, 1.05]	
van Hout 2010	0.11724288	0.11861371	331	320	14.7%	1.12 [0.89, 1.42]	- +
Bouman 2008	-0.04585886	0.09594067	160	170	17.9%	0.96 [0.79, 1.15]	
Caplan 2004	-0.20614484	0.07523268	370	369	21.3%	0.81 [0.70, 0.94]	
Total (95% CI)			2180	2141	100.0%	0.91 [0.81, 1.03]	•
Heterogeneity: Tau ² =	= 0.01; Chi ² = 16.	29, df = 11 (P	$= 0.13$; $I^2 =$	32%			0.5 0.7 1 1.5 2
Test for overall effect:							0.5 0.7 1 1.5 2 Favours home visits Favours control

Analysis 8: ER (people); at each follow-up interval

			Home visits			Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
1.8.1 01-11 months							
Ciechanowski 2004	-0.36480123						
Caplan 2004	-0.19686238						
Lightbody 2002	-0.27376381	0.16660214	155				
Subtotal (95% CI)			594		100.0%	0.77 [0.61, 0.96	
Heterogeneity: Tau ² =			0.88 ; $I^2 = 0\%$	5			
Test for overall effect:	Z = 2.29 (P = 0.	02)					
1.8.2 12-23 months							
Hogan 2001	0.17915198	0.45994361	79	84	2.4%	1.20 [0.49, 2.95]
Bernabei 1998	-1.03140354	0.45319884	99	100	2.4%	0.36 [0.15, 0.87] ←
Tinetti 1994	-0.23419339	0.26894873	147	144	6.1%		
Sommers 2000	0.19109037	0.26222999	238	227	6.4%	1.21 [0.72, 2.02	i — • — —
Davison 2005	-0.10891264	0.25348417	159	154	6.7%	0.90 [0.55, 1.47	i
Luukinen 2006	-0.00048004	0.1715891	133	142	11.9%	1.00 [0.71, 1.40	i —
van Hout 2010	0.11724288	0.11861371	331	320	18.0%	1.12 [0.89, 1.42) +-
Bouman 2008	-0.23947997	0.0981168	160	170	21.1%	0.79 [0.65, 0.95]
Caplan 2004	-0.20614484	0.07523268	370	369	25.0%	0.81 [0.70, 0.94]
Subtotal (95% CI)			1716	1710	100.0%	0.89 [0.77, 1.03	1 🔶
Heterogeneity: Tau ² =			$= 0.10$; $I^2 = 4$	0%			
Test for overall effect:	Z = 1.52 (P = 0.	13)					
1.8.3 24-35 months							
Sommers 2000	0.33216897	0.23700287	238	227	33.6%	1.39 [0.88, 2.22]	
Bouman 2008	-0.04585886	0.09594067	160	170	66.4%	0.96 [0.79, 1.15	i –
Subtotal (95% CI)			398	397	100.0%	1.08 [0.76, 1.54	
Heterogeneity: Tau ² =	= 0.04; Chi ² = 2.1	9, df = 1 (P =	0.14 ; $I^2 = 54$	%			
Test for overall effect:	Z = 0.45 (P = 0.	65)					
1.8.4 36+ months							\perp
Vetter 1992	0	0.35355339			100.0%		
Subtotal (95% CI)			240	210	100.0%	1.00 [0.50, 2.00	
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.00 (P = 1.	00)					
							0.5 0.7 1 1.5 2 Favours home visits Favours con
							Favours nome visits Favours con

Analysis 9: ER (people); focus of visit subgroups

			Home visits			Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.9.1 Falls Only							
Hogan 2001	0.17915198	0.45994361	79		1.8%		
Luukinen 2006	-0.00048004	0.1715891	133		9.4%		
Subtotal (95% CI)			212		11.2%	1.02 [0.75, 1.40]	
Heterogeneity: Tau ² =			0.71 ; $I^2 = 0\%$				
Test for overall effect:	Z = 0.13 (P = 0.8)	39)					
1.9.2 MGA Only							
Bernabei 1998	-1.03140354	0.45319884	99	100	1.8%	0.36 [0.15, 0.87]	<
Sommers 2000	0.33216897	0.23700287	238	227	5.8%	1.39 [0.88, 2.22]	
Bouman 2008	-0.04585886	0.09594067	160	170	17.9%	0.96 [0.79, 1.15]	_ _
Caplan 2004	-0.20614484	0.07523268	370		21.3%		
Subtotal (95% CI)			867	866	46.9%	0.90 [0.69, 1.16]	
Heterogeneity: Tau ² =			0.02 ; $I^2 = 69$	%			
Fest for overall effect:	Z = 0.83 (P = 0.4)	1)					
1.9.3 Both							
Vetter 1992	0	0.35355339	240	210	2.9%	1.00 [0.50, 2.00]	
Tinetti 1994	-0.23419339	0.26894873	147	144	4.7%	0.79 [0.47, 1.34]	
Davison 2005	-0.10891264	0.25348417	159	154	5.2%	0.90 [0.55, 1.47]	
Lightbody 2002	-0.27376381	0.16660214	155	159	9.8%	0.76 [0.55, 1.05]	
van Hout 2010	0.11724288	0.11861371	331		14.7%		
Subtotal (95% CI)			1032	987	37.3%	0.95 [0.79, 1.13]	•
Heterogeneity: Tau ² =			0.36 ; $I^2 = 8\%$				
Test for overall effect:	Z = 0.61 (P = 0.5)	(4)					
1.9.4 Neither							
Ciechanowski 2004	-0.36480123	0.27139692	69	62	4.6%	0.69 [0.41, 1.18]	
Subtotal (95% CI)			69	62	4.6%	0.69 [0.41, 1.18]	
leterogeneity: Not ap	plicable						
Test for overall effect:	Z = 1.34 (P = 0.1)	8)					
Fotal (95% CI)			2180	2141	100.0%	0.91 [0.81, 1.03]	•
Heterogeneity: Tau ² =	0.01: Chi ² = 16.2	P_{9} , df = 11 (P	$= 0.13$) $l^2 =$	32%			
Test for overall effect:			0.20/, 1				0.5 0.7 1 1.5 2
Test for subgroup diff			$= 0.65$, $l^2 = 0$	0%			Favours home visits Favours control

Analysis 10: ER (people); age of participants subgroups

			Home visits			Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.10.2 71-75							
Ciechanowski 2004	-0.36480123	0.27139692	69		4.6%		
Lightbody 2002	-0.27376381	0.16660214	155		9.8%		
Subtotal (95% CI)	0.00 CH2 0.0		224		14.4%	0.74 [0.56, 0.98]	-
Heterogeneity: Tau ² = Test for overall effect:			$(0.77); I^* = 0\%$	6			
	2 2120 (1 01	.,					
1.10.3 76-80							
Hogan 2001		0.45994361	79		1.8%		
Vetter 1992		0.35355339	240		2.9%		
Tinetti 1994	-0.23419339		147		4.7%		
Davison 2005	-0.10891264		159		5.2%		
Sommers 2000	0.33216897		238		5.8%		
Bouman 2008	-0.04585886	0.09594067	160		17.9%		
Subtotal (95% CI)			1023		38.3%	0.98 [0.84, 1.14]	•
Heterogeneity: Tau² =			0.66 ; $I^2 = 0\%$	5			
Test for overall effect:	Z = 0.24 (P = 0.3)	81)					
1.10.4 81-85							
Bernabei 1998	-1.03140354	0.45319884	99	100	1.8%	0.36 [0.15, 0.87]	·
van Hout 2010	0.11724288	0.11861371	331	320	14.7%	1.12 [0.89, 1.42]	- +
Caplan 2004 Subtotal (95% CI)	-0.20614484	0.07523268	370 800		21.3% 37.9%		
Heterogeneity: Tau ² =	0.07: Chi ² - 0.3	2 df _ 2 (0 _			57.5%	0.04 [0.33, 1.20]	
Test for overall effect:			0.009), 1 = 7	9%			
1.10.5 86+							
Luukinen 2006	-0.00048004	0.1715891	133		9.4%		
Subtotal (95% CI)			133	142	9.4%	1.00 [0.71, 1.40]	-
Heterogeneity: Not ap							
Test for overall effect:	Z = 0.00 (P = 1.0)	00)					
Total (95% CI)			2180	2141	100.0%	0.91 [0.81, 1.03]	•
Heterogeneity: Tau ² =			$= 0.13$; $I^2 =$	32%			0.5 0.7 1 1.5 2
Test for overall effect:							Favours home visits Favours control
Test for subgroup diff	erences: Chi ² = 3.	48, df = 3 (P	$= 0.32$), $I^2 = 2$	13.8%			

Analysis 11: ER (people); type of visitor subgroups

			Home visits	Control		Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.11.1 Nurse							
Lightbody 2002	-0.27376381	0.16660214	155	159	9.8%	0.76 [0.55, 1.05]	
van Hout 2010	0.11724288	0.11861371	331	320	14.7%	1.12 [0.89, 1.42]	- +
Bouman 2008	-0.04585886	0.09594067			17.9%		
Caplan 2004	-0.20614484	0.07523268			21.3%		
Subtotal (95% CI)			1016		63.8%	0.91 [0.78, 1.06]	◆
Heterogeneity: Tau ² =			0.08 ; $I^2 = 55$	5%			
Test for overall effect:	Z = 1.20 (P = 0.1)	23)					
1.11.2 Other							
Bernabei 1998	-1.03140354	0.45319884	99	100	1.8%	0.36 [0.15, 0.87]	← ····
Vetter 1992	0	0.35355339	240	210	2.9%	1.00 [0.50, 2.00]	
Ciechanowski 2004	-0.36480123	0.27139692	69	62	4.6%		
Subtotal (95% CI)			408	372	9.4%	0.67 [0.41, 1.11]	
Heterogeneity: Tau ² =	0.08; Chi ² = 3.2	2, df = 2 (P =	0.20 ; $I^2 = 38$	3%			
Test for overall effect:	Z = 1.57 (P = 0.1)	12)					
1.11.3 Combined							
Hogan 2001	0.17915198	0.45994361	79	84	1.8%	1.20 [0.49, 2.95]	
Tinetti 1994	-0.23419339	0.26894873	147	144	4.7%	0.79 [0.47, 1.34]	
Davison 2005	-0.10891264	0.25348417	159	154	5.2%	0.90 [0.55, 1.47]	
Sommers 2000	0.33216897	0.23700287	238	227	5.8%	1.39 [0.88, 2.22]	
Luukinen 2006	-0.00048004	0.1715891			9.4%		
Subtotal (95% CI)			756		26.8%	1.02 [0.83, 1.26]	•
Heterogeneity: Tau ² =			0.55 ; $I^2 = 0$ %	6			
Test for overall effect:	Z = 0.20 (P = 0.3)	85)					
Total (95% CI)			2180	2141	100.0%	0.91 [0.81, 1.03]	•
Heterogeneity: Tau ² =	0.01; Chi ² = 16.	29, df = 11 (P	$P = 0.13$; $I^2 =$	32%			0.5.0.7 1 1.5.2
Test for overall effect:							Favours home visits Favours control
Test for subgroup diff	erences: Chi ² = 2.	49. $df = 2$ (P	$= 0.29$), $I^2 = 3$	19.5%			ravours nome visits Favours control

Analysis 12: ER (people); number of visits subgroups

			Home visits	Control		Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.12.1 1 Visit							
Lightbody 2002	-0.27376381	0.16660214			10.6%		
Subtotal (95% CI)			155	159	10.6%	0.76 [0.55, 1.05]	-
Heterogeneity: Not ap							
Test for overall effect:	Z = 1.64 (P = 0.)	10)					
1.12.2 2-4 Visits							
Hogan 2001	0.17915198	0.45994361	79	84	2.0%	1.20 [0.49, 2.95]	
Vetter 1992	0	0.35355339	240	210	3.3%	1.00 [0.50, 2.00]	
Luukinen 2006	-0.00048004	0.1715891	133	142	10.2%	1.00 [0.71, 1.40]	_
van Hout 2010	0.11724288	0.11861371	331	320	15.4%	1.12 [0.89, 1.42]	- +
Caplan 2004	-0.20614484	0.07523268	370	369	21.2%	0.81 [0.70, 0.94]	
Subtotal (95% CI)			1153	1125	52.1%	0.95 [0.80, 1.13]	•
Heterogeneity: Tau ² =	0.01; Chi ² = 6.1	1, df = 4 (P =	0.19 ; $I^2 = 35$	%			
Test for overall effect:	Z = 0.54 (P = 0.5)	59)					
1.12.3 5 or More Vis	its						
Bernabei 1998	-1.03140354	0.45319884	99	100	2.1%	0.36 [0.15, 0.87]	<
Ciechanowski 2004	-0.36480123	0.27139692	69	62	5.2%	0.69 [0.41, 1.18]	
Tinetti 1994	-0.23419339	0.26894873	147	144	5.3%	0.79 [0.47, 1.34]	
Sommers 2000	0.33216897	0.23700287	238	227	6.4%	1.39 [0.88, 2.22]	+
Bouman 2008	-0.04585886	0.09594067			18.3%		
Subtotal (95% CI)			713	703	37.3%	0.86 [0.63, 1.17]	
Heterogeneity: Tau2 =	0.06; Chi ² = 8.9	9, df = 4 (P =	0.06 ; $I^2 = 55$	%			
Test for overall effect:	Z = 0.96 (P = 0.2)	34)					
Total (95% CI)			2021	1987	100.0%	0.91 [0.80, 1.04]	•
Heterogeneity: Tau ² =	0.02; Chi ² = 16.	29, df = 10 (P	$P = 0.09$; $I^2 =$	39%			0.5.0.7 1 1.5.2
Test for overall effect:	Z = 1.33 (P = 0.	18)					0.5 0.7 1 1.5 2 Favours home visits Favours control
Test for subgroup diff	erences: Chi ² = 1.	52, $df = 2$ (P	$= 0.47$), $I^2 = 0$	0%			ravours nome visits Favours control

Analysis 13: Falls (number); results at longest follow-up

			Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Gallagher 1996	-0.21130909	0.20634202	50	50	5.0%	0.81 [0.54, 1.21]	
Markle-Reid 2010	0.22910735	0.17784366	54	55	5.6%	1.26 [0.89, 1.78]	+
Robertson 2001a	-0.34759773	0.14720418	121	119	6.1%	0.71 [0.53, 0.94]	-
Wyman 2007	-0.36301284	0.14250657	137	135	6.2%	0.70 [0.53, 0.92]	_
Tinetti 1994	-0.58369195	0.12936715	153	148	6.5%	0.56 [0.43, 0.72]	_
Campbell 2005	-0.34377154	0.12431871	98	96	6.6%	0.71 [0.56, 0.90]	_
Stevens 2001	0.05501813	0.12115499	635	1244	6.6%	1.06 [0.83, 1.34]	_ -
Lightbody 2002	-0.18016464	0.11375479	155	159	6.7%	0.84 [0.67, 1.04]	
Pighills 2011	-0.6428122	0.09572127	87	78	7.1%	0.53 [0.44, 0.63]	_ -
Campbell 1999	-0.36028289	0.09479566	116	117	7.1%	0.70 [0.58, 0.84]	
Close 1999	-0.88566251	0.08616998	184	213	7.2%	0.41 [0.35, 0.49]	- -
Hogan 2001	-0.21110179	0.08581848	75	77	7.2%	0.81 [0.68, 0.96]	
Elley 2008	-0.0251149	0.08278438	155	157	7.3%	0.98 [0.83, 1.15]	_ _
Luukinen 2006	-0.06725223	0.07599346	180	178	7.4%	0.93 [0.81, 1.09]	-+
Davison 2005	-0.50528416	0.06484385	144	149	7.5%	0.60 [0.53, 0.69]	
Total (95% CI)			2344	2975	100.0%	0.74 [0.63, 0.86]	•
Heterogeneity: Tau ² =	0.07; Chi ² = 113	.04, df = 14	(P < 0.00001)	$I^2 = 88\%$			0.5 0.7 1 1.5 2
Test for overall effect:							0.5 0.7 1 1.5 2 Favours home visits Favours control

Analysis 14: Falls (number); at each follow-up interval

1.14.1 01-11 months Gallagher 1996 Markle-Reid 2010 Lightbody 2002 Subtotal (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z 1.14.2 12-23 months Robertson 2001a Wyman 2007 Campbell 1999 Tinetti 1994	-0.18016464 .03; Chi ² = 4.1 = 0.47 (P = 0.	0.20634202 0.17784366 0.11375479 9, df = 2 (P =	Total 50 54 155 259 0.12); I ² = 529	50 55 159 264	Weight 25.7% 30.4% 43.9% 100.0%	IV, Random, 95% CI 0.81 [0.54, 1.21] 1.26 [0.89, 1.78] 0.84 [0.67, 1.04] 0.94 [0.72, 1.22]	
Gallagher 1996 Markle-Reid 2010 Lightbody 2002 Subtotal (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z 1.14.2 12-23 months Robertson 2001a Wyman 2007 Campbell 1999 Tinetti 1994	0.22910735 -0.18016464 .03; Chi ² = 4.1 = 0.47 (P = 0.	0.17784366 0.11375479 9, df = 2 (P =	54 155 259	55 159 264	30.4% 43.9%	1.26 [0.89, 1.78] 0.84 [0.67, 1.04]	
Markle-Reid 2010 Lightbody 2002 Subtotal (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z 1.14.2 12-23 months Robertson 2001a Wyman 2007 Campbell 1999 Tinetti 1994	0.22910735 -0.18016464 .03; Chi ² = 4.1 = 0.47 (P = 0.	0.17784366 0.11375479 9, df = 2 (P =	54 155 259	55 159 264	30.4% 43.9%	1.26 [0.89, 1.78] 0.84 [0.67, 1.04]	
Súbtotaí (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z 1.14.2 12-23 months Robertson 2001a Wyman 2007 Campbell 1999 Tinetti 1994	-0.18016464 .03; Chi ² = 4.1 = 0.47 (P = 0.	0.11375479 9, df = 2 (P =	155 259	159 264	43.9%	0.84 [0.67, 1.04]	
Súbtotaí (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z 1.14.2 12-23 months Robertson 2001a Wyman 2007 Campbell 1999 Tinetti 1994	.03; Chi ² = 4.1 = 0.47 (P = 0. -0.34759773	9, df = 2 (P =	259	264			
Heterogeneity: Tau ² = 0. Test for overall effect: Z 1.14.2 12-23 months Robertson 2001a Wyman 2007 Campbell 1999 Tinetti 1994	= 0.47 (P = 0.				100.0%	0.94 [0.72, 1.22]	-
Test for overall effect: Z 1.14.2 12-23 months Robertson 2001a Wyman 2007 Campbell 1999 Tinetti 1994	= 0.47 (P = 0.		0.12); I ² = 529	6			
1.14.2 12-23 months Robertson 2001a Wyman 2007 Campbell 1999 Tinetti 1994	-0.34759773	64)					
Robertson 2001a Wyman 2007 Campbell 1999 Tinetti 1994							
Wyman 2007 Campbell 1999 Tinetti 1994							
Campbell 1999 Tinetti 1994	0 36301294	0.14720418	121	119	7.5%	0.71 [0.53, 0.94]	
Tinetti 1994	-0.30301284	0.14250657	137	135	7.6%	0.70 [0.53, 0.92]	
	-0.50339065	0.13124277	116	117	7.9%	0.60 [0.47, 0.78]	_
Campbell 2005	-0.58369195	0.12936715	153	148	7.9%	0.56 [0.43, 0.72]	_ _
Campbell 2005	-0.34377154	0.12431871	98	96	8.0%	0.71 [0.56, 0.90]	_
Stevens 2001	0.05501813	0.12115499	635	1244	8.1%	1.06 [0.83, 1.34]	_
Pighills 2011	-0.6428122	0.09572127	87	78	8.6%	0.53 [0.44, 0.63]	_ - _
Close 1999	-0.88566251	0.08616998	184	213	8.8%	0.41 [0.35, 0.49]	
Hogan 2001	-0.21110179	0.08581848	75	77	8.8%	0.81 [0.68, 0.96]	
Elley 2008	-0.0251149	0.08278438	155	157	8.8%	0.98 [0.83, 1.15]	
Luukinen 2006	-0.06725223	0.07599346	180	178	8.9%	0.93 [0.81, 1.09]	
	-0.50528416	0.06484385	144	149	9.1%	0.60 [0.53, 0.69]	
Subtotal (95% CI)			2085		100.0%	0.69 [0.58, 0.82]	◆
Heterogeneity: Tau ² = 0. Test for overall effect: Z			P < 0.00001);	l ² = 89%			
1.14.3 24-35 months							
Campbell 1999	-0.36028289	0.09479566	116	117	100.0%	0.70 [0.58, 0.84]	
Subtotal (95% CI)			116	117	100.0%	0.70 [0.58, 0.84]	
Heterogeneity: Not applie	cable						
Test for overall effect: Z	= 3.80 (P = 0.	0001)					
							0.5.0.7 1 1.5.2

Analysis 15: Falls (number); focus of visit subgroups

			Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	. Total	Total	Weight	IV, Random, 95% C	IV, Random, 95% CI
1.15.1 Falls Only							
Gallagher 1996	-0.21130909	0.20634202	50	50	5.0%	0.81 [0.54, 1.21]	
Robertson 2001a	-0.34759773	0.14720418	121	119	6.1%	0.71 [0.53, 0.94]	·
Wyman 2007	-0.36301284	0.14250657	137	135	6.2%	0.70 [0.53, 0.92]	·
Campbell 2005	-0.34377154	0.12431871	98	96	6.6%	0.71 [0.56, 0.90]	·
Stevens 2001	0.05501813	0.12115499	635	1244	6.6%	1.06 [0.83, 1.34]	i — I — I
Pighills 2011	-0.6428122	0.09572127	87	78	7.1%	0.53 [0.44, 0.63]	·
Campbell 1999	-0.36028289	0.09479566	116	117	7.1%	0.70 [0.58, 0.84]	i —
Hogan 2001	-0.21110179	0.08581848	75	77	7.2%	0.81 [0.68, 0.96]	_- _
Elley 2008	-0.0251149	0.08278438	155	157	7.3%	0.98 [0.83, 1.15]	i —
Luukinen 2006	-0.06725223	0.07599346	180	178	7.4%	0.93 [0.81, 1.09]	i -+
Subtotal (95% CI)			1654	2251	66.5%	0.78 [0.68, 0.90]	i 🔶
Heterogeneity: Tau ² =	0.04; Chi ² = 39.	13, df = 9 (P	< 0.0001); I ² =	= 77%			
Test for overall effect	Z = 3.48 (P = 0.6)	0005)					
1.15.3 Both							
Markle-Reid 2010	0.22910735	0.17784366	54	55	5.6%	1.26 [0.89, 1.78]	1
Tinetti 1994	-0.58369195	0.12936715	153	148	6.5%	0.56 [0.43, 0.72]	
Lightbody 2002	-0.18016464	0.11375479	155	159	6.7%	0.84 [0.67, 1.04]	i —•
Close 1999	-0.88566251	0.08616998	184	213	7.2%	0.41 [0.35, 0.49]	
Davison 2005	-0.50528416	0.06484385	144	149	7.5%	0.60 [0.53, 0.69]	·
Subtotal (95% CI)			690	724	33.5%	0.67 [0.49, 0.90]	
Heterogeneity: Tau ² =	0.11; Chi ² = 44.	97, df = 4 (P	< 0.00001); I ²	= 91%			
Test for overall effect:	Z = 2.62 (P = 0.0)	009)					
Total (95% CI)			2344	2975	100.0%	0.74 [0.63, 0.86]	•
Heterogeneity: Tau ² =	0.07; Chi ² = 113	.04, df = 14	(P < 0.00001)	$I^2 = 88\%$			
Test for overall effect:							0.5 0.7 1 1.5 2 Favours home visits Favours control
Test for subgroup diff			$= 0.35$), $ ^2 = 0$	0%			ravours nome visits ravours control

Analysis 16: Falls (number); age of participants subgroups

			Home visits			Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.16.2 71-75							
Gallagher 1996	-0.21130909		50		5.2%		
ightbody 2002	-0.18016464	0.11375479	155		7.1%		
Subtotal (95% CI)			205		12.4%	0.83 [0.68, 1.01]	-
Heterogeneity: Tau ² =			$(0.89); I^2 = 0\%$				
Fest for overall effect:	Z = 1.88 (P = 0.0)	06)					
1.16.3 76-80							
Wyman 2007	-0.36301284	0 14250657	137	135	6.6%	0.70 [0.53, 0.92]	
Finetti 1994	-0.58369195		153		6.8%		
Stevens 2001	0.05501813		635		7.0%		_ _
Pighills 2011	-0.6428122		87		7.5%		_ _
Close 1999	-0.88566251		184		7.7%		_ _
Hogan 2001	-0.21110179		75		7.7%		
Davison 2005	-0.50528416		144		8.0%		
ubtotal (95% CI)			1415	2044	51.2%	0.64 [0.51, 0.79]	•
Heterogeneity: Tau ² =	= 0.08; Chi ² = 55.8	80, df = 6 (P -	< 0.00001); I ²	= 89%			-
Test for overall effect:	Z = 4.05 (P < 0.0)	0001)					
1.16.4 81-85							
Robertson 2001a	-0.34759773	0.14720418	121	119	6.5%	0.71 [0.53, 0.94]	_
Campbell 2005	-0.34377154	0.12431871	98	96	6.9%	0.71 [0.56, 0.90]	_
Campbell 1999	-0.36028289	0.09479566	116	117	7.5%	0.70 [0.58, 0.84]	
Elley 2008	-0.0251149	0.08278438	155		7.7%		
Subtotal (95% CI)			490		28.6%	0.77 [0.64, 0.94]	◆
Heterogeneity: Tau ² =			0.02 ; $I^2 = 68$	%			
Fest for overall effect:	Z = 2.64 (P = 0.0)	008)					
1.16.5 86+							
Luukinen 2006	-0.06725223	0.07599346	180	178	7.8%	0.93 [0.81, 1.09]	
Subtotal (95% CI)			180	178	7.8%	0.93 [0.81, 1.09]	•
leterogeneity: Not ap							
Test for overall effect:	Z = 0.88 (P = 0.3)	38)					
Fotal (95% CI)			2290	2920	100.0%	0.71 [0.61, 0.83]	•
Heterogeneity: Tau ² =	= 0.07; Chi ² = 102	.74, df = 13 (P < 0.00001)	$I^2 = 87\%$			
Fest for overall effect:							0.5 0.7 1 1.5 2 Favours home visits Favours control
est for subgroup diff			$= 0.04$), $l^2 = 6$	54.7%			ravours nome visits ravours control

Analysis 17: Falls (number); type of visitor subgroups

			Home visits	Control		Rate Ratio	Rate Ratio
	g[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.17.1 Nurse							
Gallagher 1996 - (0.21130909	0.20634202	50	50	5.0%	0.81 [0.54, 1.21]	
Robertson 2001a -	0.34759773	0.14720418	121	119	6.1%	0.71 [0.53, 0.94]	- _
Wyman 2007 -0	0.36301284	0.14250657	137	135	6.2%	0.70 [0.53, 0.92]	_
Stevens 2001	0.05501813	0.12115499	635	1244	6.6%	1.06 [0.83, 1.34]	_ -
Lightbody 2002 –	0.18016464	0.11375479	155	159	6.7%	0.84 [0.67, 1.04]	
	-0.0251149	0.08278438	155		7.3%		
Subtotal (95% CI)			1253	1864	38.0%	0.86 [0.75, 0.98]	•
Heterogeneity: Tau ² = 0.0	1; Chi ² = 9.14	4, df = 5 (P = 4	$(0.10); I^2 = 45$	%			
Test for overall effect: Z =	2.18 (P = 0.0))3)					
1.17.2 Other							
Pighills 2011	-0.6428122	0.09572127	87	78	7.1%	0.53 [0.44, 0.63]	_ -
Campbell 1999 -	0.36028289	0.09479566	116	117	7.1%	0.70 [0.58, 0.84]	_ _
Close 1999 -0	0.88566251	0.08616998	184	213	7.2%	0.41 [0.35, 0.49]	
Subtotal (95% CI)			387	408	21.3%	0.53 [0.39, 0.72]	◆
Heterogeneity: Tau ² = 0.0	6; Chi ² = 16.8	82, df = 2 (P =	0.0002); I ² =	= 88%			
Test for overall effect: Z =	4.09 (P < 0.0	0001)					
1.17.3 Combined							
Markle-Reid 2010	0.22910735	0.17784366	54	55	5.6%	1.26 [0.89, 1.78]	
Tinetti 1994 -	0.58369195	0.12936715	153	148	6.5%		
Campbell 2005 -0	0.34377154	0.12431871	98	96	6.6%	0.71 [0.56, 0.90]	_
Hogan 2001 -0	0.21110179	0.08581848	75	77	7.2%	0.81 [0.68, 0.96]	
Luukinen 2006 - (0.06725223	0.07599346	180	178	7.4%	0.93 [0.81, 1.09]	
Davison 2005 -0	0.50528416	0.06484385	144	149	7.5%	0.60 [0.53, 0.69]	
Subtotal (95% CI)			704	703	40.7%	0.77 [0.63, 0.94]	•
Heterogeneity: Tau ² = 0.0	5; Chi ² = 34.2	26, df = 5 (P <	0.00001); I ²	= 85%			
Test for overall effect: Z =	2.50 (P = 0.0)	01)					
Total (95% CI)			2344	2975	100.0%	0.74 [0.63, 0.86]	•
Heterogeneity: Tau ² = 0.0	$7: Chi^2 = 113$.04. df = 14 (f)	P < 0.00001	$l^2 = 88\%$			
Test for overall effect: Z =			. 0.00001)	,. = 00/0			0.5 0.7 1 1.5 2
Test for subgroup differen			$= 0.02$, $l^2 = 2$	75.0%			Favours home visits Favours control

Analysis 18: Falls (number); number of visits subgroups

			Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.18.1 1 Visit							
Stevens 2001	0.05501813	0.12115499	635	1244	7.8%	1.06 [0.83, 1.34]	_ _
Lightbody 2002	-0.18016464	0.11375479	155	159	7.9%	0.84 [0.67, 1.04]	
Pighills 2011	-0.6428122	0.09572127	87	78	8.2%		
Close 1999	-0.88566251	0.08616998	184		8.4%		
Subtotal (95% CI)			1061		32.3%	0.66 [0.43, 1.00]	
Heterogeneity: Tau ² =			< 0.00001); I ²	= 94%			
Test for overall effect:	Z = 1.98 (P = 0.0)	05)					
1.18.2 2-4 Visits							
Gallagher 1996	-0.21130909	0.20634202	50	50	6.0%	0.81 [0.54, 1.21]	
Campbell 1999	-0.36028289	0.09479566	116	117	8.2%	0.70 [0.58, 0.84]	_
Hogan 2001	-0.21110179	0.08581848	75	77	8.4%	0.81 [0.68, 0.96]	
Luukinen 2006	-0.06725223	0.07599346	180		8.6%	0.93 [0.81, 1.09]	-+-
Subtotal (95% CI)			421	422	31.2%	0.82 [0.71, 0.94]	•
Heterogeneity: Tau ² =	0.01; Chi ² = 5.9	0, df = 3 (P =	0.12 ; $I^2 = 49$	1%			
Test for overall effect:	Z = 2.87 (P = 0.0)	004)					
1.18.3 5 or More Vis	its						
Markle-Reid 2010	0.22910735	0.17784366	54	55	6.6%	1.26 [0.89, 1.78]	+
Robertson 2001a	-0.34759773	0.14720418	121	119	7.2%	0.71 [0.53, 0.94]	
Wyman 2007	-0.36301284	0.14250657	137	135	7.3%	0.70 [0.53, 0.92]	
Tinetti 1994	-0.58369195	0.12936715	153	148	7.6%	0.56 [0.43, 0.72]	_ —
Campbell 2005	-0.34377154	0.12431871	98		7.7%		
Subtotal (95% CI)			563		36.5%	0.74 [0.59, 0.93]	◆
Heterogeneity: Tau ² =			= 0.008); I ² =	71%			
Test for overall effect:	Z = 2.53 (P = 0.0)	01)					
Total (95% CI)			2045	2669	100.0%	0.73 [0.62, 0.87]	◆
Heterogeneity: Tau ² =	0.08; Chi ² = 92.	10, df = 12 (P	< 0.00001);	$l^2 = 87\%$			0.5 0.7 1 1.5 2
Test for overall effect:	Z = 3.59 (P = 0.00)	0003)					Favours home visits Favours control
Test for subgroup diff	erences: Chi ² = 1.	22, df = 2 (P	$= 0.54$), $I^2 = 0$	0%			ravours nome visits Favours control

Analysis 19: Falls (people) at each follow-up interval

Claschini 2009 0.52623569 0.35023791 101 100 17.1% 1.69 (0.85, 3.36] Green 2002 0.3769288 0.3375845 81 80 17.8% 1.46 [0.75, 2.83] Hendriks 2008 0.30155443 0.26740693 131 143 22.7% 1.35 [0.80, 2.28] Tinetti 1994 -0.36923617 0.24870421 147 144 24.1% 0.69 [0.42, 1.13] Subtoal (95% CI) 709 724 100.0% 1.06 [0.73, 1.54] Heterogeneity: Tau ² = 0.09; Chi ² = 9.58, df = 6 (P = 0.14); l ² = 37% Test for overall effect: Z = 0.32 (P = 0.75) 1.02.212-23 monts Liu-Ambrose 2008 -0.98082925 0.57735027 28 24 1.9% 0.38 [0.12, 1.16] Newbury 2001 -0.54897739 0.45770835 45 44 2.8% 0.58 [0.24, 1.42] Hogan 2001 -0.39382353 0.38082937 75 77 3.8% 0.67 [0.32, 1.42] Hogan 2001 -0.61587298 0.37710695 100 95 3.9% 0.54 [0.62, 1.13] Pighills 2011 -0.0873 0.3233 87 78 4.9% 0.92 [0.49, 1.73] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.75 [0.45, 1.25] van Haastregt 2000 0.25087224 0.26277077 116 117 6.5% 0.75 [0.45, 1.25] van Haastregt 2000 -0.4718774 0.26053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.2641876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Elley 2008 0.2641876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	
Huang 2004 -2.2154069 1.50286023 55 58 1.5% 0.11 [0.01, 2.08] Lightbody 2002 -0.0329 0.5833857 155 159 8.4% 0.97 [0.31, 3.04] Lin 2007 -0.46798547 0.5833857 39 40 8.4% 0.63 [0.20, 1.96] Claschini 2009 0.52623569 0.35023791 101 100 17.1% 1.69 [0.85, 3.36] Green 2002 0.3759288 0.3375845 81 80 17.8% 1.46 [0.75, 2.83] Hendriks 2008 0.30155443 0.26740693 131 143 22.7% 1.35 [0.80, 2.28] Tinetti 1994 -0.36923617 0.24870421 147 144 24.1% 0.69 [0.42, 1.13] Subtotal (95% CI) 709 724 100.0% 1.06 [0.73, 1.54] Heterogeneity: Tau ² = 0.09; Chi ² = 9.58, df = 6 (P = 0.14); l ² = 37% Test for overall effect: Z = 0.32 (P = 0.75) Liu-Ambrose 2008 -0.98082925 0.57735027 28 24 1.9% 0.38 [0.12, 1.16] Heterogeneity: Tau ² = 0.09; Chi ² = 9.58, df = 6 (P = 0.14); l ² = 37% Test for overall effect: Z = 0.32 (P = 0.75) Liu-Ambrose 2008 -0.98082925 0.57735027 28 24 1.9% 0.38 [0.12, 1.16] Fabacher 1994 -0.61587298 0.37710695 100 95 3.9% 0.54 [0.26, 1.13] Fabacher 1994 -0.61587298 0.37710695 100 95 3.9% 0.54 [0.26, 1.13] Fabacher 1994 -0.61587298 0.37710695 100 95 3.9% 0.54 [0.26, 1.13] Fabacher 1994 -0.61587298 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 1999 -0.29264401 0.2627707 116 117 6.5% 0.75 [0.45, 1.25] Campbell 1999 -0.29264401 0.2627707 116 117 6.5% 0.75 [0.45, 1.25] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.87 [0.53, 1.41] Hendriks 2008 -0.04718774 0.2503272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.87 [0.53, 1.41] Davison 2005 -0.44355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Davison 2005 -0.4385333 0.28483272 144 149 6.9% 0.87 [0.53, 1.41] Davison 2005 -0.43853336 0.20919389 134 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 235 1244 13.4% 0.93 [0.75, 1.15] Davison 2005 -0.43853336 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Davison 2005 -0.43853336 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.	
Lightbody 2002 -0.0329 0.5833857 155 159 8.4% 0.97 [0.31, 3.04] Lin 2007 -0.46798547 0.5833857 39 40 8.4% 0.63 [0.20, 1.96] Claschini 2009 0.52623569 0.35023791 101 100 17.1% 1.69 [0.85, 3.36] Green 2002 0.3769288 0.3375845 81 80 17.8% 1.46 [0.75, 2.83] Hendriks 2008 0.30155443 0.26740693 131 143 22.7% 1.35 [0.80, 2.28] Hendriks 2008 0.30155443 0.26740693 131 143 22.7% 1.35 [0.80, 2.28] Hendriks 2008 0.30155443 0.26740693 131 144 24.1% 0.669 [0.42, 1.13] Subtoal (95% CI) 709 724 100.0% 1.06 [0.73, 1.54] Heterogeneity: Tau ² = 0.09; Chi ² = 9.58, df = 6 (P = 0.14); l ² = 37% Test for overall effect: Z = 0.32 (P = 0.75) 1.00.2 12-23 months Liu-Ambrose 2008 -0.98082925 0.57735027 28 24 1.9% 0.38 [0.12, 1.16] Heterogeneity: Tau ² = 0.98082925 0.57735027 28 24 1.9% 0.58 [0.32, 1.42] Fabacher 1994 -0.61587298 0.37710695 100 95 3.9% 0.54 [0.26, 1.13] Pighills 2011 -0.0873 0.3233 87 78 4.9% 0.92 [0.49, 1.73] Campbell 2005 -0.54829756 0.29110846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 1999 -0.29264401 0.26277707 116 117 6.5% 0.75 [0.45, 1.25] Van Haastregt 2000 0.25087224 0.2621486 120 115 6.5% 1.29 [0.77, 2.15] Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.8% 0.67 [0.33, 1.41] Davison 2005 -0.14355343 0.24843272 144 149 6.8% 0.87 [0.53, 1.41] Davison 2005 -0.14355345 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Davison 2005 -0.14355345 0.24912063 131 132 6.9% 0.87 [0.53, 1.41] Davison 2005 -0.14355345 0.249138 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904346 635 1244 13.4% 0.93 [0.75, 1.15] Subtotal (95% CI) Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	-
Lin 20070.46798547 0.5833857 39 40 8.4% 0.63 [0.20, 1.96] Claschini 2009 0.52623569 0.35023791 101 100 17.1% 1.69 [0.85, 3.36] Green 2002 0.3769288 0.3375845 81 80 17.8% 1.46 [0.75, 2.83] Hendriks 2008 0.30155443 0.26740693 131 143 22.7% 1.35 [0.80, 2.28] Tinetti 1994 -0.36923617 0.24870421 147 144 24.1% 0.69 [0.42, 1.13] Subtotal (95% CD) 709 724 100.0% 1.06 [0.73, 1.54] Heterogeneity: Tau ² = 0.09; Chi ² = 9.58, df = 6 (P = 0.14); l ² = 37% Test for overall effect: Z = 0.32 (P = 0.75) 1.00.2 12-23 months Liu-Ambrose 2008 -0.98082925 0.57735027 28 24 1.9% 0.38 [0.12, 1.16] Newbury 2001 -0.54897739 0.45770835 45 44 2.8% 0.58 [0.24, 1.42] Hogan 2001 -0.39382353 0.38082937 75 77 3.8% 0.57 [0.24, 1.42] Hogan 2001 -0.39382353 0.38082937 75 77 3.8% 0.57 [0.24, 1.42] Hogan 2001 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 1999 -0.29264401 0.26277707 116 117 6.5% 0.75 [0.45, 1.25] Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24003446 147 144 7.2% 0.61 [0.38, 0.98] Luukinen 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.2400344 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 0.51 [0.38, 0.98] Luukinen 2005 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 0.51 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 0.51 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Subtotal (95% CD) Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	
Claschini 2009 0.52623569 0.35023791 101 100 17.1% 1.69 (0.85, 3.36] Green 2002 0.3769288 0.3375845 81 80 17.8% 1.46 [0.75, 2.83] Hendriks 2008 0.30155443 0.26740693 131 143 22.7% 1.35 [0.80, 2.28] Tinetti 1994 -0.36923617 0.24870421 147 144 24.1% 0.69 [0.42, 1.13] Subtoal (95% CI) 709 724 100.0% 1.06 [0.73, 1.54] Heterogeneity: Tau ² = 0.09; Chi ² = 9.58, df = 6 (P = 0.14); l ² = 37% Test for overall effect: Z = 0.32 (P = 0.75) 1.02.212-23 monts Liu-Ambrose 2008 -0.98082925 0.57735027 28 24 1.9% 0.38 [0.12, 1.16] Newbury 2001 -0.54897739 0.45770835 45 44 2.8% 0.58 [0.24, 1.42] Hogan 2001 -0.39382353 0.38082937 75 77 3.8% 0.67 [0.32, 1.42] Hogan 2001 -0.61587298 0.37710695 100 95 3.9% 0.54 [0.62, 1.13] Pighills 2011 -0.0873 0.3233 87 78 4.9% 0.92 [0.49, 1.73] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.75 [0.45, 1.25] van Haastregt 2000 0.25087224 0.26277077 116 117 6.5% 0.75 [0.45, 1.25] van Haastregt 2000 -0.4718774 0.26053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.2641876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Elley 2008 0.2641876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	
Green 2002 0.3769288 0.3375845 81 80 17.8% 1.46 [0.75, 2.83] Hendriks 2008 0.30155443 0.26740693 131 143 22.7% 1.35 [0.80, 2.28] Subtotal (95% CI) 709 724 100.0% 1.06 [0.42, 113] Subtotal (95% CI) 709 724 100.0% 1.06 [0.73, 1.54] Heterogeneity: Tau ² = 0.09; Chi ² = 9.58, df = 6 (P = 0.14); l ² = 37% 709 724 100.0% 1.06 [0.73, 1.54] Hewbury 2001 -0.54897739 0.45770835 45 44 2.8% 0.58 [0.24, 1.42] Hogan 2001 -0.54897739 0.45770835 45 44 2.8% 0.58 [0.24, 1.42] Fabacher 1994 -0.61587298 0.37710695 100 95 3.9% 0.54 [0.26] 1.31 Pighilis 2011 -0.0873 0.3233 87 78 4.9% 0.92 [0.49, 1.73] 44 Campbell 1999 -0.29264401 0.2621486 120 115 6.5% 1.29 [0.77, 2.15] 44 Hendrik	-
Hendriks 2008 0.30155443 0.26740693 131 143 22.7% 1.35 [0.80, 2.28] Tinetti 1994 -0.36923617 0.24870421 147 144 24.1% 0.69 [0.42, 1.13] Subtotal (95% CI) Heterogeneity: Tau ² = 0.09; Chi ² = 9.58, df = 6 (P = 0.14); l ² = 37% Test for overall effect: Z = 0.32 (P = 0.75) 1.00 1 -0.54897739 0.45770835 45 44 2.8% 0.58 [0.24, 1.42] Hogan 2001 -0.54897739 0.45770835 45 44 2.8% 0.58 [0.24, 1.42] Fabacher 1994 -0.61587298 0.37710695 100 95 3.9% 0.54 [0.26, 1.13] Pighills 2011 -0.0873 0.3233 87 78 4.9% 0.92 [0.49, 1.73] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 2005 -0.04718774 0.25073727 116 117 6.5% 0.75 [0.45, 1.25] van Haastregt 2000 0.25087224 0.2621486 120 115 6.5% 1.29 [0.77, 2.15] Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.1724982 0.24912063 131 132 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24004346 147 144 7.2% 0.61 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24003446 147 144 7.2% 0.61 [0.38, 0.98] Luukinen 2006 -0.32768710 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.0725709 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	
Tinetti 1994 -0.36923617 0.24870421 147 144 24.1% 0.69 [0.42, 1.13] Subtotal (95% CI) 709 724 100.0% 1.06 [0.73, 1.54] Heterogeneity: Tau ² = 0.09; Chi ² = 9.58, df = 6 (P = 0.14); l ² = 37% Test for overall effect: Z = 0.32 (P = 0.75) 1.20.2 12-23 months Liu-Ambrose 2008 -0.98082925 0.57735027 28 24 1.9% 0.38 [0.12, 1.16] Hewbury 2001 -0.54897739 0.45770835 45 44 2.8% 0.58 [0.24, 1.42] Hogan 2001 -0.39382333 0.38082937 75 77 3.8% 0.67 [0.32, 1.42] Hogan 2001 -0.0873 0.3233 87 78 4.9% 0.92 [0.49, 1.73] Pighills 2011 -0.0873 0.3233 87 78 4.9% 0.92 [0.49, 1.73] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 1999 -0.29264401 0.26277707 116 117 6.5% 0.75 [0.45, 1.25] Wan Haastregt 2000 0.25087224 0.2621486 120 115 6.5% 1.29 [0.77, 2.15] Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24004346 147 144 7.2% 0.61 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20913389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20913389 184 213 8.4% 0.43 [0.29, 0.65] Subtotal (95% CI) 2369 2997 100.0% 0.77 [0.66, 0.51] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	_
Subtotal (95% Cl) 709 724 100.0% 1.06 [0.73, 1.54] Heterogeneity: Tau ² = 0.09; Chi ² = 9.58, df = 6 (P = 0.14); l ² = 37% Test for overall effect: Z = 0.32 (P = 0.75) 1.20.2 12-23 months 1.00 0.38 [0.12, 1.16] Liu-Ambrose 2008 -0.908282925 0.57735027 28 24 1.9% 0.38 [0.12, 1.16] Newbury 2001 -0.54897739 0.45770835 45 44 2.8% 0.58 [0.24, 1.42] Fabacher 1994 -0.61587298 0.37710695 100 95 3.9% 0.54 [0.26, 1.13] Pighills 2011 -0.0873 0.3233 87 78 4.9% 0.92 [0.49, 1.73] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 2005 -0.04718774 0.2621486 120 115 6.5% 1.29 [0.77, 2.15] Hendriks 2008 -0.04718774 0.25053272 124 144 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24003464	
Test for overall effect: Z = 0.32 (P = 0.75) 1.20.2 12-23 months Liu-Ambrose 2008 -0.98082925 0.57735027 28 24 1.9% 0.38 [0.12, 1.16] Newbury 2001 -0.54897739 0.45770835 45 44 2.8% 0.58 [0.24, 1.42] Hogan 2001 -0.39382353 0.38082937 75 77 3.8% 0.67 [0.32, 1.42] Fabacher 1994 -0.61587298 0.37710695 100 95 3.9% 0.54 [0.26, 1.13] Fabacher 1994 -0.61587298 0.3233 87 78 4.9% 0.92 [0.49, 1.73] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 1999 -0.29264401 0.26277707 116 117 6.5% 0.75 [0.45, 1.25] van Haastregt 2000 0.25087224 0.2621486 120 115 6.5% 1.29 [0.77, 2.15] Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.240033644 180 178 7.2% 0.61 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20913389 184 213 8.4% 0.43 (0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 633 12441 3.4% 0.93 [0.75, 1.15] Subtotal (95% CI) 2369 2997 100.0% 0.77 [0.66, 0.91] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	•
1.20.2 12-23 months Liu-Ambrose 2008 -0.98082925 0.57735027 28 24 1.9% 0.38 [0.12, 1.16] Hogan 2001 -0.54897739 0.45770835 45 44 2.8% 0.58 [0.24, 1.42] Hogan 2001 -0.39382353 0.38082937 75 77 3.8% 0.67 [0.32, 1.42] Fabacher 1994 -0.61587298 0.37710695 100 95 3.9% 0.54 [0.26, 1.13] Pighills 2011 -0.0873 0.3233 87 78 4.9% 0.92 [0.49, 1.73] Campbell 1999 -0.29264401 0.26277707 116 117 6.5% 0.75 [0.45, 1.25] Van Haastregt 2000 0.25087224 0.2621486 120 115 6.5% 1.29 [0.77, 2.15] Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 <td< td=""><td></td></td<>	
Liu-Ambrose 2008 -0.98082925 0.57735027 28 24 1.9% 0.38 [0.12, 1.16] Newbury 2001 -0.54897739 0.45770835 45 44 2.8% 0.58 [0.24, 1.42] Hogan 2001 -0.39382353 0.38082937 75 77 3.8% 0.67 [0.32, 1.42] Fabacher 1994 -0.61587298 0.37710695 100 95 3.9% 0.54 [0.26, 1.13] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 1999 -0.29264401 0.26277707 116 117 6.5% 0.75 [0.45, 1.25] Van Haastregt 2000 0.25087224 0.2621486 120 115 6.5% 1.29 [0.77, 2.15] Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24003644 180 178 7.2% 0.61 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Subtotal (95% CI) Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	
Newbury 2001 -0.54897739 0.45770835 45 44 2.8% 0.58 [0.24, 1.42] Hogan 2001 -0.39382353 0.38082937 75 77 3.8% 0.67 [0.32, 1.42] Fabacher 1994 -0.61587298 0.3710695 100 95 3.9% 0.54 [0.26, 1.13] Piphills 2011 -0.0873 0.3233 87 78 4.9% 0.92 [0.49, 1.73] Campbell 1999 -0.29264401 0.26277707 116 117 6.5% 0.75 [0.45, 1.25] van Haastregt 2000 0.25087224 0.2621486 120 115 6.5% 1.29 [0.77, 2.15] Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Lukinen 2006 -0.32768741 0.24003644 180 178 7.2% 1.30 [0.82, 2.08] </td <td></td>	
Hogan 2001 -0.39382353 0.38082937 75 77 3.8% 0.67 (0.32, 1.42) Fabacher 1994 -0.61587298 0.37710695 100 95 3.9% 0.54 (0.26, 1.13) Pighills 2011 -0.0873 0.3233 87 78 4.9% 0.92 [0.49, 1.73] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 1999 -0.29264401 0.26277707 116 117 6.5% 0.75 [0.45, 1.25] van Haastregt 2000 0.25087224 0.2621486 120 115 6.5% 1.29 [0.77, 2.15] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tineti 1994 -0.49140754 0.24003464 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08]	
Fabacher 1994 -0.61587298 0.37710695 100 95 3.9% 0.54 0.26 1.13 Pighilis 2011 -0.0873 0.3233 87 78 4.9% 0.92 [0.49, 1.73] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 1999 -0.29264401 0.26277707 116 117 6.5% 1.29 [0.77, 2.15] Wann 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24004346 147 144 7.2% 0.61 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24004346 147 144 7.2% 0.61 [0.38, 0.98] Eley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] 0.55 Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.9	_
Pighills 2011 -0.0873 0.3233 87 78 4.9% 0.92 0.49, 1.73] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 1999 -0.29264401 0.26277707 116 117 6.5% 0.75 [0.45, 1.25] Wan Haastregt 2000 0.25087224 0.26021486 120 115 6.5% 1.29 [0.77, 2.15] Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 19 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24004346 147 144 7.2% 0.61 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08	-
Pighills 2011 -0.0873 0.3233 87 78 4.9% 0.92 [0.49, 1.73] Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 1999 -0.29264401 0.26277707 116 117 6.5% 0.75 [0.45, 1.25] Wan Haastregt 2000 0.25087224 0.26021486 120 115 6.5% 1.29 [0.77, 2.15] Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.87 [0.53, 1.41] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24004346 147 144 7.2% 0.61 [0.38, 0.8] Luwkinen 2006 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Eley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08	
Campbell 2005 -0.54829756 0.29130846 98 96 5.6% 0.58 [0.33, 1.02] Campbell 1999 -0.29264401 0.26277707 116 117 6.5% 0.75 [0.45, 1.25] van Haastregt 2000 0.25087224 0.2621486 120 115 6.5% 1.29 [0.77, 2.15] Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24004346 147 144 7.2% 0.61 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 633 1244 13.4% 0.93 [0.75, 1.15] Subtotal (95% CI) 2369 2997 100.0% 0.77 [0.66, 0.91] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	
van Haastregt 2000 0.25087224 0.2621486 120 115 6.5% 1.29 [0.77, 2.15] Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.1724982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24004346 147 144 7.2% 0.61 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 124 13.4% 0.93 [0.75, 1.15] Subtotal (95% CI) 2369 2997 100.0% 0.77 [0.66, 0.91] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	
van Haastregt 2000 0.25087224 0.2621486 120 115 6.5% 1.29 [0.77, 2.15] Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.1724982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24004346 147 144 7.2% 0.61 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 124 13.4% 0.93 [0.75, 1.15] Subtotal (95% CI) 2369 2997 100.0% 0.77 [0.66, 0.91] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	
Hendriks 2008 -0.04718774 0.25053272 124 134 6.8% 0.95 [0.58, 1.56] Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24004346 147 144 7.2% 0.61 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Subtotal (95% CI) 2369 2997 100.0% 0.77 [0.66, 0.91] 40% Test for overall effect: Z = 3.03 (P = 0.002) 124 13.4% 0.94 0.77 [0.66, 0.91] 40%	
Wyman 2007 -0.17249982 0.24912063 131 132 6.9% 0.84 [0.52, 1.37] Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24004346 147 144 7.2% 0.61 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Subtotal (95% CI) 2369 2997 100.0% 0.77 [0.66, 0.91] • Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% 13.4% 0.93 [0.75, 1.15] • Loss for overall effect: Z = 3.03 (P = 0.002) 12.03 24-35 months 13.0 (P = 0.002) 12.03 24-35 months • •	
Davison 2005 -0.14355343 0.24843272 144 149 6.9% 0.87 [0.53, 1.41] Tinetti 1994 -0.49140754 0.24004346 147 144 7.2% 0.61 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Subtotal (95% CI) 2369 2997 100.0% 0.77 [0.66, 0.91] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	-
Tinetti 1994 -0.49140754 0.24004346 147 144 7.2% 0.61 [0.38, 0.98] Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Subtotal (95% Cl) 2369 2997 100.0% 0.77 [0.66, 0.91] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	-
Luukinen 2006 -0.32768741 0.24003644 180 178 7.2% 0.72 [0.45, 1.15] Elley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Subtotal (95% Cl) 2369 2997 100.0% 0.77 [0.66, 0.91] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	
Elley 2008 0.26418876 0.23873701 155 157 7.2% 1.30 [0.82, 2.08] Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Subtotal (95% CI) 2369 2997 100.0% 0.77 [0.66, 0.91] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	
Close 1999 -0.83533368 0.20919389 184 213 8.4% 0.43 [0.29, 0.65] Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Subtotal (95% Cl) 2369 2997 100.0% 0.77 [0.66, 0.91] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	,
Stevens 2001 -0.07257069 0.10904384 635 1244 13.4% 0.93 [0.75, 1.15] Subtotal (95% CI) 2369 2997 100.0% 0.77 [0.66, 0.91] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	
Subtotal (95% Cl) 2369 2997 100.0% 0.77 [0.66, 0.91] Heterogeneity: Tau ² = 0.04; Chi ² = 24.98, df = 15 (P = 0.05); l ² = 40% Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	
Test for overall effect: Z = 3.03 (P = 0.002) 1.20.3 24-35 months	
1.20.3 24-35 months	
Subtotal (95% CI) 367 404 100.0% 1.11 [0.79, 1.57]	
Heterogeneity: Not applicable	
Test for overall effect: $Z = 0.62$ (P = 0.54)	
1.20.4 36+ months	_
Vetter 1992 0.37948962 0.19925871 240 210 100.0% 1.46 [0.99, 2.16] Subtotal (95% CI) 240 210 100.0% 1.46 [0.99, 2.16]	
Heterogeneity: Not applicable	
Test for overall effect: $Z = 1.90 (P = 0.06)$	

0.5 0.7 1 1.5 2 Favours home visits Favours control

Analysis 20: Falls (people); focus of visit subgroups

			Home visits	Control		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.21.1 Falls Only							
Lin 2007	-0.46798547	0.5833857	39	40	1.7%	0.63 [0.20, 1.96]	←
Liu-Ambrose 2008	-0.98082925	0.57735027	28	24	1.7%	0.38 [0.12, 1.16]	←
Hogan 2001	-0.39382353	0.38082937	75	77	3.2%	0.67 [0.32, 1.42]	
Green 2002	0.3769288	0.3375845	81	80	3.7%	1.46 [0.75, 2.83]	
Pighills 2011	-0.0873	0.3233	87	78	3.9%	0.92 [0.49, 1.73]	
Campbell 2005	-0.54829756	0.29130846	98	96	4.5%	0.58 [0.33, 1.02]	
Campbell 1999	-0.29264401	0.26277707	116	117	5.0%	0.75 [0.45, 1.25]	
Wyman 2007	-0.17249982	0.24912063	131	132	5.3%	0.84 [0.52, 1.37]	
Luukinen 2006	-0.32768741	0.24003644	180	178	5.4%	0.72 [0.45, 1.15]	
Elley 2008	0.26418876	0.23873701	155	157	5.5%	1.30 [0.82, 2.08]	- +
Stevens 2001	-0.07257069	0.10904384	635				
Subtotal (95% CI)			1625	2223	48.4%	0.87 [0.73, 1.02]	◆
Heterogeneity: Tau ² =			$= 0.33$; $I^2 = 1$	12%			
Test for overall effect:	Z = 1.73 (P = 0.0)	8)					
1.21.2 MGA Only							
Sorensen 1988	0.10790975	0.17417759	367	404	7.0%	1.11 [0.79, 1.57]	_
Subtotal (95% CI)			367			1.11 [0.79, 1.57]	-
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.62 (P = 0.5)	4)					
1.21.3 Both							
Huang 2004	-2.2154069	1.50286023	55	58	0.3%	0.11 [0.01, 2.08]	·
Lightbody 2002	-0.0329		155				
Newbury 2001	-0.54897739		45				·
Fabacher 1994	-0.61587298	0.37710695	100	95	3.2%		
Ciaschini 2009	0.52623569	0.35023791	101	100	3.6%	1.69 [0.85, 3.36]	
van Haastregt 2000	0.25087224	0.2621486	120	115	5.0%	1.29 [0.77, 2.15]	_
Hendriks 2008	-0.04718774	0.25053272	124	134	5.2%	0.95 [0.58, 1.56]	
Davison 2005	-0.14355343	0.24843272	144	149	5.3%	0.87 [0.53, 1.41]	
Tinetti 1994	-0.49140754	0.24004346	147	144	5.4%		
Close 1999	-0.83533368		184		6.1%		
Vetter 1992		0.19925871	240	210			⊢
Subtotal (95% CI)			1415	1421	44.6%	0.84 [0.61, 1.16]	-
Heterogeneity: Tau ² =			= 0.0008); I ²	= 67%			
Test for overall effect:	Z = 1.07 (P = 0.2)	9)					
Total (95% CI)			3407	4048	100.0%	0.86 [0.73, 1.01]	•
Heterogeneity: Tau ² =	0.07: Chi ² = 43.5	9. df = 22 (P =	$= 0.004$); $I^2 =$	50%			
Test for overall effect:							0.5 0.7 1 1.5 2
Test for subgroup diff			$(0.39), I^2 = 0$	%			Favours home visits Favours control

Analysis 21: Falls (people); age of participants subgroups

			lome visits	Control		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total		Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.22.2 71-75					-		
Huang 2004	-2.2154069	1.50286023	55	58	0.3%	0.11 [0.01, 2.08]	·
Lightbody 2002	-0.0329	0.5833857	155	159	1.7%	0.97 [0.31, 3.04]	
Fabacher 1994	-0.61587298	0.37710695	100	95	3.2%	0.54 [0.26, 1.13]	
Ciaschini 2009	0.52623569	0.35023791	101	100	3.6%	1.69 [0.85, 3.36]	
Green 2002	0.3769288	0.3375845	81	80	3.7%	1.46 [0.75, 2.83]	
Hendriks 2008	-0.04718774	0.25053272	124	134	5.2%	0.95 [0.58, 1.56]	
Subtotal (95% CI)			616	626	17.7%	1.01 [0.67, 1.54]	-
Heterogeneity: Tau ² =			14); $I^2 = 40\%$				
Test for overall effect:	Z = 0.06 (P = 0.9)	5)					
1.22.3 76-80							
Lin 2007	-0.46798547	0.5833857	39	40	1.7%	0.63 [0.20, 1.96]	·
Newbury 2001	-0.54897739		45	44	2.4%	0.58 [0.24, 1.42]	
Hogan 2001	-0.39382353	0.38082937	75	77	3.2%	0.67 [0.32, 1.42]	
Pighills 2011	-0.0873	0.3233	87	78	3.9%	0.92 [0.49, 1.73]	
van Haastregt 2000	0.25087224	0.2621486	120	115	5.0%	1.29 [0.77, 2.15]	
Wyman 2007	-0.17249982	0.24912063	131	132	5.3%	0.84 [0.52, 1.37]	
Davison 2005	-0.14355343	0.24843272	144	149	5.3%	0.87 [0.53, 1.41]	
Tinetti 1994	-0.49140754	0.24004346	147	144	5.4%	0.61 [0.38, 0.98]	
Close 1999	-0.83533368	0.20919389	184	213	6.1%	0.43 [0.29, 0.65]	
Vetter 1992	0.37948962	0.19925871	240	210	6.4%	1.46 [0.99, 2.16]	
Sorensen 1988	0.10790975	0.17417759	367	404	7.0%	1.11 [0.79, 1.57]	+-
Stevens 2001 Subtotal (95% CI)	-0.07257069	0.10904384	635 2214	1244 2850	8.6% 60.3%	0.93 [0.75, 1.15] 0.85 [0.69, 1.06]	•
Heterogeneity: Tau ² =	= 0.07; Chi ² = 26.0	9, df = 11 (P =	0.006 ; $I^2 =$	58%			-
Test for overall effect:	Z = 1.45 (P = 0.1)	5)					
1.22.4 81-85							
Liu-Ambrose 2008	-0.98082925	0.57735027	28	24	1.7%	0.38 [0.12, 1.16]	·
Campbell 2005	-0.54829756	0.29130846	98	96	4.5%	0.58 [0.33, 1.02]	
Campbell 1999	-0.29264401	0.26277707	116	117	5.0%	0.75 [0.45, 1.25]	
Elley 2008	0.26418876	0.23873701	155	157	5.5%	1.30 [0.82, 2.08]	
Subtotal (95% CI)			397	394	16.6%	0.76 [0.48, 1.22]	
Heterogeneity: Tau ² =			$(07); I^2 = 58\%$				
Test for overall effect:	Z = 1.14 (P = 0.2)	5)					
1.22.5 86+							
Luukinen 2006 Subtotal (95% CI)	-0.32768741	0.24003644	180 180	178 178	5.4% 5.4%	0.72 [0.45, 1.15] 0.72 [0.45, 1.15]	
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 1.37 (P = 0.1)	7)					
Total (95% CI)			3407		100.0%	0.86 [0.73, 1.01]	•
Heterogeneity: Tau ² =			0.004); I ² =	50%			0.5 0.7 1 1.5 2
Test for overall effect:			_				Favours home visits Favours control
Test for subaroup diff	ferences: $Chi^2 = 1.5$	36. df = 3 (P =	(0.71) , $ ^2 = 09$	6			

Analysis 22: Falls (people); type of visitor subgroups

			Home visits			Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.23.1 Nurse							
Lightbody 2002	-0.0329				1.7%		
Newbury 2001	-0.54897739				2.4%		
Ciaschini 2009	0.52623569	0.35023791	101	100	3.6%		
van Haastregt 2000	0.25087224	0.2621486	120		5.0%		
Wyman 2007	-0.17249982	0.24912063	131	132	5.3%		
Elley 2008		0.23873701					
Stevens 2001 Subtotal (95% CI)	-0.07257069	0.10904384	635 1342		8.6% 32.0%		
Heterogeneity: Tau ² =	= 0.01: Chi ² = 6.76	df = 6 (P = 0)	(0.34) : $I^2 = 119$	6			Ť
Test for overall effect							
1.23.2 Other							
Huang 2004	-2.2154069	1.50286023	55	58	0.3%	0.11 [0.01, 2.08]	•
Lin 2007	-0.46798547	0.5833857	39	40	1.7%	0.63 [0.20, 1.96]	· · · ·
Liu–Ambrose 2008	-0.98082925	0.57735027	28	24	1.7%	0.38 [0.12, 1.16]	·
Green 2002	0.3769288	0.3375845	81	80	3.7%	1.46 [0.75, 2.83]	
Pighills 2011	-0.0873	0.3233	87	78	3.9%	0.92 [0.49, 1.73]	
Campbell 1999	-0.29264401	0.26277707	116	117	5.0%	0.75 [0.45, 1.25]	
Close 1999	-0.83533368	0.20919389	184	213	6.1%	0.43 [0.29, 0.65]	
Vetter 1992	0.37948962	0.19925871	240	210	6.4%		
Subtotal (95% CI)			830	820	28.8%	0.77 [0.49, 1.21]	
Heterogeneity: Tau ² =	= 0.25; Chi ² = 24.6	8, df = 7 (P =	0.0009); I ² =	72%			
Test for overall effect	Z = 1.14 (P = 0.2)	6)					
1.23.3 Combined							
Hogan 2001	-0.39382353	0.38082937	75	77	3.2%		
Fabacher 1994	-0.61587298	0.37710695			3.2%		
Campbell 2005	-0.54829756	0.29130846	98	96	4.5%		
Hendriks 2008	-0.04718774	0.25053272	124	134	5.2%		
Davison 2005	-0.14355343						
Tinetti 1994	-0.49140754			144	5.4%	0.61 [0.38, 0.98]	
Luukinen 2006	-0.32768741				5.4%		
Sorensen 1988	0.10790975	0.17417759			7.0%		
Subtotal (95% CI)			1235		39.2%	0.79 [0.65, 0.96]	◆
Heterogeneity: Tau ² =			$(0.32); I^2 = 149$	6			
Test for overall effect	Z = 2.37 (P = 0.0)	2)					
Total (95% CI)			3407		100.0%	0.86 [0.73, 1.01]	•
Heterogeneity: Tau ² =			= 0.004); I ² =	50%			0.5.0.7 1 1.5.2
Test for overall effect:							Favours home visits Favours control
Fest for subgroup diff	ferences: Chi ² = 3.9	94. df = 2 (P =	$= 0.14$), $I^2 = 4$	9.3%			ravours nome visits ravours control

Analysis 23: Falls (people); number of visits subgroups

			Home visits	Control		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.24.1 1 Visit					Ŧ		
Lightbody 2002	-0.0329	0.5833857	155	159	1.9%	0.97 [0.31, 3.04]	
Newbury 2001	-0.54897739	0.45770835	45	44	2.8%	0.58 [0.24, 1.42]	·
Pighills 2011	-0.0873	0.3233	87	78	4.6%	0.92 [0.49, 1.73]	
Hendriks 2008	-0.04718774	0.25053272	124	134	6.1%	0.95 [0.58, 1.56]	
Close 1999	-0.83533368	0.20919389	184	213	7.2%	0.43 [0.29, 0.65]	
Sorensen 1988	0.10790975	0.17417759	367	404	8.2%	1.11 [0.79, 1.57]	+•
Stevens 2001	-0.07257069	0.10904384	635		10.2%		
Subtotal (95% CI)			1597		40.9%	0.82 [0.62, 1.08]	-
Heterogeneity: Tau ² =			$(0.03); I^2 = 58$	3%			
Test for overall effect:	Z = 1.42 (P = 0.1)	6)					
1.24.2 2-4 Visits							
Huang 2004	-2.2154069	1.50286023	55	58	0.3%	0.11 [0.01, 2.08]	·
Hogan 2001	-0.39382353	0.38082937	75	77	3.7%	0.67 [0.32, 1.42]	
Fabacher 1994	-0.61587298	0.37710695	100	95	3.7%	0.54 [0.26, 1.13]	
Green 2002	0.3769288	0.3375845	81	80	4.3%	1.46 [0.75, 2.83]	
Campbell 1999	-0.29264401	0.26277707	116	117	5.8%	0.75 [0.45, 1.25]	
Luukinen 2006	-0.32768741	0.24003644	180	178	6.4%	0.72 [0.45, 1.15]	
Vetter 1992	0.37948962	0.19925871	240		7.4%		
Subtotal (95% CI)			847		31.7%	0.87 [0.61, 1.24]	-
Heterogeneity: Tau ² =			0.03 ; $I^2 = 56$	5%			
Test for overall effect:	Z = 0.77 (P = 0.4)	4)					
1.24.3 5 or More Visi	ts						
Lin 2007	-0.46798547	0.5833857	39	40	1.9%	0.63 [0.20, 1.96]	+ · · · · · · · · · · · · · · · · · · ·
Liu-Ambrose 2008	-0.98082925	0.57735027	28		1.9%		·
Campbell 2005	-0.54829756	0.29130846	98	96	5.2%	0.58 [0.33, 1.02]	
van Haastregt 2000	0.25087224	0.2621486	120	115	5.8%	1.29 [0.77, 2.15]	
Wyman 2007	-0.17249982		131		6.1%		
Tinetti 1994	-0.49140754	0.24004346	147		6.4%		
Subtotal (95% CI)			563		27.3%	0.74 [0.54, 1.01]	
Heterogeneity: Tau ² =			$(1.19); I^2 = 339$	6			
Test for overall effect:	Z = 1.90 (P = 0.0)	6)					
Total (95% CI)			3007		100.0%	0.82 [0.69, 0.97]	◆
Heterogeneity: Tau ² =			= 0.007); I ² =	49%			05071152
Test for overall effect:							Favours home visits Favours control
Test for subgroup diff	erences: Chi ² = 0.4	16. df = 2 (P =	$(0.79), I^2 = 0$	%			

Analysis 24: Falls (subjective), results at longest follow-up

			Home visits	Control		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
Liu-Ambrose 2008	0	0.27817432	28	24	2.8%	0.00 [-0.55, 0.55]
Kono 2004	-0.02347903	0.23479855	35	36	3.7%	-0.02 [-0.48, 0.44]
Lin 2007	-0.64046659	0.22858767	39	40	3.9%	-0.64 [-1.09, -0.19]
Markle-Reid 2010	-0.03791867	0.20723195	49	43	4.6%	-0.04 [-0.44, 0.37]
Gallagher 1996	-0.09310776	0.19859121	50	50	4.9%	-0.09 [-0.48, 0.30]
Huang 2004	0.0645922	0.18698532	55	58	5.4%	0.06 [-0.30, 0.43]
Pighills 2011	-0.10720186	0.15532549	87	78	7.2%	-0.11 [-0.41, 0.20]
Hendriks 2008	-0.07620556	0.14132418	124	134	8.2%	-0.08 [-0.35, 0.20]
Campbell 1999	-0.30709109	0.13743163	103	110	8.5%	-0.31 [-0.58, -0.04]
van Haastregt 2000	-0.22889926	0.13050247	120	115	9.1%	-0.23 [-0.48, 0.03]
Thomas 2007	0.13965832	0.1207089	204	103	10.1%	0.14 [-0.10, 0.38]
Gitlin 2006	-0.23125107	0.11873019	149	136	10.3%	-0.23 [-0.46, 0.00]
Tinetti 1994	-0.31569383	0.11767364	147	144	10.4%	-0.32 [-0.55, -0.09]
Davison 2005	-0.28073774	0.11361653	159	154	10.8%	-0.28 [-0.50, -0.06]
Total (95% CI)			1349	1225	100.0%	-0.16 [-0.26, -0.07	1 🔶
Heterogeneity: Tau ² =	0.01; Chi ² = 18.26, df	= 13 (P = 0.1)	5); I ² = 29%				
Test for overall effect:	Z = 3.32 (P = 0.0009)						Favours home visits Favours control

Analysis 25: Falls (subjective) at each follow-up interval

-0.64046659 -0.03791867 -0.09310776 0.0645922 0.21486493 -0.13807129 $i^2 = 11.39, dt$ (P = 0.47) -0.02347903 -0.10720186	0.27817432 0.22858767 0.20723195 0.19859121 0.18698532 0.13803665 0.11536587 f = 6 (P = 0.08); f	Total 28 39 49 50 55 131 149 501 2² = 47%	24 40 43 50 58 143 136	8.5%	IV, Random, 95% CI 0.00 [-0.55, 0.55] -0.64 [-1.09, -0.19] -0.04 [-0.44, 0.37] -0.09 [-0.48, 0.30] 0.06 [-0.30, 0.43] 0.21 [-0.06, 0.49] -0.14 [-0.36, 0.09] -0.07 [-0.25, 0.12]	IV, Random, 95% CI
-0.64046659 -0.03791867 -0.09310776 0.0645922 0.21486493 -0.13807129 $i^2 = 11.39, dt$ (P = 0.47) -0.02347903 -0.10720186	0.22858767 0.20723195 0.19859121 0.18698532 0.13803665 0.11536587 F = 6 (P = 0.08); f	39 49 50 55 131 149 501	40 43 50 58 143 136	11.1% 12.6% 13.2% 14.2% 18.9% 21.5%	-0.64 [-1.09, -0.19] -0.04 [-0.44, 0.37] -0.09 [-0.48, 0.30] 0.06 [-0.30, 0.43] 0.21 [-0.06, 0.49] -0.14 [-0.36, 0.09]	
-0.64046659 -0.03791867 -0.09310776 0.0645922 0.21486493 -0.13807129 $i^2 = 11.39, dt$ (P = 0.47) -0.02347903 -0.10720186	0.22858767 0.20723195 0.19859121 0.18698532 0.13803665 0.11536587 F = 6 (P = 0.08); f	39 49 50 55 131 149 501	40 43 50 58 143 136	11.1% 12.6% 13.2% 14.2% 18.9% 21.5%	-0.64 [-1.09, -0.19] -0.04 [-0.44, 0.37] -0.09 [-0.48, 0.30] 0.06 [-0.30, 0.43] 0.21 [-0.06, 0.49] -0.14 [-0.36, 0.09]	
$\begin{array}{l} \text{-0.03791867}\\ \text{-0.09310776}\\ \text{-0.0645922}\\ \text{-0.1486493}\\ \text{-0.13807129}\\ \text{i}^2 = 11.39, \text{dr}\\ (\text{P} = 0.47)\\ \text{-0.02347903}\\ \text{-0.10720186} \end{array}$	0.20723195 0.19859121 0.18698532 0.13803665 0.11536587 f = 6 (P = 0.08); f	49 50 55 131 149 501	43 50 58 143 136	12.6% 13.2% 14.2% 18.9% 21.5%	-0.04 [-0.44, 0.37] -0.09 [-0.48, 0.30] 0.06 [-0.30, 0.43] 0.21 [-0.06, 0.49] -0.14 [-0.36, 0.09]	
-0.09310776 0.0645922 0.21486493 -0.13807129 i ² = 11.39, di (P = 0.47) -0.02347903 -0.10720186	0.19859121 0.18698532 0.13803665 0.11536587 f = 6 (P = 0.08); f	50 55 131 149 501	50 58 143 136	13.2% 14.2% 18.9% 21.5%	-0.09 [-0.48, 0.30] 0.06 [-0.30, 0.43] 0.21 [-0.06, 0.49] -0.14 [-0.36, 0.09]	
$\begin{array}{l} 0.0645922\\ 0.21486493\\ 0.13807129\\ i^2 = 11.39, dt\\ (P = 0.47)\\ 0.02347903\\ 0.10720186 \end{array}$	0.18698532 0.13803665 0.11536587 f = 6 (P = 0.08); f	55 131 149 501	58 143 136	14.2% 18.9% 21.5%	0.06 [-0.30, 0.43] 0.21 [-0.06, 0.49] -0.14 [-0.36, 0.09]	
0.21486493 -0.13807129 i ² = 11.39, df (P = 0.47) -0.02347903 -0.10720186	0.13803665 0.11536587 f = 6 (P = 0.08); f	131 149 501	143 136	18.9% 21.5%	0.21 [-0.06, 0.49] -0.14 [-0.36, 0.09]	•
-0.13807129 i ² = 11.39, dt (P = 0.47) -0.02347903 -0.10720186	0.11536587 f = 6 (P = 0.08); f	149 501	136	21.5%	-0.14 [-0.36, 0.09]	•
i ² = 11.39, df (P = 0.47) -0.02347903 -0.10720186	f = 6 (P = 0.08); f	501				•
(P = 0.47) -0.02347903 -0.10720186		² = 47%				
(P = 0.47) -0.02347903 -0.10720186						
0.10720186	0 23479855					
0.10720186	0 23479855					
	0.20110000	35	36	4.0%	-0.02 [-0.48, 0.44]	_
	0.15532549	87	78	8.4%	-0.11 [-0.41, 0.20]	
-0.07620556	0.14132418	124	134	9.8%	-0.08 [-0.35, 0.20]	_
0.30709109	0.13743163	103	110	10.3%	-0.31 [-0.58, -0.04]	
0.22889926	0.13050247	120	115	11.2%	-0.23 [-0.48, 0.03]	
0.23125107	0.11873019	149	136	13.0%	-0.23 [-0.46, 0.00]	
0.31569383	0.11767364	147	144	13.2%	-0.32 [-0.55, -0.09]	
0.28073774	0.11361653	159	154	13.9%	-0.28 [-0.50, -0.06]	
0.05677979	0.101518	299 1223	143 1050	16.4% 100.0%	0.06 [-0.14, 0.26] -0.18 [-0.27, -0.08]	•
i ² = 9.92, df =	$= 8 (P = 0.27); I^2$	= 19%				-
(P = 0.0003)						
0.18207067	0.11020276	253 253			0.18 [-0.03, 0.40] 0.18 [-0.03, 0.40]	-
(P = 0.10)						
0.13965832	0.1207089	204 204			0.14 [-0.10, 0.38] 0.14 [-0.10, 0.38]	‡
(P = 0.25)						
	(P = 0.0003) 0.18207067 (P = 0.10) 0.13965832	(P = 0.0003) 0.18207067 0.11020276 (P = 0.10) 0.13965832 0.1207089	0.18207067 0.11020276 253 253 (P = 0.10) 0.13965832 0.1207089 204 204	(P = 0.0003) 0.18207067 0.11020276 253 122 253 122 (P = 0.10) 0.13965832 0.1207089 204 103 204 103	(P = 0.0003) 0.18207067 0.11020276 253 122 100.0% (P = 0.10) 0.13965832 0.1207089 204 103 100.0%	(P = 0.0003) 253 122 100.0% 0.18 [-0.03, 0.40] 0.18207067 0.11020276 253 122 100.0% 0.18 [-0.03, 0.40] (P = 0.10) 0.13965832 0.1207089 204 103 100.0% 0.14 [-0.10, 0.38] 204 103 100.0% 0.14 [-0.10, 0.38]

Favours home visits Favours control

Analysis 26: Falls (subjective); focus of visit subgroups

			Home visits			Std. Mean Difference	
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
1.27.1 Falls Only							
Liu–Ambrose 2008		0.27817432			2.8%	0.00 [-0.55, 0.55	
Lin 2007	-0.64046659	0.22858767	39	40	3.9%		
Gallagher 1996	-0.09310776	0.19859121	50	50	4.9%	-0.09 [-0.48, 0.30]]
Pighills 2011	-0.10720186	0.15532549	87	78	7.2%	-0.11 [-0.41, 0.20]	
Campbell 1999 Subtotal (95% CI)	-0.30709109	0.13743163	103 307			-0.31 [-0.58, -0.04] -0.23 [-0.42, -0.04]	
Heterogeneity: Tau ² =	= 0.01; Chi ² = 5.32, df =	4 (P = 0.26)	$I^2 = 25\%$				-
Test for overall effect	Z = 2.41 (P = 0.02)						
1.27.2 MGA Only							
(ono 2004	-0.02347903				3.7%	-0.02 [-0.48, 0.44]	
Thomas 2007	0.13965832	0.1207089			10.1%	0.14 [-0.10, 0.38	
Subtotal (95% CI)			239	139	13.8%	0.11 [-0.10, 0.32]	1 🔶
	= 0.00; Chi ² = 0.38, df =	1 (P = 0.54)	$ I^2 = 0\%$				
Test for overall effect	Z = 0.98 (P = 0.33)						
1.27.3 Both							
Markle-Reid 2010	-0.03791867	0.20723195	49	43	4.6%	-0.04 [-0.44, 0.37]]
Huang 2004	0.0645922	0.18698532	55	58	5.4%	0.06 [-0.30, 0.43]]
Hendriks 2008	-0.07620556	0.14132418	124	134	8.2%	-0.08 [-0.35, 0.20]]
/an Haastregt 2000	-0.22889926	0.13050247	120	115	9.1%	-0.23 [-0.48, 0.03]]
Gitlin 2006	-0.23125107	0.11873019	149	136	10.3%	-0.23 [-0.46, 0.00]]
Finetti 1994	-0.31569383	0.11767364	147	144	10.4%	-0.32 [-0.55, -0.09]]
Davison 2005	-0.28073774	0.11361653				-0.28 [-0.50, -0.06	
Subtotal (95% CI)			803	784	58.9%	-0.20 [-0.30, -0.10]	1 🔶
Heterogeneity: Tau ² =	= 0.00; Chi ² = 4.97, df =	6 (P = 0.55)	$I^2 = 0\%$				
Test for overall effect	Z = 3.96 (P < 0.0001)						
1.27.4 Neither							
Subtotal (95% CI)			0	0		Not estimable	2
Heterogeneity: Not ap							
Test for overall effect	: Not applicable						
Total (95% CI)			1349	1225	100.0%	-0.16 [-0.26, -0.07]	1 🔶
Heterogeneity: Tau ² =	= 0.01; Chi ² = 18.26, df	= 13 (P = 0.1)	.5); I ² = 29%				-1 -0.5 0 0.5
est for overall effect	: Z = 3.32 (P = 0.0009)						Favours home visits Favours control
Test for subaroup dif	ferences: $Chi^2 = 7.37$, df	= 2 (P = 0.0)	3), $I^2 = 72.9\%$				ravours nome visits ravours control

Analysis 27: Falls (subjective); age of participants subgroups

			Home visits	Control		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% C	IV, Random, 95% CI
1.28.2 71-75							
Gallagher 1996	-0.09310776	0.19859121	50	50	5.3%	-0.09 [-0.48, 0.30]]
Huang 2004	0.0645922	0.18698532	55	58	5.8%	0.06 [-0.30, 0.43]]
Hendriks 2008	-0.07620556	0.14132418	124	134	8.6%	-0.08 [-0.35, 0.20]	
Subtotal (95% CI)			229	242	19.7%	-0.04 [-0.23, 0.15]	
	= 0.00; Chi ² = 0.45, df =	= 2 (P = 0.80);	$r^{2} = 0\%$				
Test for overall effect	Z = 0.42 (P = 0.67)						
1.28.3 76-80							
Lin 2007	-0.64046659	0.22858767	39	40	4.2%	-0.64 [-1.09, -0.19]]
Pighills 2011	-0.10720186	0.15532549	87	78	7.6%	-0.11 [-0.41, 0.20]	
van Haastregt 2000	-0.22889926	0.13050247	120	115	9.5%	-0.23 [-0.48, 0.03]	ı —⊷–
Gitlin 2006	-0.23125107	0.11873019	149	136	10.6%	-0.23 [-0.46, 0.00]	
Tinetti 1994	-0.31569383	0.11767364	147	144	10.8%	-0.32 [-0.55, -0.09]	
Davison 2005	-0.28073774	0.11361653	159	154		-0.28 [-0.50, -0.06]	
Subtotal (95% CI)			701	667	53.9%	-0.27 [-0.37, -0.16	1 🔶
	= 0.00; Chi ² = 4.09, df =		$l^2 = 0\%$				
Test for overall effect	Z = 4.94 (P < 0.00001))					
1.28.4 81-85							
Liu–Ambrose 2008	0	0.27817432	28	24	3.0%	0.00 [-0.55, 0.55]]
Kono 2004	-0.02347903	0.23479855	35	36	4.0%	-0.02 [-0.48, 0.44]]
Campbell 1999	-0.30709109	0.13743163	103	110	8.9%	-0.31 [-0.58, -0.04]]
Thomas 2007	0.13965832	0.1207089	204	103	10.4%	0.14 [-0.10, 0.38]	
Subtotal (95% CI)			370	273	26.4%	-0.05 [-0.30, 0.19]	
	= 0.03; Chi ² = 6.01, df =	: 3 (P = 0.11);	$l^2 = 50\%$				
Test for overall effect	Z = 0.43 (P = 0.67)						
Total (95% CI)			1300	1182	100.0%	-0.17 [-0.27, -0.07]	ı 🔶
Heterogeneity: Tau ² =	= 0.01; Chi ² = 17.85, df	= 12 (P = 0.12)	2); I ² = 33%				-1 -0.5 0 0.5 1
Test for overall effect:	Z = 3.27 (P = 0.001)						-1 -0.5 0 0.5 1 Favours home visits Favours control
Test for subgroup diff	ferences: Chi ² = 5.54, df	= 2 (P = 0.06)), $I^2 = 63.9\%$				ravours nome visits Favours control

Analysis 28: Falls (subjective); type of visitor subgroups

			Home visits			Std. Mean Difference	
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
1.29.1 Nurse							
Kono 2004	-0.02347903	0.23479855	35	36	3.7%	-0.02 [-0.48, 0.44]
Gallagher 1996	-0.09310776	0.19859121	50	50	4.9%	-0.09 [-0.48, 0.30]]
van Haastregt 2000	-0.22889926	0.13050247	120	115	9.1%	-0.23 [-0.48, 0.03]
Thomas 2007	0.13965832	0.1207089	204	103	10.1%	0.14 [-0.10, 0.38	
Subtotal (95% CI)			409	304	27.9%	-0.04 [-0.23, 0.14	1 🔶
Heterogeneity: Tau ² =	: 0.01; Chi ² = 4.39, df =	= 3 (P = 0.22);	$l^2 = 32\%$				
Test for overall effect:	Z = 0.46 (P = 0.64)						
1.29.2 Other							
iu–Ambrose 2008	0	0.27817432	28	24	2.8%	0.00 [-0.55, 0.55]
Lin 2007	-0.64046659	0.22858767	39	40	3.9%	-0.64 [-1.09, -0.19]
Huang 2004	0.0645922	0.18698532	55	58	5.4%	0.06 [-0.30, 0.43	j <u> </u>
Pighills 2011	-0.10720186	0.15532549	87	78	7.2%	-0.11 [-0.41, 0.20	j <u> </u>
Campbell 1999	-0.30709109	0.13743163	103	110	8.5%	-0.31 [-0.58, -0.04	j —•
Subtotal (95% CI)			312	310	27.8%	-0.20 [-0.42, 0.02	1 🔶
Heterogeneity: Tau ² =	= 0.03; Chi ² = 7.20, df =	= 4 (P = 0.13);	$l^2 = 44\%$				
Test for overall effect:	Z = 1.77 (P = 0.08)						
1.29.3 Combined							
Markle-Reid 2010	-0.03791867	0.20723195	49	43	4.6%	-0.04 [-0.44, 0.37]
Hendriks 2008	-0.07620556	0.14132418	124	134	8.2%	-0.08 [-0.35, 0.20]
Gitlin 2006	-0.23125107	0.11873019	149	136	10.3%	-0.23 [-0.46, 0.00]
Tinetti 1994	-0.31569383	0.11767364	147	144	10.4%	-0.32 [-0.55, -0.09]
Davison 2005	-0.28073774	0.11361653	159			-0.28 [-0.50, -0.06	
Subtotal (95% CI)			628	611	44.3%	-0.22 [-0.34, -0.11	1 🔶
Heterogeneity: Tau ² =	0.00; Chi ² = 2.76, df =	= 4 (P = 0.60);	$l^2 = 0\%$				
Test for overall effect:	Z = 3.83 (P = 0.0001)						
Total (95% CI)			1349	1225	100.0%	-0.16 [-0.26, -0.07	1 🔶
Heterogeneity: Tau ² =	0.01; Chi ² = 18.26, df	= 13 (P = 0.1)	5); I ² = 29%				-1 -0.5 0 0.5 1
Test for overall effect:	Z = 3.32 (P = 0.0009)						-1 -0.5 0 0.5 1 Favours home visits Favours control
Test for subaroup diff	erences: Chi ² = 2.53, df	= 2 (P = 0.28)	3), $I^2 = 21.0\%$				ravours nome visits Favours control

Analysis 29: Falls (subjective); number of visits subgroups

			Home visits	Control		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Tota	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
1.30.1 1 Visit							
Pighills 2011	-0.10720186	0.15532549	87	78	8.1%	-0.11 [-0.41, 0.20]
Hendriks 2008	-0.07620556	0.14132418	124		9.2%	-0.08 [-0.35, 0.20	
Subtotal (95% CI)			211	212	17.3%	-0.09 [-0.30, 0.11] 🔶
	= 0.00; Chi ² = 0.02, df =	1 (P = 0.88);	$I^2 = 0\%$				
Test for overall effect:	Z = 0.86 (P = 0.39)						
1.30.2 2-4 Visits							
Kono 2004	-0.02347903	0.23479855	35	36	4.3%	-0.02 [-0.48, 0.44]
Gallagher 1996	-0.09310776	0.19859121	50	50	5.6%	-0.09 [-0.48, 0.30]
Huang 2004	0.0645922	0.18698532	55	58	6.2%	0.06 [-0.30, 0.43]
Campbell 1999	-0.30709109	0.13743163	103	110	9.5%	-0.31 [-0.58, -0.04]
Thomas 2007	0.13965832	0.1207089	204		11.2%	0.14 [-0.10, 0.38	
Subtotal (95% CI)			447	357	36.7%	-0.04 [-0.23, 0.14	1 🔶
Heterogeneity: Tau2 =	= 0.02; Chi ² = 6.38, df =	4 (P = 0.17);	$l^2 = 37\%$				
Test for overall effect:	Z = 0.47 (P = 0.64)						
1.30.3 5 or More Vis	its						
Liu-Ambrose 2008	0	0.27817432	28	24	3.2%	0.00 [-0.55, 0.55]
Lin 2007	-0.64046659	0.22858767	39	40	4.5%	-0.64 [-1.09, -0.19]
Markle-Reid 2010	-0.03791867	0.20723195	49	43	5.2%	-0.04 [-0.44, 0.37]
van Haastregt 2000	-0.22889926	0.13050247	120	115	10.2%	-0.23 [-0.48, 0.03]
Gitlin 2006	-0.23125107		149		11.4%		
Tinetti 1994	-0.31569383	0.11767364	147		11.5%		
Subtotal (95% CI)			532	502	46.0%	-0.26 [-0.38, -0.13	1 🔶
	= 0.00; Chi ² = 5.13, df =	5 (P = 0.40);	$I^2 = 2\%$				
Test for overall effect	Z = 4.03 (P < 0.0001)						
Total (95% CI)			1190	1071	100.0%	-0.15 [-0.25, -0.04	1 🔶
Heterogeneity: Tau2 =	= 0.01; Chi ² = 17.11, df =	= 12 (P = 0.1)	5); I ² = 30%				-1 -0.5 0 0.5 1
	Z = 2.80 (P = 0.005)						Favours home visits Favours control
Test for subaroup diff	ferences: Chi ² = 4.18. df	= 2 (P = 0.12)	2), $I^2 = 52.1\%$				ravours nome tisks Tavours control

Analysis 30: Functioning ADL/IADL at each follow-up interval

			ome visits			Std. Mean Difference	Std. Mean Difference
Study or Subgroup Ste 1.32.1 01–11 months	d. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Liu-Ambrose 2008	-0.56888253		28	24		-0.57 [-1.12, -0.02]	
Nelson 2004	-0.65151763		32	38		-0.65 [-1.13, -0.17]	
Lin 2007	-0.03271423		39	40	11.3%	-0.03 [-0.47, 0.40]	
Hendriks 2008		0.12061204	131	143	22.9%	0.01 [-0.22, 0.25]	
Gitlin 2006		0.11532486	149	136	23.8%	-0.12 [-0.34, 0.11]	
Lightbody 2002 Subtotal (95% CI)	-0.22855077		155 534	159 540		-0.23 [-0.45, -0.01] - 0.19 [-0.37, -0.02]	•
Heterogeneity: Tau ² = 0.0		$= 5 (P = 0.11); I^2$	= 45%				
Test for overall effect: Z =	2.19 (P = 0.03)						
1.32.2 12-23 months							
Kono 2004	-0.19990984		43	38	2.5%	-0.20 [-0.64, 0.24]	
Balaban 1988		0.21465724	40	46	2.7%	0.17 [-0.25, 0.59]	
Newbury 2001	-0.33387362		45	44	2.8%	-0.33 [-0.75, 0.08]	
Pighills 2011	-	0.15521335	87	78	4.4%	0.00 [-0.30, 0.30]	-+
Bernabei 1998	-0.47892869	0.15293139	88	87	4.5%	-0.48 [-0.78, -0.18]	
Luukinen 2006	0.1107394	0.14937183	144	150	4.7%	0.11 [-0.18, 0.40]	
Fabacher 1994	-0.15872936	0.14316457	100	95	5.0%	-0.16 [-0.44, 0.12]	
van Haastregt 2000	-0.106346	0.13025952	120	115	5.6%	-0.11 [-0.36, 0.15]	
Hendriks 2008	-0.08744713	0.12431503	124	134	6.0%	-0.09 [-0.33, 0.16]	
Gitlin 2006	-0.161	0.117	149	136	6.4%	-0.16 [-0.39, 0.07]	
Bouman 2008		0.11672524	139	154	6.4%	0.02 [-0.21, 0.25]	
Kono 2011		0.1103356	161	162	6.9%	0.03 [-0.19, 0.24]	
Close 1999	-0.40541651		184	213		-0.41 [-0.60, -0.21]	<u> </u>
van Hout 2010	-0.11463482		215	209	7.9%	-0.11 [-0.30, 0.08]	
Hebert 2001		0.09270249	233	231	8.2%	0.03 [-0.15, 0.21]	_
van Rossum 1993		0.08293965	292	288	9.1%	0.00 [-0.16, 0.16]	_
	-0.07097102		328	310	9.1%		_1
Ploeg 2010 Subtotal (95% CI)	-0.07097102	0.07914576	2492			-0.07 [-0.23, 0.08] -0.10 [-0.17, -0.02]	
Heterogeneity: $Tau^2 = 0.0$	11 Chi ² - 26 97 df	- 16 (B - 0.04)		2450	100.070	-0.10 [-0.17, -0.02]	•
Test for overall effect: Z =		= 10 (P = 0.04)	; 1" = 40%				
1.32.3 24-35 months							
Bouman 2008	-0.00729692		139	154		-0.01 [-0.24, 0.22]	_ <u>+</u> _
Kono 2011		0.11102345	161	162	16.6%	0.00 [-0.21, 0.22]	-
Sommers 2000	-0.15080546		201	183	19.6%	-0.15 [-0.35, 0.05]	-•1
Counsell 2007	0.01850388	0.06480628	474		48.7%	0.02 [-0.11, 0.15]	—
Subtotal (95% CI)			975	976	100.0%	-0.02 [-0.11, 0.07]	•
Heterogeneity: Tau² = 0.0 Test for overall effect: Z =		= 3 (P = 0.56); I ²	= 0%				
1.32.4 36+ months							
Stuck 1995	-0.22919786	0.11274332	170	147	18.1%	-0.23 [-0.45, -0.01]	
Stuck 2000	0.1528288	0.10393887	217	459	19.1%	0.15 [-0.05, 0.36]	+ - -
Vetter 1984a	-0.20375902	0.09345891	234	225	20.4%	-0.20 [-0.39, -0.02]	
Vetter 1984b		0.09089423	254	231	20.7%	0.14 [-0.03, 0.32]	+ - -
van Rossum 1993		0.08299354	292	288	21.7%	0.05 [-0.12, 0.21]	÷-
Subtotal (95% CI)			1167	1350	100.0%	-0.01 [-0.17, 0.14]	•
Heterogeneity: Tau ² = 0.0	02; Chi ² = 13.85, df	= 4 (P = 0.008)	$ I^2 = 71\%$			-]
Test for overall effect: Z =							

-2 -1 0 1 2 Favours home visits Favours control

Analysis 31: Functioning ADL/IADL; focus of visit subgroups

			Home visits	Control		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Total		Weight	IV, Random, 95% C	
1.33.1 Falls Only	stu. Mean Difference	36	Total	TUTAI	weight	IV, Kanuoni, 55% C	1 IV, Kalidolli, 55% CI
Liu-Ambrose 2008	-0.56888253	0 27060104	28	24	1 2%	-0.57 [-1.12, -0.02	1
Lin 2007	-0.03271423		20		1.2%	-0.03 [-0.47, 0.40]	
Pighills 2011		0.15521335	87		2.9%	0.00 [-0.30, 0.30	
Luukinen 2006		0.13321333	144		3.1%	0.11 [-0.18, 0.40	
Subtotal (95% CI)	0.1107594	0.14957165	298		9.0%	-0.05 [-0.28, 0.18	
	= 0.02: Chi ² = 4.64. df =	3(P - 0.20)		252	5.070	0.05 [0.20, 0.10	
Test for overall effect:		- 5 (F = 0.20)	1 = 33%				
1.33.2 MGA Only							
Kono 2004	-0.19990984	0 22212899	43	38	1.8%	-0.20 [-0.64, 0.24	1
Balaban 1988		0.21465724	40		1.8%	0.17 [-0.25, 0.59	
Bernabei 1998	-0.47892869		88			-0.48 [-0.78, -0.18	
Bouman 2008	-0.00729692		139		4.0%	-0.01 [-0.24, 0.22	
Stuck 1995	-0.22919786		139				
Kono 2011		0.11274332	170		4.2%	-0.23 [-0.45, -0.01]	
Stuck 2000		0.11102345	217		4.2%	0.00 [-0.21, 0.22	
Sommers 2000	-0.1528288		217		4.5%	0.15 [-0.05, 0.36	
						-0.15 [-0.35, 0.05	
Vetter 1984a	-0.20375902		234			-0.20 [-0.39, -0.02	
Hebert 2001		0.09270249	233		4.9%	0.03 [-0.15, 0.21	
/etter 1984b		0.09089423	254		5.0%	0.14 [-0.03, 0.32	
an Rossum 1993		0.08299354	292		5.3%	0.05 [-0.12, 0.21	
Ploeg 2010	-0.07097102		328		5.4%	-0.07 [-0.23, 0.08	
Counsell 2007	0.01850388	0.06480628	474 2874		6.0% 59.4%	0.02 [-0.11, 0.15	
Subtotal (95% CI)	0.01.CH2 07.01.40	12 (2 0 0		3038	59.4%	-0.04 [-0.12, 0.04	J T
	= 0.01; Chi ² = 27.01, df : Z = 1.04 (P = 0.30)	= 13 (P = 0.0)	1); $\Gamma = 52\%$				
	2 - 1.04 (1 - 0.50)						
1.33.3 Both							
Newbury 2001	-0.33387362		45		1.9%	-0.33 [-0.75, 0.08	
Fabacher 1994	-0.15872936				3.2%	-0.16 [-0.44, 0.12	
van Haastregt 2000		0.13025952	120		3.6%	-0.11 [-0.36, 0.15	
Hendriks 2008	-0.08744713		124		3.8%	-0.09 [-0.33, 0.16	
Gitlin 2006	-0.161	0.117	149		4.0%	-0.16 [-0.39, 0.07	
Lightbody 2002	-0.22855077		155			-0.23 [-0.45, -0.01	
Close 1999	-0.40541651					-0.41 [-0.60, -0.21	
van Hout 2010 Subtotal (95% CI)	-0.11463482	0.09704545	215 1092		4.7%	-0.11 [-0.30, 0.08 -0.20 [-0.28, -0.11	
	= 0.00; Chi ² = 6.86, df =	7 (P = 0.44)		1105	33.0%	0.20 [0.20, -0.11	• •
Test for overall effect	Z = 4.62 (P < 0.00001))					
1.33.4 Neither							
Nelson 2004 Subtotal (95% CI)	-0.65151763	0.2435781	32 32			-0.65 [-1.13, -0.17 -0.65 [-1.13, -0.17	
Heterogeneity: Not ap	plicable						
	Z = 2.67 (P = 0.007)						
Total (95% CI)			4296	4473	100.0%	-0.10 [-0.17, -0.03	ı 🔶
	= 0.01; Chi ² = 55.40, df	= 26 (P = 0.0)	(007) : $I^2 = 539$			-	
	Z = 2.92 (P = 0.004)			-			-1 -0.5 0 0.5 1
	ferences: $Chi^2 = 12.10.0$	f = 3 (P = 0)	(0.7) $I^2 = 75$	%			Favours home visits Favours control

Analysis 32: Functioning ADL/IADL; age of participants subgroups

		Home visits	Control		Std. Mean Difference	Std. Mean Difference
Std. Mean Difference	SE	Total		Weight	IV, Random, 95% C	
					, ,	
0.1719863	0.21465724	40	46	1.9%	0.17 [-0.25, 0.59]	1
		40	46	1.9%	0.17 [-0.25, 0.59	
olicable						
-0.15872936	0.14316457	100	95	3.2%	-0.16 [-0.44, 0.12]]
-0.08744713	0.12431503	124	134	3.8%	-0.09 [-0.33, 0.16]]
-0.22855077	0.11297287	155	159	4.1%	-0.23 [-0.45, -0.01]]
0.01850388	0.06480628			6.0%	0.02 [-0.11, 0.15]	
		853	865	17.2%	-0.08 [-0.20, 0.04	1 🔶
	3 (P = 0.24);	$l^2 = 2.9\%$				
Z = 1.35 (P = 0.18)						
-0.65151763	0.2435781	32	38	1.5%	-0.65 [-1.13, -0.17]	ı ———
	0.22285176	39		1.8%	-0.03 [-0.47, 0.40]	
		45	44	1.9%		
				2.9%	0.00 [-0.30, 0.30]	
				3.6%	-0.11 [-0.36, 0.15	
-0.161	0.117			4.0%	-0.16 [-0.39, 0.07	
-0.00729692	0.11669365	139	154	4.0%		
		161	162	4.2%		-
				4.5%		
				4.9%		
				5.3%		
0.02; Chi ² = 30.99, df	= 13 (P = 0.0)	03); $I^2 = 58\%$				-
0 56880353	0 27060104		24	1.2%	-0.57[-1.120.03]	1
		88 170				
	0.112/4552	170	147		-0.23 [-0.45, -0.01]	
	0 10202897	217	450	4 50/	0 15 [_0 05 0 26]	
0.1528288	0.10393887	217		4.5%	0.15 [-0.05, 0.36]	
0.1528288 -0.11463482	0.09704545	215	209	4.7%	-0.11 [-0.30, 0.08	i
0.1528288	0.09704545		209 310	4.7% 5.4%	-0.11 [-0.30, 0.08 -0.07 [-0.23, 0.08	
0.1528288 -0.11463482 -0.07097102	0.09704545 0.07914378	215 328 1089	209 310	4.7%	-0.11 [-0.30, 0.08	
0.1528288 -0.11463482	0.09704545 0.07914378	215 328 1089	209 310	4.7% 5.4%	-0.11 [-0.30, 0.08 -0.07 [-0.23, 0.08	
0.1528288 -0.11463482 -0.07097102 0.03; Chi ² = 16.42, df	0.09704545 0.07914378	215 328 1089	209 310	4.7% 5.4%	-0.11 [-0.30, 0.08 -0.07 [-0.23, 0.08	
0.1528288 -0.11463482 -0.07097102 0.03; Chi ² = 16.42, df Z = 2.01 (P = 0.04)	0.09704545 0.07914378 = 6 (P = 0.01	215 328 1089); I ² = 63%	209 310 1274	4.7% 5.4% 24.8%	-0.11 [-0.30, 0.08] -0.07 [-0.23, 0.08] -0.16 [-0.32, -0.00]	
0.1528288 -0.11463482 -0.07097102 0.03; Chi ² = 16.42, df Z = 2.01 (P = 0.04)	0.09704545 0.07914378	215 328 1089); I ² = 63% 144	209 310 1274 150	4.7% 5.4% 24.8% 3.1%	-0.11 [-0.30, 0.08] -0.07 [-0.23, 0.08] -0.16 [-0.32, -0.00] 0.11 [-0.18, 0.40]	
$\begin{array}{c} 0.1528288\\ -0.11463482\\ -0.07097102\\ \end{array}$ 0.03; Chi ² = 16.42, df Z = 2.01 (P = 0.04) \\ 0.1107394 \end{array}	0.09704545 0.07914378 = 6 (P = 0.01	215 328 1089); I ² = 63%	209 310 1274 150	4.7% 5.4% 24.8%	-0.11 [-0.30, 0.08] -0.07 [-0.23, 0.08] -0.16 [-0.32, -0.00]	
0.1528288 -0.11463482 -0.07097102 0.03; Chi ² = 16.42, df Z = 2.01 (P = 0.04)	0.09704545 0.07914378 = 6 (P = 0.01	215 328 1089); I ² = 63% 144	209 310 1274 150	4.7% 5.4% 24.8% 3.1%	-0.11 [-0.30, 0.08] -0.07 [-0.23, 0.08] -0.16 [-0.32, -0.00] 0.11 [-0.18, 0.40]	
0.1528288 -0.11463482 -0.07097102 0.03; Chi ² = 16.42, df Z = 2.01 (P = 0.04) 0.1107394 blicable	0.09704545 0.07914378 = 6 (P = 0.01	215 328 1089); I ² = 63% 144 144	209 310 1274 150 150	4.7% 5.4% 24.8% 3.1% 3.1%	-0.11 [-0.30, 0.08 -0.07 [-0.23, 0.08 -0.16 [-0.32, -0.00 0.11 [-0.18, 0.40] 0.11 [-0.18, 0.40]	
0.1528288 -0.11463482 -0.07097102 0.03; Chi ² = 16.42, df Z = 2.01 (P = 0.04) 0.1107394 plicable Z = 0.74 (P = 0.46)	0.09704545 0.07914378 = 6 (P = 0.01 0.14937183	215 328 1089); I ² = 63% 144 144 4296	209 310 1274 150 150	4.7% 5.4% 24.8% 3.1% 3.1%	-0.11 [-0.30, 0.08] -0.07 [-0.23, 0.08] -0.16 [-0.32, -0.00] 0.11 [-0.18, 0.40]	
0.1528288 -0.11463482 -0.07097102 0.03; Chi ² = 16.42, df Z = 2.01 (P = 0.04) 0.1107394 blicable	0.09704545 0.07914378 = 6 (P = 0.01 0.14937183	215 328 1089); I ² = 63% 144 144 4296	209 310 1274 150 150	4.7% 5.4% 24.8% 3.1% 3.1%	-0.11 [-0.30, 0.08 -0.07 [-0.23, 0.08 -0.16 [-0.32, -0.00 0.11 [-0.18, 0.40] 0.11 [-0.18, 0.40]	
	$\begin{array}{c} 0.1719863\\ 0.1719863\\ \text{plicable}\\ Z=0.80\ (P=0.42)\\ &-0.15872936\\ &-0.08744713\\ &-0.2855077\\ &0.01850388\\ 0.00;\ Chi^2=4.21,\ df=\\ Z=1.35\ (P=0.18)\\ &-0.65151763\\ &-0.03271423\\ &-0.33387362\\ &0.033795\\ &-0.106346\\ &-0.161\\ &-0.00729692\\ &0.0033795\\ &-0.15080546\\ &-0.40541651\\ &-0.20375902\\ &0.0286403\\ &0.1452128\\ &0.04554753\\ 0.02;\ Chi^2=30.99,\ df\\ Z=2.02\ (P=0.04)\\ &-0.56888253\\ &-0.19990984\\ &-0.47892869\\ &$	$\begin{array}{c} 0.1719863 & 0.21465724 \\ \text{blicable} \\ \text{Z} = 0.80 \ (\text{P} = 0.42) \\ & -0.15872936 & 0.14316457 \\ & -0.08744713 & 0.12431503 \\ & -0.22855077 & 0.11297287 \\ & 0.01850388 & 0.06480628 \\ \text{0.00; Chi^2} = 4.21, \text{ df} = 3 \ (\text{P} = 0.24); \\ \text{Z} = 1.35 \ (\text{P} = 0.18) \\ & -0.65151763 & 0.2435781 \\ & -0.03271423 & 0.22285176 \\ & -0.33287362 & 0.21166453 \\ & 0.15521335 \\ & -0.166 & 0.13025952 \\ & -0.161 & 0.117 \\ & -0.0729692 & 0.11669365 \\ & 0.0033795 & 0.11102345 \\ & -0.15080546 & 0.1021874 \\ & -0.40541651 & 0.1014799 \\ & -0.20375902 & 0.09345891 \\ & 0.0286403 & 0.09270249 \\ & 0.14412128 & 0.09089423 \\ & 0.04554753 & 0.08299354 \\ \end{array}$	$\begin{array}{cccccccc} 0.1719863 & 0.21465724 & 40 \\ & 40 \\ & 40 \\ & 40 \\ & 50 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Analysis 33: Functioning ADL/IADL; type of visitor subgroups

			Home visits C	ontrol		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% C	IV, Random, 95% CI
1.35.1 Nurse							
Kono 2004	-0.19990984	0.22212899	43	38	1.8%	-0.20 [-0.64, 0.24]]
Newbury 2001	-0.33387362	0.21166453	45	44	1.9%	-0.33 [-0.75, 0.08	i <u> </u>
van Haastregt 2000	-0.106346	0.13025952	120	115	3.6%	-0.11 [-0.36, 0.15	j <u> </u>
Bouman 2008	-0.00729692	0.11669365	139	154	4.0%	-0.01 [-0.24, 0.22	j <u> </u>
Lightbody 2002	-0.22855077	0.11297287	155	159	4.1%	-0.23 [-0.45, -0.01]]
Stuck 1995	-0.22919786	0.11274332	170	147	4.2%	-0.23 [-0.45, -0.01]]
Stuck 2000	0.1528288	0.10393887	217	459	4.5%	0.15 [-0.05, 0.36]] +
van Hout 2010	-0.11463482	0.09704545	215	209	4.7%	-0.11 [-0.30, 0.08]]
Hebert 2001	0.0286403	0.09270249	233	231	4.9%	0.03 [-0.15, 0.21]]
van Rossum 1993	0.04554753	0.08299354	292	288	5.3%	0.05 [-0.12, 0.21]]
Ploeg 2010	-0.07097102	0.07914378	328	310	5.4%	-0.07 [-0.23, 0.08	
Subtotal (95% CI)			1957	2154	44.4%	-0.06 [-0.14, 0.01	1 🔶
Heterogeneity: Tau2 =	= 0.00; Chi ² = 13.93, df	= 10 (P = 0.18)	3); $I^2 = 2.8\%$				
Test for overall effect	: Z = 1.61 (P = 0.11)						
1.35.2 Other							
Liu-Ambrose 2008	-0.56888253	0 27960194	28	24	1.2%	-0.57 [-1.12, -0.02]	1
Nelson 2004	-0.65151763		32	38		-0.65 [-1.13, -0.17]	
Lin 2007	-0.03271423		39	40	1.3%	-0.03 [-0.47, 0.40]	
Pighills 2011		0.15521335	87	78	2.9%	0.00 [-0.30, 0.30]	
Bernabei 1998	-0.47892869		88	87		-0.48 [-0.78, -0.18]	
Close 1999	-0.40541651		184	213		-0.41 [-0.60, -0.21]	
Vetter 1984a	-0.20375902		234	225		-0.20 [-0.39, -0.02]	
Vetter 1984b	0.14412128		254	223	5.0%	0.14 [-0.03, 0.32]	
Subtotal (95% CI)	0.14412128	0.09089423	946	936		-0.24 [-0.44, -0.04	
	= 0.06: Chi ² = 29.00. df	= 7 (P = 0.000)					· •
	Z = 2.34 (P = 0.02)		-,,				
1.35.3 Combined							
Balaban 1988	0.1719863	0.21465724	40	46	1.9%	0.17 [-0.25, 0.59]	1
Luukinen 2006	0.1107394	0.14937183	144	150	3.1%	0.11 [-0.18, 0.40]	i —
Fabacher 1994	-0.15872936	0.14316457	100	95	3.2%	-0.16 [-0.44, 0.12	i —•+
Hendriks 2008	-0.08744713	0.12431503	124	134	3.8%	-0.09 [-0.33, 0.16	i —+-
Gitlin 2006	-0.161	0.117	149	136	4.0%	-0.16 [-0.39, 0.07	i —•+
Kono 2011	0.0033795	0.11102345	161	162	4.2%	0.00 [-0.21, 0.22	
Sommers 2000	-0.15080546	0.10211874	201	183	4.5%	-0.15 [-0.35, 0.05	
Counsell 2007	0.01850388	0.06480628	474	477	6.0%	0.02 [-0.11, 0.15	
Subtotal (95% CI)			1393	1383	30.8%	-0.04 [-0.12, 0.04	
	= 0.00; Chi ² = 6.04, df =	7 (P = 0.53);	$l^2 = 0\%$				
Test for overall effect	Z = 1.02 (P = 0.31)						
Total (95% CI)			4296	4473	100.0%	-0.10 [-0.17, -0.03]	1 🔶
Heterogeneity: Tau2 =	= 0.01; Chi ² = 55.40, df	= 26 (P = 0.00)	$(007); I^2 = 53\%$				-1 -0.5 0 0.5 1
Test for overall effect	: Z = 2.92 (P = 0.004)						Favours home visits Favours control
Test for subaroup dif	ferences: Chi ² = 3.36. df	= 2 (P = 0.19)	$ ^2 = 40.4\%$				ravours nome visits ravours control

Analysis 34: Functioning ADL/IADL; number of visits subgroups

		н	lome visits C	ontrol		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Total			IV, Random, 95% CI	
1.36.1 1 Visit						, ,	, , , , , , , , , , , , , , , , , , , ,
Newbury 2001	-0.33387362	0.21166453	45	44	2.0%	-0.33 [-0.75, 0.08]	·
Pighills 2011		0.15521335	87	78	3.0%	0.00 [-0.30, 0.30]	
Hendriks 2008	-0.08744713		124	134	3.9%	-0.09 [-0.33, 0.16]	
Lightbody 2002	-0.22855077		155	159		-0.23 [-0.45, -0.01]	
Close 1999	-0.40541651	0.1014799	184	213		-0.41 [-0.60, -0.21]	
Hebert 2001		0.09270249	233	231	5.0%	0.03 [-0.15, 0.21]	
Subtotal (95% CI)	0.0200.000	0100210210	828	859		-0.16 [-0.32, -0.01]	
Heterogeneity: $Tau^2 =$	0.02; Chi ² = 12.44, df	= 5 (P = 0.03)	$l^2 = 60\%$				
Test for overall effect:		5 (. 0.05),					
	2 2101 (1 0101)						
1.36.2 2-4 Visits							
Kono 2004	-0.19990984	0.22212899	43	38	1.8%	-0.20 [-0.64, 0.24]	· · · · · · · · · · · · · · · · · · ·
Luukinen 2006	0.1107394	0.14937183	144	150	3.1%	0.11 [-0.18, 0.40]	
Fabacher 1994	-0.15872936	0.14316457	100	95	3.3%	-0.16 [-0.44, 0.12]	_
Kono 2011	0.0033795	0.11102345	161	162	4.3%	0.00 [-0.21, 0.22]	
van Hout 2010	-0.11463482	0.09704545	215	209	4.8%	-0.11 [-0.30, 0.08]	
Vetter 1984a	-0.20375902		234	225	4.9%	-0.20 [-0.39, -0.02]	
Vetter 1984b	0.14412128	0.09089423	254	231	5.1%	0.14 [-0.03, 0.32]	_ _
Ploeg 2010	-0.07097102	0.07914378	328	310	5.5%	-0.07 [-0.23, 0.08]	
Subtotal (95% CI)			1479	1420	32.9%	-0.05 [-0.15, 0.04]	i 🔶
Heterogeneity: Tau ² =	0.01; Chi ² = 10.20, df	= 7 (P = 0.18);	$l^2 = 31\%$				-
Test for overall effect:	Z = 1.10 (P = 0.27)						
1.36.3 5 or More Visi	ts						
Liu-Ambrose 2008	-0.56888253	0.27960194	28	24	1.3%	-0.57 [-1.12, -0.02]	· · · · · · · · · · · · · · · · · · ·
Nelson 2004	-0.65151763	0.2435781	32	38	1.6%	-0.65 [-1.13, -0.17]	
Lin 2007	-0.03271423	0.22285176	39	40	1.8%	-0.03 [-0.47, 0.40]	
Bernabei 1998	-0.47892869	0.15293139	88	87	3.1%	-0.48 [-0.78, -0.18]	
van Haastregt 2000	-0.106346	0.13025952	120	115	3.7%	-0.11 [-0.36, 0.15]	_ _
Gitlin 2006	-0.161	0.117	149	136	4.1%	-0.16 [-0.39, 0.07]	
Bouman 2008	-0.00729692	0.11669365	139	154	4.1%	-0.01 [-0.24, 0.22]	— — — — — — — — — — — — — — — — — — —
Stuck 1995	-0.22919786	0.11274332	170	147	4.2%	-0.23 [-0.45, -0.01]	
Stuck 2000		0.10393887	217	459	4.6%	0.15 [-0.05, 0.36]	
Sommers 2000	-0.15080546		201	183	4.6%	-0.15 [-0.35, 0.05]	
van Rossum 1993	0.04554753		292	288	5.4%	0.05 [-0.12, 0.21]	
Counsell 2007	0.01850388	0.06480628	474	477	6.1%	0.02 [-0.11, 0.15]	
Subtotal (95% CI)			1949	2148	44.5%	-0.12 [-0.23, -0.01]	
Heterogeneity: Tau ² =	0.02; Chi ² = 28.05, df	= 11 (P = 0.00)	3); $I^2 = 61\%$				-
Test for overall effect:							
Total (95% CI)			4256	4427	100.0%	-0.10 [-0.17, -0.04]	. ◆
	0.01; Chi ² = 54.02, df	= 25 (P = 0.00)	(07) : $I^2 = 54\%$				
Test for overall effect:							-1 -0.5 0 0.5 1
	erences: $Chi^2 = 1.73$, df	= 2 (P = 0.42)	$I^2 = 0\%$				Favours home visits Favours control

Test for subgroup differences: $Chi^2 = 1.73$, df = 2 (P = 0.42), $I^2 = 0\%$

Analysis 35: Cognitive functioning, results at longest follow-up

			Home visits	Control		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
Newbury 2001	-0.46767489	0.3253822	45	44	4.5%	-0.47 [-1.11, 0.17]
Liu-Ambrose 2008	-0.34338806	0.27646923	28	24	5.9%	-0.34 [-0.89, 0.20]
Markle-Reid 2010	-0.1247856	0.21554978	45	40	8.7%	-0.12 [-0.55, 0.30]]
Bernabei 1998	-0.31937041	0.15149675	88	87	13.6%	-0.32 [-0.62, -0.02	j —•
Luukinen 2006	-0.12372351	0.14274132	144	150	14.5%	-0.12 [-0.40, 0.16	i —•+-
Thomas 2007	0	0.12057725	204	103	17.1%	0.00 [-0.24, 0.24]
Bouman 2008	0.15832071	0.116876	139	154	17.6%	0.16 [-0.07, 0.39] +
Davison 2005	0.14794968	0.11294314	159	154	18.1%	0.15 [-0.07, 0.37]
Total (95% CI)			852	756	100.0%	-0.06 [-0.21, 0.09	
Heterogeneity: Tau ² =	= 0.02; Chi ² = 12.49, df	= 7 (P = 0.09)	$(1); 1^2 = 44\%$				-1 -0 5 0 0 5 1
Test for overall effect:	Z = 0.79 (P = 0.43)						Favours home visits Favours control

Analysis 36: Quality of life at each follow-up interval

			Home visits			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.44.1 01-11 months							
Crawford Shearer 2010	-0.15973573			22	3.5%	-0.16 [-0.75, 0.44]	
in 2007	-0.68159697			40	5.6%		
ingston 2001		0.20878628		41	6.5%	0.11 [-0.30, 0.52]	_ -
1arkle-Reid 2010		0.2072482		43	6.6%	0.05 [-0.36, 0.46]	_
enaghan 2007	0.29405032	0.20177338	50	49	6.9%	0.29 [-0.10, 0.69]	+
allagher 1996	-0.11156514	0.1986222	50	50	7.1%	-0.11 [-0.50, 0.28]	
lendriks 2008	0.0032602	0.13291559	131	143	12.5%	0.00 [-0.26, 0.26]	-+-
larkle-Reid 2006	-0.04768252	0.12860815	120	121	13.0%	-0.05 [-0.30, 0.20]	
an Hout 2010	-0.00521267	0.09189674	244	229	18.4%	-0.01 [-0.19, 0.17]	+
olland 2005	-0.16162187	0.08257294	307	282	20.0%	-0.16 [-0.32, 0.00]	
ubtotal (95% CI)			1061		100.0%	-0.06 [-0.18, 0.06]	•
leterogeneity: $Tau^2 = 0$.01; Chi ² = 13.62, df = 9	P = 0.14: F	= 34%				
est for overall effect: Z		, , , , , , , , , , , , , , , , , , , ,	5 170				
.44.2 12-23 months hapiro 2002	-0.4034010	0.28080567	32	21	1.2%	-0.49 [-1.04.0.06]	
						-0.49 [-1.04, 0.06]	
lewbury 2001	-0.07936562			43	2.1%	-0.08 [-0.50, 0.34]	
alaban 1988	0.16224858			46	2.1%	0.16 [-0.26, 0.58]	
uukinen 2006		0.16854423		150	3.4%	0.13 [-0.20, 0.46]	
ighills 2011	-0.00959988			78	4.0%	-0.01 [-0.31, 0.29]	
endriks 2008	-0.05194913			134	5.2%	-0.05 [-0.32, 0.22]	
an Haastregt 2000	-0.01953552	0.13007778	120	115	5.7%	-0.02 [-0.27, 0.24]	
ouman 2008	0.01359048	0.11680754	139	154	7.0%	0.01 [-0.22, 0.24]	-+-
amada 2003	-0.10274656	0.11364501	160	149	7.4%	-0.10 [-0.33, 0.12]	
loeg 2010	-0.10764642	0.10764642	328	310	8.3%	-0.11 [-0.32, 0.10]	
ommers 2000	-0.17900004	0.10217801	201	183	9.2%	-0.18 [-0.38, 0.02]	
homas 2007	-0.10686591	0.10156366	299	143	9.3%	-0.11 [-0.31, 0.09]	
an Hout 2010		0.09708599		209	10.2%	0.14 [-0.05, 0.33]	
ebert 2001		0.09270438		231	11.2%	0.03 [-0.15, 0.22]	
an Rossum 1993	-0.04554753			288	13.9%	-0.05 [-0.21, 0.12]	_
ubtotal (95% CI)	0.04554755	0.00255045	2459		100.0%	-0.03 [-0.10, 0.03]	4
	.00; Chi ² = 11.82, df = 1	4 (P = 0.62)					•
est for overall effect: Z		(i = 0.02),	1 - 0%				
.44.3 24-35 months	0.05070670	0 11674000	120	154	0.40/	0.00 (0.00 0.17)	
ouman 2008	-0.05872679			154	8.4%	-0.06 [-0.29, 0.17]	
homas 2007	-0.09979879			122	9.3%	-0.10 [-0.32, 0.12]	
etter 1984a	-0.10632843			199	10.8%	-0.11 [-0.30, 0.09]	
etter 1984b	-0.16945091			210	11.8%	-0.17 [-0.36, 0.02]	
orensen 1988	-0.06084525			366	16.1%	-0.06 [-0.21, 0.09]	-
ounsell 2007		0.06485754		477		0.09 [-0.03, 0.22]	
yles 2004	-0.11914883	0.05635457		529	23.7%		
ubtotal (95% CI)			2398	2057	100.0%	-0.07 [-0.14, 0.01]	•
eterogeneity: Tau ² = 0.	.00; Chi ² = 8.28, df = 6	$(P = 0.22); I^2$	= 28%				
est for overall effect: Z	= 1.77 (P = 0.08)						
.44.4 36+ months							
homas 2007	-0.05336521	0.12059648	204	103	11.9%	-0.05 [-0.29, 0.18]	
athy 1992	-0.17854933			196	18.0%	-0.18 [-0.37, 0.01]	
an Rossum 1993	-0.04554753			288	25.1%	-0.05 [-0.21, 0.12]	-
yles 2004	-0.14951835			446		-0.15 [-0.27, -0.03]	
ubtotal (95% CI)	-0.14331033	0.00100403	1355		100.0%		A
	$00: Chi^2 = 1.60 df = 3$	$(P - 0.64) \cdot t^2$		1033	100.0%	0.12 [-0.20, -0.04]	•
	.00; $Chi^2 = 1.69$, $df = 3$	$(r = 0.04); \Gamma$	- 0%				
est for overall effect: Z	= 2.03 (P = 0.005)						

Favours home visits Favours control

Analysis 37: Quality of life; focus of visit subgroups

			Home visits	Control		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE			Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.45.1 Falls Only	Star Mean Difference	52	Total	Total	mengine	11, 1414011, 55/0 01	11, 14, 14, 15, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12
Lin 2007	-0.68159697	0 22962498	39	40	1.1%	-0.68 [-1.13, -0.23]	
Kingston 2001	0.11056703			41	1.3%	0.11 [-0.30, 0.52]	
Gallagher 1996	-0.11156514			50	1.4%	-0.11 [-0.50, 0.28]	
Luukinen 2006	0.13024238			150	1.9%	0.13 [-0.20, 0.46]	
Pighills 2011	-0.00959988			78	2.1%	-0.01 [-0.31, 0.29]	
Subtotal (95% CI)	0.00555500	0.13525052	371		7.7%	-0.09 [-0.34, 0.17]	-
Heterogeneity: Tau ² = 0.		$(P = 0.05); I^2 =$	= 58%				
Test for overall effect: Z =	= 0.68 (P = 0.49)						
1.45.2 MGA Only							
Shapiro 2002	-0.4934019	0.28080567	32	21	0.7%	-0.49 [-1.04, 0.06]	
Balaban 1988	0.16224858	0.2146303	40	46	1.2%	0.16 [-0.26, 0.58]	
Markle-Reid 2006	-0.04768252	0.12860815	120	121	3.0%	-0.05 [-0.30, 0.20]	
Thomas 2007	-0.05336521	0.12059648	204	103	3.3%	-0.05 [-0.29, 0.18]	- _
Bouman 2008	-0.05872679	0.11674329	139	154	3.5%	-0.06 [-0.29, 0.17]	_ - •
Sommers 2000	-0.17900004	0.10217801	201	183	4.3%	-0.18 [-0.38, 0.02]	
Vetter 1984a	-0.10632843	0.09988346	201	199	4.4%	-0.11 [-0.30, 0.09]	
Pathy 1992	-0.17854933	0.09792811	223	196	4.5%	-0.18 [-0.37, 0.01]	
Vetter 1984b	-0.16945091	0.09477957	237	210	4.8%	-0.17 [-0.36, 0.02]	
Hebert 2001	0.03384274			231	4.9%	0.03 [-0.15, 0.22]	
van Rossum 1993	-0.04554753		292	288	5.7%	-0.05 [-0.21, 0.12]	
Ploeg 2010	-0.10764642				5.8%	-0.11 [-0.27, 0.05]	
Sorensen 1988	-0.06084525			366	6.3%	-0.06 [-0.21, 0.09]	
Counsell 2007	0.09213862			477	7.8%	0.09 [-0.03, 0.22]	
Byles 2004	-0.14951835					-0.15 [-0.27, -0.03]	
Subtotal (95% CI)	-0.14951655	0.00180405	3675		68.3%	-0.07 [-0.13, -0.02]	•
Heterogeneity: $Tau^2 = 0$.	00° Chi ² = 16.56 df = 1	4 (P = 0.28)					•
Test for overall effect: Z			1 - 13/6				
1.45.3 Both							
Newbury 2001	-0.07936562	0 21500223	45	43	1.2%	-0.08 [-0.50, 0.34]	
Markle-Reid 2010	0.05052332			43	1.3%	0.05 [-0.36, 0.46]	
Hendriks 2008	-0.05194913			134	2.7%	-0.05 [-0.32, 0.22]	
van Haastregt 2000	-0.01953552				2.9%	-0.02 [-0.27, 0.24]	
Yamada 2003	-0.10274656				3.6%	-0.10 [-0.33, 0.12]	
van Hout 2010	0.13887444			209	4.6%	0.14 [-0.05, 0.33]	
Subtotal (95% CI)	0.1300/444	0.09708399	713		16.3%	0.01 [-0.10, 0.11]	▲ ·
Heterogeneity: $Tau^2 = 0$.	$00: Chi^2 = 3.21 df = 5$	$(P = 0.67) \cdot 1^2$;	Ť
Test for overall effect: Z =		(r = 0.07), r	- 078				
1.45.4 Neither							
Crawford Shearer 2010	-0.15973573	0.30370371	20	22	0.6%	-0.16 [-0.75, 0.44]	
Lenaghan 2007	0.29405032				1.3%	0.29 [-0.10, 0.69]	
Holland 2005	-0.16162187			282	5.8%	-0.16 [-0.32, 0.00]	
Subtotal (95% CI)	0.10102107	5.56257254	377		7.7%	-0.02 [-0.33, 0.28]	
Heterogeneity: $Tau^2 = 0$.	04: $Chi^2 = 4.41$, $df = 2$	$P = 0.11$ I^2		2.55			
Test for overall effect: Z							
Total (95% CI)			5136	4756	100.0%	-0.06 [-0.11, -0.01]	•
Heterogeneity: $Tau^2 = 0$.	00; Chi ² = 35.69, df = 2	8 (P = 0.15):	$I^2 = 22\%$			-	
Test for overall effect: Z =							-'1 -0.5 0 0.5 1
Test for subgroup differe		B(P = 0.60).	$^{2} = 0\%$				Favours home visits Favours control

Analysis 38: Quality of life; age of participants subgroups

			Home visits	Control		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% C	IV, Random, 95% CI
1.46.1 <= 70							
Balaban 1988	0.16224858	0.2146303	40	46	1.2%	0.16 [-0.26, 0.58]	I
Subtotal (95% CI)			40	46	1.2%	0.16 [-0.26, 0.58]	
Heterogeneity: Not appl	licable						
Test for overall effect: Z	Z = 0.76 (P = 0.45)						
1.46.2 71-75							
Kingston 2001	0.11056703	0.20878628	51	41	1.3%	0.11 [-0.30, 0.52]	I
Gallagher 1996	-0.11156514	0.1986222	50	50	1.4%	-0.11 [-0.50, 0.28]	
Hendriks 2008	0.03748253	0.12425373	124	134	3.2%	0.04 [-0.21, 0.28]	
Pathy 1992	-0.17854933	0.09792811	223	196	4.6%	-0.18 [-0.37, 0.01]	
Counsell 2007	0.09213862	0.06485754	474	477	7.6%	0.09 [-0.03, 0.22]	i +
Subtotal (95% CI)			922	898	18.1%	-0.00 [-0.13, 0.12]	i 🔶
Heterogeneity: Tau ² = 0	0.01; Chi ² = 5.96, df = 4 ($P = 0.20$; I^2	= 33%				
est for overall effect: Z							
.46.3 76-80							
Trawford Shearer 2010	-0.15973573	0.30370371	20	22	0.6%	-0.16 [-0.75, 0.44]	· · · · · · · · · · · · · · · · · · ·
Shapiro 2002	-0.4934019		32	21	0.8%	-0.49 [-1.04, 0.06]	
Lin 2007	-0.68159697			40		-0.68 [-1.13, -0.23]	
Newbury 2001	-0.07936562	0.21500223	45	43	1.2%	-0.08 [-0.50, 0.34]	
Pighills 2011	-0.00959988		87	78	2.2%	-0.01 [-0.31, 0.29]	
an Haastregt 2000	-0.01953552		120	115	3.0%	-0.02 [-0.27, 0.24]	
Bouman 2008	-0.05872679		139	154	3.5%	-0.06 [-0.29, 0.17]	
Yamada 2003	-0.10274656		160	149	3.7%	-0.10 [-0.33, 0.12]	
Sommers 2000	-0.17900004		201	183	4.3%	-0.18 [-0.38, 0.02]	
Vetter 1984a	-0.10632843		201	199	4.5%	-0.11 [-0.30, 0.09]	
Vetter 1984b	-0.16945091		237	210	4.8%	-0.17 [-0.36, 0.02]	
Hebert 2001	0.03384274		233	231	5.0%	0.03 [-0.15, 0.22]	
van Rossum 1993	-0.04554753		292	288	5.7%	-0.05 [-0.21, 0.12]	
Sorensen 1988	-0.06084525			366	6.3%	-0.06 [-0.21, 0.09]	
Byles 2004	-0.14951835		636	446	8.0%	-0.15 [-0.27, -0.03]	
Subtotal (95% CI)			2757	2545	54.7%	-0.10 [-0.16, -0.05]	
Heterogeneity: Tau ² = 0	0.00; Chi ² = 13.82, df = 1	4 (P = 0.46):	$l^2 = 0\%$				•
Test for overall effect: Z		. (, ,					
1.46.4 81-85							
enaghan 2007	0.29405032	0.20177338	50	49	1.4%	0.29 [-0.10, 0.69]	ı
Markle-Reid 2006	-0.04768252		120	121	3.0%	-0.05 [-0.30, 0.20]	
Thomas 2007	-0.05336521			103	3.4%	-0.05 [-0.29, 0.18]	
van Hout 2010	0.13887444		215	209	4.6%	0.14 [-0.05, 0.33]	
Holland 2005	-0.16162187			282	5.8%	-0.16 [-0.32, 0.00]	
Ploeg 2010	-0.10764642		328	310	5.8%	-0.11 [-0.27, 0.05]	i
Subtotal (95% CI)			1224	1074	24.0%	-0.03 [-0.14, 0.09]	•
Heterogeneity: Tau² = (Fest for overall effect: Z	0.01; Chi ² = 8.99, df = 5 (7 = 0.46 (P = 0.65)	$P = 0.11$; I^2	= 44%				
1.46.5 86+	0 13034333	0 1685 4477		150	1.0%	0 13 (0 30 0 17	
Luukinen 2006 Subtotal (95% CI)	0.13024238	0.16854423	144 144	150 150	1.9% 1.9%	0.13 [-0.20, 0.46] 0.13 [-0.20, 0.46]	
Heterogeneity: Not appl Test for overall effect: Z							
Total (95% CI)			5087	4713	100.0%	-0.06 [-0.11 -0.01]	
Total (95% CI) Heterogeneity: Tau ² = (0.00; Chi ² = 36.03, df = 2	7 (P = 0.11)		4713	100.0%	-0.06 [-0.11, -0.01]	
Test for overall effect: Z		, (, = 0.11),	23/6				-1 -0.5 0 0.5 1
	rences: $Chi^2 = 5.54$, $df = 4$	(P - 0 24)	2 - 27.0%				Favours home visits Favours control

Analysis 39: Quality of life; type of visitor subgroups

			Home visits	Control		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
.47.1 Nurse							
Trawford Shearer 2010	-0.15973573	0.30370371	20	22	0.6%	-0.16 [-0.75, 0.44]	·
shapiro 2002	-0.4934019	.28080567	32	21	0.7%	-0.49 [-1.04, 0.06]	
ewbury 2001	-0.07936562	0.21500223	45	43	1.2%	-0.08 [-0.50, 0.34]	
allagher 1996	-0.11156514	0.1986222	50	50	1.4%	-0.11 [-0.50, 0.28]	
an Haastregt 2000	-0.01953552	0.13007778	120	115	2.9%	-0.02 [-0.27, 0.24]	
Aarkle-Reid 2006	-0.04768252	0.12860815	120	121	3.0%	-0.05 [-0.30, 0.20]	
homas 2007	-0.05336521	0.12059648	204	103	3.3%	-0.05 [-0.29, 0.18]	
ouman 2008	-0.05872679	0.11674329	139	154	3.5%	-0.06 [-0.29, 0.17]	
amada 2003	-0.10274656	0.11364501	160	149	3.6%	-0.10 [-0.33, 0.12]	
an Hout 2010	0.13887444		215		4.6%	0.14 [-0.05, 0.33]	
lebert 2001	0.03384274		233	231	4.9%	0.03 [-0.15, 0.22]	
an Rossum 1993	-0.04554753		292		5.7%	-0.05 [-0.21, 0.12]	
loeg 2010	-0.10764642		328		5.8%	-0.11 [-0.27, 0.05]	
ubtotal (95% CI)			1958	1816	41.2%	-0.04 [-0.10, 0.03]	
leterogeneity: Tau ² = 0.	00; Chi ² = 8.01, df = 12	$P = 0.78$; I^2	= 0%				
est for overall effect: Z =							
.47.2 Other							
n 2007	-0.68159697	0.22962498	39	40	1.1%	-0.68 [-1.13, -0.23]	·
ingston 2001	0.11056703	0.20878628	51	41	1.3%	0.11 [-0.30, 0.52]	
enaghan 2007	0.29405032	0.20177338	50	49	1.3%	0.29 [-0.10, 0.69]	
ighills 2011	-0.00959988	0.15525892	87	78	2.1%	-0.01 [-0.31, 0.29]	I
etter 1984a	-0.10632843	0.09988346	201	199	4.4%	-0.11 [-0.30, 0.09]	·
athy 1992	-0.17854933 (0.09792811	223	196	4.5%	-0.18 [-0.37, 0.01]	· · · · ·
etter 1984b	-0.16945091 (0.09477957	237	210	4.8%	-0.17 [-0.36, 0.02]	
Iolland 2005	-0.16162187 (0.08257294	307	282	5.8%	-0.16 [-0.32, 0.00]	
ubtotal (95% CI)			1195	1095	25.3%	-0.12 [-0.24, -0.00]	▲
	01; Chi ² = 12.74, df = 7	$P = 0.08$; I^2	= 45%				
est for overall effect: Z =	= 1.99 (P = 0.05)						
.47.3 Combined alaban 1988	0 16334858	0 2146202	40	46	1.7%	0.161.0.26.0.58	
arkle-Reid 2010	0.16224858 0.05052332	0.2146303 0.2072482	40 49		1.2% 1.3%	0.16 [-0.26, 0.58]	
					1.5%	0.05 [-0.36, 0.46]	
uukinen 2006 Iendriks 2008	0.13024238		144 124		2.7%	0.13 [-0.20, 0.46]	
	-0.05194913					-0.05 [-0.32, 0.22]	
ommers 2000	-0.17900004		201		4.3%	-0.18 [-0.38, 0.02]	
prensen 1988	-0.06084525		315		6.3%	-0.06 [-0.21, 0.09]	
ounsell 2007	0.09213862		474		7.8%	0.09 [-0.03, 0.22]	
yles 2004 ubtotal (95% CI)	-0.14951835 (0.06180403	636 1983		8.2% 33.5%	-0.15 [-0.27, -0.03]	
	01. Chil 11.22 di -	n 0.13		1845	55.5%	-0.04 [-0.13, 0.06]	•
eterogeneity: Tau* = 0. est for overall effect: Z =	01; Chi ² = 11.32, df = 7 = = 0.77 (P = 0.44)	P = 0.13); l	= 38%				
otal (95% CI)			5136	4756	100.0%	-0.06 [-0.11, -0.01]	
	00; Chi ² = 35.69, df = 28	(P = 0.15)			200.0/0		
est for overall effect: Z =		(r = 0.15),	1 - 22/0				-1 -0.5 0 0.5 1
	$nces: Chi^2 = 1.55. df = 2$	(B = 0.46) B	2 - 0%				Favours home visits Favours control

Analysis 40: Quality of life; number of visits subgroups

Study or Subgroup Std. Mean Difference SE Total Total Total Weight IV, Random, 95% CI IV, Random, 95% CI L48.1 1 Visit			Но	me visits	Control		Std. Mean Difference	Std. Mean Difference
148.1 Visit versbury 2001 -0.07936562 0.21500223 45 43 1.2% -0.08 [-0.50, 0.34] ingston 2001 0.11056703 0.20876628 51 41 1.2% -0.01[-0.31, 0.29] ingston 2001 0.01384274 0.09279848 233 231 5.0% 0.031-0.15, 0.22] itendriks 2008 -0.060984525 0.07678877 315 366 6.6% -0.06 [-0.21, 0.09] iteterogeneity: Tau" = 0.00; Chi" = 1.15, df = 5 (P = 0.95); l" = 0% 855 893 18.8% -0.02 [-0.12, 0.07] iteterogeneity: Tau" = 0.00; Chi" = 1.15, df = 5 (P = 0.95); l" = 0% 855 893 1.8% -0.02 [-0.10, 0.69] iteterogeneity: Tau" = 0.00; Chi" = 1.15, df = 5 (P = 0.95); l" = 0% 855 91 1.3% 0.29 [-0.10, 0.69] iteterogeneity: Tau" = 0.00; Chi" = 1.15, df = 5 (P = 0.95); l" = 0% 855 93 1.8% -0.01 [-0.20, 0.46] iteterogeneity: Tau" = 0.01; Chi" = 1.15, df = 5 (P = 0.95); l" = 0% 893 1.8% -0.01 [-0.20, 0.46] iteterogeneity: Tau" = 0.01; Chi" = 1.201, df = 8 (P = 0.15); l" = 33% 116 0.20, 0.46] 103 0.33, -0.05 [-0.29, 0.18] iteterogeneity: Tau" = 0.01; Chi	Study or Subaroup	Std. Mean Difference						
ingston 2001 0.11056703 0.20078628 51 41 1.2% 0.11 -0.30, 0.52] iendriks 2008 -0.05194913 0.13524672 124 134 2.7% -0.05 [-0.32, 0.22] iendriks 2008 -0.05194913 0.13524672 124 134 2.7% -0.05 [-0.32, 0.22] iendriks 2008 -0.06084525 0.07678877 315 366 6.6% -0.06 [-0.21, 0.09] iendriks 2008 -0.05084525 0.07678877 315 366 6.6% -0.06 [-0.21, 0.09] iendriks 2000 Ch ² = 1.15, df = 5 (P = 0.95); P ² = 0% feetrogeneity, Tau ² = 0.00; Ch ² = 1.15, df = 5 (P = 0.95); P ² = 0% feetrogeneity = 0.00; Ch ² = 1.15, df = 5 (P = 0.95); P ² = 0% feetrogeneity = 0.00; Ch ² = 0.077338 50 49 1.3% 0.29 [-0.10, 0.69] jallagher 1996 -0.11156514 0.1986222 50 50 1.4% -0.11 [-0.50, 0.28] ukiken 2007 -0.05336521 0.12059648 204 103 3.3% -0.05 [-0.29, 0.18] there 1984 -0.10632484 0.09988346 201 199 4.5% -0.11 [-0.50, 0.28] ukiken 2007 -0.05336521 0.02059648 204 103 3.3% -0.05 [-0.29, 0.18] there 1984b -0.16845091 0.09477957 237 210 4.9% -0.17 [-0.36, 0.02] there 1984b -0.16845091 0.09477957 237 210 4.9% -0.17 [-0.36, 0.02] there 1984b -0.16845091 0.09477957 237 5106 2.9%, -0.05 [-0.27, 0.04] there 2010 -0.10764642 0.08215403 328 510 6.0% -0.16 [-0.75, 0.44] in 2007 -0.6815967 0.2296248 39 40 1.0% -0.68 [-1.13, -0.23] there 1984b -0.01953557 0.1296248 39 40 1.0% -0.68 [-1.14, -0.04] there 3008 -0.0468252 0.13007778 120 115 2.9% -0.02 [-0.27, 0.24] there 3008 -0.0458252 0.13007778 120 115 2.9% -0.02 [-0.27, 0.24] there 3008 -0.0458252 0.13007778 120 115 2.9% -0.05 [-0.30, 0.20] there 3000 -0.0458252 0.13007778 120 115 2.9% -0.05 [-0.30, 0.20] there 3000 -0.04582550 0.1164501 150 149 3.6% -0.016 [-0.75, 0.44] there 3000 -0.0458252 0.12860815 120 121 3.0% -0.05 [-0.27, 0.24] there 3000 -0.0458252 0.12860815 120 121 3.0% -0.05 [-0.27, 0.24] there 3000 -0.0458252 0.12860815 120 121 3.0% -0.05 [-0.27, 0.24] there 3000 -0.04582550 0.1364501 160 149 3.6% -0.10 [-0.30, 0.12] there 3000 -0.04582550 0.1364501 160 149 3.6% -0.016 [-0.30, 0.12] there 3000 -0.045825754 0.1167422 139 64 6.8% -0.15 [-0.27, -0.03] there 3	1.48.1 1 Visit	Star Mean Difference	52	Total	rotai	neight	11, 14, 14, 14, 15, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	
ingston 2001 0.11056703 0.20078628 51 41 1.2% 0.11 -0.30, 0.52] iendriks 2008 -0.05194913 0.13524672 124 134 2.7% -0.05 [-0.32, 0.22] iendriks 2008 -0.05194913 0.13524672 124 134 2.7% -0.05 [-0.32, 0.22] iendriks 2008 -0.06084525 0.07678877 315 366 6.6% -0.06 [-0.21, 0.09] iendriks 2008 -0.05084525 0.07678877 315 366 6.6% -0.06 [-0.21, 0.09] iendriks 2000 Ch ² = 1.15, df = 5 (P = 0.95); P ² = 0% feetrogeneity, Tau ² = 0.00; Ch ² = 1.15, df = 5 (P = 0.95); P ² = 0% feetrogeneity = 0.00; Ch ² = 1.15, df = 5 (P = 0.95); P ² = 0% feetrogeneity = 0.00; Ch ² = 0.077338 50 49 1.3% 0.29 [-0.10, 0.69] jallagher 1996 -0.11156514 0.1986222 50 50 1.4% -0.11 [-0.50, 0.28] ukiken 2007 -0.05336521 0.12059648 204 103 3.3% -0.05 [-0.29, 0.18] there 1984 -0.10632484 0.09988346 201 199 4.5% -0.11 [-0.50, 0.28] ukiken 2007 -0.05336521 0.02059648 204 103 3.3% -0.05 [-0.29, 0.18] there 1984b -0.16845091 0.09477957 237 210 4.9% -0.17 [-0.36, 0.02] there 1984b -0.16845091 0.09477957 237 210 4.9% -0.17 [-0.36, 0.02] there 1984b -0.16845091 0.09477957 237 5106 2.9%, -0.05 [-0.27, 0.04] there 2010 -0.10764642 0.08215403 328 510 6.0% -0.16 [-0.75, 0.44] in 2007 -0.6815967 0.2296248 39 40 1.0% -0.68 [-1.13, -0.23] there 1984b -0.01953557 0.1296248 39 40 1.0% -0.68 [-1.14, -0.04] there 3008 -0.0468252 0.13007778 120 115 2.9% -0.02 [-0.27, 0.24] there 3008 -0.0458252 0.13007778 120 115 2.9% -0.02 [-0.27, 0.24] there 3008 -0.0458252 0.13007778 120 115 2.9% -0.05 [-0.30, 0.20] there 3000 -0.0458252 0.13007778 120 115 2.9% -0.05 [-0.30, 0.20] there 3000 -0.04582550 0.1164501 150 149 3.6% -0.016 [-0.75, 0.44] there 3000 -0.0458252 0.12860815 120 121 3.0% -0.05 [-0.27, 0.24] there 3000 -0.0458252 0.12860815 120 121 3.0% -0.05 [-0.27, 0.24] there 3000 -0.0458252 0.12860815 120 121 3.0% -0.05 [-0.27, 0.24] there 3000 -0.04582550 0.1364501 160 149 3.6% -0.10 [-0.30, 0.12] there 3000 -0.04582550 0.1364501 160 149 3.6% -0.016 [-0.30, 0.12] there 3000 -0.045825754 0.1167422 139 64 6.8% -0.15 [-0.27, -0.03] there 3		-0.07936562	0.21500223	45	43	1.2%	-0.08 [-0.50, 0.34]	
$ \frac{1}{10} \text{ drift}_{12} 2008 \qquad -0.05194913 \ 0.13624672 \qquad 124 \qquad 134 \qquad 2.7\% \qquad -0.05 \ [-0.32, 0.22] \\ \text{teter 2001 } 0.03364274 \ 0.09270438 \ 233 \ 231 \qquad 5.0\% \ 0.031 \ [-0.15, 0.22] \\ \text{orensen 1988 } 0.06084525 \ 0.07678877 \qquad 315 \qquad 366 \qquad 6.6\% \qquad -0.06 \ [-0.21, 0.09] \\ \text{stor overall effect 2 = 0.42 \ (P = 0.67) \ 855 \qquad 893 \qquad 18.8\% \qquad -0.02 \ [-0.12, 0.07] \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 1.15, df = 5 \ (P = 0.95); l^2 = 0\% \\ \text{test or overall effect 2 = 0.42 \ (P = 0.67) \ 1.48.2 \ 2-4 \ Visis \\ \text{enarghan 2007 } 0.29405032 \ 0.20177338 \qquad 50 \qquad 49 \qquad 1.3\% \qquad 0.29 \ [-0.10, 0.69] \\ \text{jalagher 1996 } -0.11156514 \ 0.1996222 \ 50 \qquad 50 \qquad 1.4\% \qquad -0.11 \ [-0.50, 0.28] \ 1.4\% \ -0.011 \ [-0.50, 0.28] \ 1.4\% \ -0.011 \ [-0.50, 0.28] \ 1.4\% \ -0.011 \ [-0.50, 0.08] \ 1.4\% \ -0.011 \ [-0.50, 0.08] \ 1.4\% \ -0.011 \ [-0.50, 0.08] \ 1.4\% \ -0.011 \ [-0.50, 0.08] \ 1.4\% \ -0.011 \ [-0.50, 0.08] \ 1.4\% \ -0.011 \ [-0.50, 0.08] \ 1.4\% \ -0.011 \ [-0.50, 0.08] \ 1.4\% \ -0.011 \ [-0.50, 0.08] \ 1.4\% \ -0.011 \ [-0.50, 0.08] \ 1.4\% \ -0.011 \ [-0.70, 0.51] \ 1.4\% \ -0.011 \ [-0.70, 0.51] \ 1.4\% \ -0.011 \ [-0.70, 0.51] \ 1.4\% \ -0.011 \ [-0.70, 0.51] \ 1.4\% \ -0.011 \ [-0.70, 0.51] \ 1.4\% \ -0.015 \ [-0.4\% \ -0.15\% \ 1.4\% \ -0.05 \ [-0.4$								
teber 2001 0.03384274 0.09270438 233 231 5.0% 0.03 [-0.15, 0.22] (0.003 [-0.15, 0.22] (0.003 [-0.12, 0.07] (0.05 [-0.12, 0.05] (0.05 [-0.12, 0.02] (0.05 [-0.12, 0.05] (0.05 [-0.12, 0.05] (0.05 [-0.12, 0.05] (0.05 [-0.12, 0.02								
$ \begin{array}{c} \text{dremen 1988} & -0.06084525 \ 0.07678877 & 315 \\ \text{withotal (95% C)} & \text{s55} & \text{s93} & 18.8\% & -0.05 \left[-0.21, 0.09 \right] \\ teterogeneity: Tau^2 = 0.00; Ch^2 = 1.15, df = 5 (P = 0.95); l^2 = 0\% \\ \text{test for overall effect: Z = 0.42 (P = 0.67) \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 1.15, df = 5 (P = 0.95); l^2 = 0\% \\ \text{test for overall effect: Z = 0.42 (P = 0.67) \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 1.15, df = 5 (P = 0.95); l^2 = 0\% \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{teterogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{tetrogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{tetrogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{tetrogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{tetrogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{tetrogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{tetrogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{tetrogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19); l^2 = 19\% \\ \text{tetrogeneity: Tau^2 = 0.00; Ch^2 = 32.24, df = 26 (P = 0.19$								
$ \begin{array}{c} \text{stabtotal (95\% Ch)} & \text{s55} & \text{s93} & 18.8\% & -0.02 \ [-0.12, 0.07] \\ \text{teterogeneity; Tau' = 0.00; Chi' = 1.15, df = 5 \ (P = 0.95); l' = 0\% \\ \text{test for overall effect: $Z = 0.42 \ (P = 0.67) \\ \text{teterogeneity; Tau' = 0.02; Chi' = 1.155 \ 14 & 0.1986222 & 50 & 50 & 1.4\% & -0.01 \ [-0.50, 0.28] \\ \text{teraglapher 1996} & -0.11156514 & 0.1986222 & 50 & 50 & 1.4\% & -0.01 \ [-0.20, 0.46] \\ \text{thomas 2007} & -0.0533621 & 0.1205948 & 204 & 103 & 3.3\% & -0.05 \ [-0.20, 9.0.18] \\ \text{teter 1984a} & -0.10632843 & 0.09988346 & 201 & 199 & 4.5\% & -0.01 \ [-0.30, 0.09] \\ \text{teter 1984a} & -0.166345091 \ 0.09477957 & 237 & 210 & 4.9\% & -0.17 \ [-0.36, 0.02] \\ \text{total Adv 0.00} & -0.16162187 \ 0.08257294 & 307 & 282 \ 5.9\% & -0.16 \ [-0.32, 0.00] \\ \text{teter 1984b} & -0.16162187 \ 0.08257294 & 307 & 282 \ 5.9\% & -0.16 \ [-0.32, 0.00] \\ \text{total ad 2005} & -0.16162187 \ 0.08257294 & 372 \ 282 \ 3106 \ 6.0\% & -0.11 \ [-0.30, 0.02] \\ \text{tetre 1984b} & -0.1676442 \ 0.08215403 \ 328 \ 310 \ 6.0\% & -0.16 \ [-0.75, 0.44] \\ \text{in 2007} & -0.68159697 \ 0.22962498 \ 39 \ 40 \ 1.0\% & -0.05 \ [-0.36, 0.46] \\ \text{tarkle-Reid 2010} & -0.05973573 \ 0.30370371 \ 20 \ 22 \ 0.6\% & -0.06 \ [-0.13, -0.23] \\ \text{darkle-Reid 2006} & -0.04768252 \ 0.12860815 \ 120 \ 1121 \ 3.0\% & -0.05 \ [-0.36, 0.46] \\ \text{darkle-Reid 2006} & -0.04768252 \ 0.12860815 \ 120 \ 121 \ 3.0\% & -0.05 \ [-0.30, 0.20] \\ \text{darkle-Reid 2006} & -0.04768252 \ 0.12860815 \ 120 \ 121 \ 3.0\% & -0.05 \ [-0.30, 0.20] \\ \text{darkle-Reid 2006} & -0.04768252 \ 0.12860815 \ 120 \ 121 \ 3.0\% & -0.05 \ [-0.30, 0.20] \\ \text{darkle-Reid 2006} & -0.04768252 \ 0.12860815 \ 120 \ 121 \ 3.0\% & -0.05 \ [-0.30, 0.20] \\ \text{darkle-Reid 2006} & -0.04768252 \ 0.12860815 \ 120 \ 121 \ 3.0\% & -0.05 \ [-0.30, 0.20] \\ \text{darkle-Reid 2006} & -0.04768252 \ 0.12860815 \ 120 \ 121 \ 3.0\% & -0.05 \ [-0.30, 0.20] \\ \text{darkle-Reid 2006} & -0.04768252 \ 0.12860815 \ 120 \ 121 \ 3.0\% & -0.05 \ [-0.30, 0.20] \\ \text{darkle-Reid 2006} & -0.04768252 \ 0.12860815 \ 120 \ 121 \ 3.0\% & -0.05 \ [-0.30, 0.20] \\ \text{darkle-Reid 2006} & -0$								
leterogeneity: Tau ² = 0.00; Chi ² = 1.15, df = 5 (P = 0.95); l ² = 0% lest for overall effect: Z = 0.42 (P = 0.67) l.48.2 Z - 4 Visits enaghan 2007 0.29405032 0.20177338 50 49 1.3% 0.29 [-0.10, 0.69] jallagher 1996 -0.11156514 0.1986222 50 50 1.4% -0.11 [-0.50, 0.28] jallagher 1995 -0.1156514 0.12059648 204 103 3.3% -0.05 [-0.29, 0.18] https://dx.action.org/10.2006 0.1362423 0.16654423 1144 150 1.4% 0.13 [-0.20, 0.46] https://dx.action.org/10.2007 -0.05336521 0.12059648 204 103 3.3% -0.05 [-0.29, 0.18] https://dx.action.org/10.2007 -0.0632843 0.09988346 201 199 4.5% -0.11 [-0.30, 0.09] an Hout 2010 0.1887444 0.09708599 215 209 4.7% 0.14 [-0.05, 0.03] letert 1984b -0.16945091 0.09477957 237 210 4.9% -0.17 [-0.36, 0.02] log 2010 -0.10764642 0.08215403 328 310 6.0% -0.11 [-0.27, 0.05] libtotal (95% CI) 1736 1562 33.7% -0.05 [-0.14, 0.04] leterogeneity: Tau ² = 0.01; Chi ² = 12.01, df = 8 (P = 0.15); l ² = 33% Test for overall effect: Z = 1.14 (P = 0.25) L48.3 5 or More Visits Tawford Shearer 2010 -0.15973573 0.30370371 20 22 0.6% -0.16 [-0.75, 0.44] in 2007 -0.68159697 0.22962498 39 40 1.0% -0.68 [-1.13, -0.23] darkle-Reid 2010 -0.01953552 0.13007778 120 115 2.9% -0.02 [-0.36, 0.46] an Haastegt 2000 -0.01953552 0.13007778 120 115 2.9% -0.02 [-0.36, 0.46] darkle-Reid 2010 -0.01953552 0.1260815 120 121 3.9% -0.02 [-0.36, 0.46] darkle-Reid 2006 -0.0476656 0.11364501 160 149 3.6% -0.10 [-0.33, 0.12] famada 2003 -0.10274656 0.11364501 160 149 3.6% -0.18 [-0.38, 0.02] darkle-Sed3 0.0217861 201 183 4.3% -0.18 [-0.38, 0.02] darkle-Sed3 0.0058753 0.0829043 22 28 5.9% -0.06 [-0.27, 0.03] fama Rosum 1993 -0.0455473 0.0829043 22 28 5.9% -0.05 [-0.21, 0.12] darkle-Sed3 0.0059733 0.082904 22 2234 475% -0.09 [-0.27, -0.01] feterogeneity: Tau ² = 0.01; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 19% Test for overall effect: Z = 2.15 (P = 0.03) Total (95% CI) 5064 4689 100.0% -0.06 [-0.11, -0.02] deterogeneity: Tau ² = 0.00; Chi ² = 32.24, df = 26 (P = 0.19); l ² = 19% Test for overall eff	Subtotal (95% CI)	0.00004525	0.07070077					
Test for overall effect: $Z = 0.42$ ($P = 0.67$) L48.2 2-4 Visits enaghan 2007 0.29405032 0.20177338 50 49 1.3% 0.29 [-0.10, 0.69] Jallagher 1996 -0.11156514 0.1986222 50 50 1.4% -0.11 [-0.50, 0.28] Juukinen 2006 0.13024238 0.16854423 144 150 1.8% 0.31 [-0.20, 0.46] Hormas 2007 -0.05336521 0.1205648 204 103 3.3% -0.05 [-0.29, 0.18] Vetter 1984a -0.10632843 0.09988346 201 199 4.5% -0.11 [-0.35, 0.30] Vetter 1984b -0.16945091 0.09477957 237 210 4.5% -0.11 [-0.35, 0.30] Vetter 1984b -0.16945091 0.09477957 237 210 4.5% -0.17 [-0.36, 0.02] Holeg 2010 -0.10764642 0.08257294 307 282 5.5% -0.16 [-0.75, 0.44] Heterogeneity: Tau ² = 0.01; Chi ² = 12.01, df = 8 ($P = 0.15$); $l^2 = 33%$ res for overall effect: $Z = 1.14$ ($P = 0.25$) L48.3 5 or More Visits Trawford Shearer 2010 -0.15973573 0.30370371 20 22 0.6% -0.16 [-0.75, 0.44] Harkle-Reid 2010 -0.015973573 0.30370371 20 22 0.6% -0.16 [-0.77, 0.44] Harkle-Reid 2010 -0.015973573 0.30370371 20 22 0.6% -0.02 [-0.27, 0.24] Harkle-Reid 2010 -0.05052332 0.2072482 49 43 1.2% 0.05 [-0.36, 0.46] Harkle-Reid 2006 -0.04768252 0.12860815 120 121 3.0% -0.05 [-0.30, 0.20] Harkle-Reid 2006 -0.04768252 0.12860815 120 121 3.0% -0.05 [-0.30, 0.20] Harkle-Reid 2006 -0.04768252 0.12860815 120 121 3.0% -0.05 [-0.30, 0.20] Harkle-Reid 2006 -0.04768252 0.12860815 120 121 3.0% -0.05 [-0.30, 0.20] Harkle-Reid 2006 -0.04768252 0.12860815 120 121 3.0% -0.05 [-0.30, 0.20] Harkle-Reid 2006 -0.0475855 0.11674329 139 154 3.5% -0.06 [-0.27, 0.03] Harkle-Reid 2006 -0.0475855 0.01164501 160 149 3.6% -0.018 [-0.33, 0.02] Harkle-Reid 2006 -0.0475855 0.11664501 150 149 3.6% -0.016 [-0.33, 0.02] Harkle-Reid 2006 -0.0475855 0.01164501 120 148 3.43% -0.18 [-0.38, 0.02] Harkle-Reid 2006 -0.0458756 0.11664501 150 149 3.6% -0.018 [-0.33, 0.02] Harkle-Reid 2006 -0.04587573 0.08295043 292 288 5.9% -0.05 [-0.21, 0.12] Harkle-Reid 2007 -0.0213862 0.06483754 474 477 8.2% -0.09 [-0.77, -0.01] Heterogeneity: Tau ² = 0.01; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 19% Test for overall		00: Chi ² = 1 15 df = 5	$(P = 0.95) \cdot I^2 = 0$					1
enaghan 2007 0.29405032 0.20177338 50 49 1.3% 0.29 [-0.10, 0.69] allagher 1996 -0.11156514 0.1986222 50 50 1.4% -0.11 [-0.50, 0.28] thomas 2007 -0.05336521 0.12059648 204 103 3.3% -0.05 [-0.29, 0.18] thomas 2007 -0.05336521 0.12059648 204 103 3.3% -0.05 [-0.29, 0.18] etter 1984b -0.16945091 0.09477957 237 210 4.9% -0.11 [-0.30, 0.09] an Hout 2010 0.13887444 0.09708599 215 209 4.7% 0.14 [-0.05, 0.33] etter 1984b -0.16945091 0.09477957 237 210 4.9% -0.17 [-0.36, 0.02] blog 2010 -0.10764642 0.08215403 328 310 6.0% -0.16 [-0.75, 0.64] teterogeneity: Tau ² = 0.01; Chi ² = 12.01, df = 8 (P = 0.15); l ² = 33% fest for overall effect Z = 1.14 (P = 0.25) L48.3 5 or More Visits rawford Shearer 2010 -0.15973573 0.3377371 20 22 0.6% -0.16 [-0.75, 0.44] in 2007 -0.68159697 0.22962498 39 40 1.0% -0.68 [-1.13, -0.23] darkle-Reid 2010 0.05052332 0.2072482 49 43 1.2% 0.05 [-0.36, 0.46] an Haastregt 2000 -0.0195352 0.120860815 120 121 3.0% -0.05 [-0.30, 0.20] darkle-Reid 2006 -0.04768252 0.12860815 120 121 3.5% -0.06 [-0.29, 0.17] fam Haastregt 2000 -0.10774656 0.11364501 160 149 3.6% -0.18 [-0.37, 0.01] fam Abastregt 2000 -0.17900004 0.10217801 201 183 4.3% -0.18 [-0.37, 0.01] fam Abastregt 2000 -0.17900004 0.10217801 201 183 4.3% -0.18 [-0.37, 0.01] fam Rossum 1993 -0.04554753 0.08295043 292 288 5.9% -0.05 [-0.21, 0.12] thetrogeneity: Tau ² = 0.01; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 39% fest for overall effect: Z = 2.15 (P = 0.03) fotal (95% CI) 5064 4689 100.0% -0.06 [-0.21, -0.02] teterogeneity: Tau ² = 0.01; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 39% fest for overall effect: Z = 2.60 (P = 0.19); l ² = 19% fest for overall effect: Z = 2.60 (P = 0.09)			(1 = 0.55), 1 = 0	<i>,</i> 0				
enaghan 2007 0.29405032 0.20177338 50 49 1.3% 0.29 [-0.10, 0.69] allagher 1996 -0.11156514 0.1986222 50 50 1.4% -0.11 [-0.50, 0.28] thomas 2007 -0.05336521 0.12059648 204 103 3.3% -0.05 [-0.29, 0.18] thomas 2007 -0.05336521 0.12059648 204 103 3.3% -0.05 [-0.29, 0.18] etter 1984b -0.16945091 0.09477957 237 210 4.9% -0.11 [-0.30, 0.09] an Hout 2010 0.13887444 0.09708599 215 209 4.7% 0.14 [-0.05, 0.33] etter 1984b -0.16945091 0.09477957 237 210 4.9% -0.17 [-0.36, 0.02] blog 2010 -0.10764642 0.08215403 328 310 6.0% -0.16 [-0.75, 0.64] teterogeneity: Tau ² = 0.01; Chi ² = 12.01, df = 8 (P = 0.15); l ² = 33% fest for overall effect Z = 1.14 (P = 0.25) L48.3 5 or More Visits rawford Shearer 2010 -0.15973573 0.3377371 20 22 0.6% -0.16 [-0.75, 0.44] in 2007 -0.68159697 0.22962498 39 40 1.0% -0.68 [-1.13, -0.23] darkle-Reid 2010 0.05052332 0.2072482 49 43 1.2% 0.05 [-0.36, 0.46] an Haastregt 2000 -0.0195352 0.120860815 120 121 3.0% -0.05 [-0.30, 0.20] darkle-Reid 2006 -0.04768252 0.12860815 120 121 3.5% -0.06 [-0.29, 0.17] fam Haastregt 2000 -0.10774656 0.11364501 160 149 3.6% -0.18 [-0.37, 0.01] fam Abastregt 2000 -0.17900004 0.10217801 201 183 4.3% -0.18 [-0.37, 0.01] fam Abastregt 2000 -0.17900004 0.10217801 201 183 4.3% -0.18 [-0.37, 0.01] fam Rossum 1993 -0.04554753 0.08295043 292 288 5.9% -0.05 [-0.21, 0.12] thetrogeneity: Tau ² = 0.01; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 39% fest for overall effect: Z = 2.15 (P = 0.03) fotal (95% CI) 5064 4689 100.0% -0.06 [-0.21, -0.02] teterogeneity: Tau ² = 0.01; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 39% fest for overall effect: Z = 2.60 (P = 0.19); l ² = 19% fest for overall effect: Z = 2.60 (P = 0.09)								
Sallagher 1996 -0.11156514 0.1986222 50 1.4% -0.11[-0.50, 0.28] uukinen 2006 0.13024238 0.16854423 144 150 1.8% 0.13 [-0.20, 0.48] homas 2007 -0.05336521 0.12059648 204 103 3.3% -0.05 [-0.29, 0.18] retter 1984a -0.10632843 0.09988346 201 199 4.5% -0.11 [-0.30, 0.09] retter 1984b -0.16945091 0.09477957 237 210 4.9% -0.17 [-0.36, 0.02] retter 1984b -0.1676422 0.08257294 307 282 5.9% -0.16 [-0.32, 0.00] rest for overall effect: Z = 1.14 (P = 0.25) 1736 1562 33.7% -0.05 [-0.14, 0.04] rest for overall effect: Z = 1.14 (P = 0.25) 1736 1562 3.7% -0.05 [-0.7, 0.44] rankastregt 2000 -0.015973573 0.30370371 20 22 0.6% -0.16 [-0.75, 0.44] rankastregt 2000 -0.01953552 0.13007778 120 128 3.5% -0.02 [-0.27, 0.24] darkle - Reid 2010 0.05872679 0.11674329 139 154 3.5%								
uukinen 2006 0.13024238 0.16854423 144 150 1.8% 0.13 -0.20 0.461 ihomas 2007 -0.05336521 0.02959648 204 103 3.3% -0.05 0.05 0.130 0.9988346 201 199 4.5% -0.11 $(-0.50, 0.09)$ an Hout 2010 0.13887444 0.09708599 215 209 4.7% 0.14 $(-0.50, 0.02)$ totland 2005 -0.16162187 0.08257294 307 282 5.9% -0.16 $(-0.32, 0.00)$ tolg 2010 -0.10764642 0.08215403 328 310 6.0% -0.11 $(-0.32, 0.00)$ tolg 2010 -0.10764642 0.08215403 328 310 6.0% -0.11 $(-0.57, 0.44)$ teterogeneity: Tau ² = 0.01; Ch ² = 12.01, df = 8 (P = 0.15); l ² = 33\% $rest$ for overall effect: Z = 1.14 (P = 0.25) 220 0.6% -0.16 $(-0.75, 0.44)$ -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.021 -0.05 -0.05 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Thomas 2007 - 0.05336521 0.12059648 204 103 3.3% -0.05 [- 0.29 , 0.18] Tetter 1984a - 0.10632843 0.09988346 201 199 4.5% -0.11 [- 0.30 , 0.09] an Hout 2010 0.1387444 0.09708599 215 209 4.7% -0.14 [- 0.05 , 0.33] Tetter 1984b - 0.16945091 0.09477957 237 210 4.9% -0.17 [- 0.36 , 0.02] total 2005 -0.16162187 0.08257294 307 282 5.9% -0.16 [- 0.32 , 0.00] toleg 2010 -0.10764642 0.08215403 328 310 6.0% -0.11 [- 0.27 , 0.05] tubtotal (95% CI) 1736 1562 33.7% -0.05 [- 0.14 , 0.04] teterogenetix: Tau ² = 0.01; Chi ² = 12.01, df = 8 (P = 0.15); l ² = 33% Test for overall effect: Z = 1.14 (P = 0.25) L48.3 5 or More Visits Trawford Shearer 2010 -0.15973573 0.30370371 20 22 0.6% -0.16 [- 0.75 , 0.44] that Arkle - Reid 2010 0.055052332 0.2072482 49 43 1.2% -0.05 [- 0.36 , 0.46] an Haastregt 2000 -0.01953552 0.13007778 120 115 2.9% -0.02 [- 0.27 , 0.24] that Arkle - Reid 2010 0.05572332 0.0272482 49 43 1.2% -0.06 [- 0.29 , 0.17] that 2008 -0.05872679 0.11674329 139 154 3.5% -0.06 [- 0.29 , 0.12] that 2008 -0.05872679 0.11674329 139 154 3.5% -0.06 [- 0.29 , 0.17] that 2008 -0.1274656 0.11364501 160 149 3.6% -0.18 [- 0.37 , 0.01] that 2007 0.09213862 0.06485754 474 477 8.2% 0.09 [- 0.03 , 0.22] that 1992 -0.17854933 0.0972811 223 196 4.6% -0.18 [- 0.37 , 0.01] that 1992 -0.17854933 0.0972811 223 196 4.6% -0.18 [- 0.37 , 0.01] that 1993 -0.04554753 0.08295043 292 288 5.9% -0.05 [- 0.27 , 0.03] the terogenetity: Tau ² = 0.01 ; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 39\% Test for overall effect: Z = 2.50 (P = 0.09) Total (95% CI) -0.05 14 -2.50 (P = 0.09) Total (95% CI) -0.05 16 -0.09) Total (95% CI) -0.05 17 -0.03 Total (95% CI) -0.05 16 -0.09) Total (95% CI) -0.05 17 -0.009 Total (95% CI) $-0.$								
$ \begin{array}{c} \text{retter 1984a} & -0.10632843 & 0.09988346 & 201 & 199 & 4.5\% & -0.11 [-0.30, 0.09] \\ \text{an Hout 2010} & 0.13887444 & 0.09708599 & 215 & 209 & 4.7\% & 0.14 [-0.05, 0.33] \\ \text{retter 1984b} & -0.16945091 & 0.09477957 & 237 & 210 & 4.9\% & -0.07 [-0.36, 0.02] \\ \text{folga 2010} & -0.10766422 & 0.08257294 & 307 & 282 & 5.9\% & -0.16 [-0.32, 0.00] \\ \text{log 2010} & -0.10766422 & 0.08257294 & 307 & 282 & 5.9\% & -0.16 [-0.32, 0.00] \\ \text{rettor ogeneity: Tau2 = 0.01; Chi2 = 12.01, df = 8 (P = 0.15); l2 = 33\% \\ \text{fest for overall effect: Z = 1.14 (P = 0.25)} \\ \hline \text{L48.3 S or More Visits} \\ \text{Trawford Shearer 2010} & -0.15973573 & 0.30370371 & 20 & 22 & 0.6\% & -0.16 [-0.75, 0.44] \\ \text{an Haastregt 2000} & -0.01595352 & 0.13007778 & 120 & 115 & 2.9\% & -0.05 [-0.36, 0.46] \\ \text{an Hastregt 2000} & -0.04768252 & 0.12860815 & 120 & 121 & 3.0\% & -0.05 [-0.30, 0.20] \\ \text{darkle - Reid 2006} & -0.04768252 & 0.12860815 & 120 & 121 & 3.0\% & -0.05 [-0.30, 0.20] \\ \text{darkle - Reid 2006} & -0.04768252 & 0.12860815 & 120 & 121 & 3.0\% & -0.05 [-0.30, 0.20] \\ \text{formar 2008} & -0.05872679 & 0.11674329 & 139 & 154 & 3.5\% & -0.06 [-0.29, 0.17] \\ \text{famada 2003} & -0.10274656 & 0.11364501 & 160 & 149 & 3.6\% & -0.18 [-0.38, 0.02] \\ \text{commer 2000} & -0.17900004 & 0.10217801 & 201 & 183 & 4.3\% & -0.18 [-0.38, 0.02] \\ \text{fam AR Rosum 1993} & -0.04554753 & 0.068295043 & 292 & 288 & 5.9\% & -0.05 [-0.21, 0.01] \\ \text{fathy 1992} & -0.17854933 & 0.0972811 & 223 & 196 & 4.6\% & -0.18 [-0.37, 0.01] \\ \text{fath rule 2007} & 0.09213862 & 0.06485754 & 474 & 477 & 8.2\% & 0.09 [-0.07, -0.03] \\ fort or overall effect: Z = 2.15 (P = 0.03) \\ \text{fest for overall effect: Z = 2.50 (P = 0.09); l2 = 39\% \\ \text{fest for overall effect: Z = 2.50 (P = 0.09); l2 = 19\% \\ \text{fest for overall effect: Z = 2.60 (P = 0.09); l2 = 19\% \\ \text{fest for overall effect: Z = 2.60 (P = 0.09); l2 = 19\% \\ \text{fest for overall effect: Z = 2.60 (P = 0.09); l2 = 19\% \\ \text{fest for overall effect: Z = 2.60 (P = 0.09); l2 = 19\% \\ \text{fest for overall effect: Z = 2.60 (P = 0.09); l2 = 19\% \\ \text{fe$				- · ·				
an Hout 2010 0.13887444 0.09708599 215 209 4.7% 0.14 [-0.05, 0.33] tetter 1984b -0.16945091 0.09477957 237 210 4.9% -0.17 [-0.36, 0.02] loland 2005 -0.16162187 0.08257294 307 282 5.9% -0.16 [-0.32, 0.00] loeg 2010 -0.10764642 0.08215403 328 310 6.0% -0.11 [-0.27, 0.05] ibubtotal (95% CI) 1736 1562 33.7% -0.05 [-0.14, 0.04] teterogeneity: Tau ² = 0.01; Ch ² = 12.01, df = 8 (P = 0.15); l ² = 33% lest for overall effect: Z = 1.14 (P = 0.25) L48.3 5 or More Visits Trawford Shearer 2010 -0.15973573 0.30370371 20 22 0.6% -0.16 [-0.75, 0.44] in 2007 -0.68159697 0.22962498 39 40 1.0% -0.68 [-1.13, -0.23] Aarkle-Reid 2010 0.05052332 0.2072482 49 43 1.2% 0.05 [-0.36, 0.46] an Haastregt 2000 -0.01953552 0.13007778 120 115 2.9% -0.02 [-0.27, 0.24] Aarkle -Reid 2010 0.05052332 0.2072482 49 43 1.2% 0.05 [-0.36, 0.46] an Haastregt 2000 -0.01953552 0.13007778 120 115 2.9% -0.02 [-0.27, 0.24] Aarkle -Reid 2016 -0.04768252 0.12860815 120 121 3.0% -0.05 [-0.30, 0.20] touman 2008 -0.05872679 0.11674329 139 154 3.5% -0.06 [-0.29, 0.17] 'amad 2003 -0.10274656 0.11364501 160 149 3.6% -0.18 [-0.38, 0.02] toummar 2000 -0.17900004 0.10217801 201 183 4.3% -0.18 [-0.38, 0.02] tarthy 1992 -0.17854933 0.09792811 223 196 4.6% -0.18 [-0.37, 0.01] an Rossum 1993 -0.04554753 0.08295043 292 288 5.9% -0.05 [-0.21, 0.12] counsell 2007 0.02913862 0.061485754 474 477 8.2% 0.09 [-0.17, -0.01] teterogeneity: Tau ² = 0.01; Ch ² = 18.10, df = 11 (P = 0.08); l ² = 39% Test for overall effect: Z = 2.15 (P = 0.03) Total (95% CI) 2473 2234 47.5% -0.09 [-0.17, -0.01] teterogeneity: Tau ² = 0.00; Ch ² = 32.24, df = 26 (P = 0.19); l ² = 19% Test for overall effect: Z = 2.60 (P = 0.09)								
$ \begin{array}{c} \text{ logg} \text{ logg} 1 & 0.09477957 & 237 & 210 & 4.9\% & -0.17 [-0.36, 0.02] \\ \text{ logg} 2010 & -0.16162187 & 0.08257294 & 307 & 282 & 5.9\% & -0.16 [-0.32, 0.00] \\ \text{ logg} 2010 & -0.10764642 & 0.08215403 & 328 & 310 & 6.0\% & -0.01 [-0.27, 0.05] \\ \text{ logg} 2010 & 1.0764642 & 0.08215403 & 328 & 310 & 6.0\% & -0.01 [-0.27, 0.05] \\ \text{ loggeneity: Tau2} = 0.01; Chi2 = 12.01, df = 8 (P = 0.15); l2 = 33\% \\ \text{ lest for overall effect: Z = 1.14 (P = 0.25) \\ \text{ lass for Nore Visis: } \\ \text{ rawford Shearer 2010 } & -0.15973573 & 0.30370371 & 20 & 22 & 0.6\% & -0.16 [-0.75, 0.44] \\ \text{ in 2007 } & -0.68159697 & 0.22962498 & 39 & 40 & 1.0\% & -0.68 [-1.13, -0.23] \\ \text{ and Haastreg 2000 } & -0.01953552 & 0.13007778 & 120 & 115 & 2.9\% & -0.02 [-0.27, 0.24] \\ \text{ darkle-Reid 2016 } & -0.04768252 & 0.12860815 & 120 & 121 & 3.0\% & -0.05 [-0.30, 0.20] \\ \text{ loguman 2008 } & -0.05872679 & 0.11674329 & 139 & 154 & 3.5\% & -0.06 [-0.29, 0.17] \\ \text{ darada 2003 } & -0.1274656 & 0.1364501 & 160 & 149 & 3.6\% & -0.018 [-0.38, 0.02] \\ dark of the set $								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	van Hout 2010						0.14 [-0.05, 0.33]	+
Note 2010 -0.10764642 0.08215403 328 310 6.0% -0.11 [-0.27, 0.05] iubtotal (95% CI) 1736 1562 33.7% -0.05 [-0.14, 0.04] rest for overall effect: $Z = 1.14$ ($P = 0.25$) L48.3 5 or More Visits rawford Shearer 2010 -0.15973573 0.30370371 20 22 0.6% -0.16 [-0.75, 0.44] in 2007 -0.68159697 0.22962498 39 40 1.0% -0.68 [-1.13, -0.23] Aarkle-Reid 2010 0.05052332 0.2072482 49 43 1.2% 0.05 [-0.36, 0.46] an Haastregt 2000 -0.01953552 0.13007778 120 115 2.9% -0.02 [-0.27, 0.24] Aarkle-Reid 2010 0.05872679 0.11674329 139 154 3.5% -0.06 [-0.29, 0.17] famada 2003 -0.10274656 0.11364501 160 149 3.6% -0.10 [-0.38, 0.02] touman 2008 -0.05872679 0.11674329 139 154 3.5% -0.06 [-0.29, 0.17] famada 2003 -0.10274656 0.11364501 160 149 3.6% -0.18 [-0.38, 0.02] touman 2000 -0.17900004 0.10217801 201 183 4.3% -0.18 [-0.38, 0.02] tathy 1992 -0.17854933 0.09792811 223 196 4.6% -0.18 [-0.37, 0.01] an Rossum 1993 -0.04554753 0.08295043 292 288 5.9% -0.05 [-0.21, 0.12] counsell 2007 0.09213862 0.061485754 474 477 8.2% 0.09 [-0.17, -0.01] teterogeneity: Tau ² = 0.01; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 39% rest for overall effect: Z = 2.15 (P = 0.03) rotal (95% CI) 5064 4689 100.0% -0.06 [-0.11, -0.02] teterogeneity: Tau ² = 0.00; Chi ² = 32.24, df = 26 (P = 0.19); l ² = 19% rest for overall effect: Z = 2.60 (P = 0.09)	Vetter 1984b	-0.16945091	0.09477957	237	210	4.9%	-0.17 [-0.36, 0.02]	
Subtrail (95% C) 1736 1562 33.7% -0.05 [-0.14 , 0.04] ideterogeneity: Tau ² = 0.01; Chi ² = 12.01, df = 8 (P = 0.15); l ² = 33% isst for overall effect: Z = 1.14 (P = 0.25) L48.3 5 or More Visits -0.68159697 0.22962498 39 40 1.0% $-0.68 [-1.13, -0.23]$ in 2007 -0.68159697 0.22962498 39 40 1.0% $-0.68 [-1.13, -0.23]$ aharkle-Reid 2010 0.05052332 0.2072482 49 43 1.2% $0.05 [-0.36, 0.46]$ an Haastreg 2000 -0.01953552 0.13007778 120 115 2.9% $-0.02 [-0.27, 0.24]$ darkle-Reid 2006 -0.04768252 0.12860815 120 121 3.0% $-0.05 [-0.30, 0.20]$ damada 2008 -0.05872679 0.11674329 139 154 -5.0% $-0.06 [-0.29, 0.17]$ damada 2003 -0.17854933 0.0972811 221 3.0% $-0.018 [-0.38, 0.02]$ $-0.08 [-0.31, 0.01]$ ommers 2000 -0.17854933 0.09213862 0.06485754 474 477 8.2% $0.09 [-0.03, 0.22]$ $-0.18 [-0.37, 0.01]$ $-0.14 [-0.37, 0.01]$ $-0.14 [-0.37, $	Holland 2005	-0.16162187	0.08257294				-0.16 [-0.32, 0.00]	
teterogeneity: Tau ² = 0.01; Chi ² = 12.01, df = 8 (P = 0.15); l ² = 33% rest for overall effect: Z = 1.14 (P = 0.25) 1.48.3 5 or More Visits Trawford Shearer 2010 -0.15973573 0.30370371 20 22 0.6% -0.16 [-0.75, 0.44] in 2007 -0.68159697 0.22962498 39 40 1.0% -0.68 [-1.13, -0.23] darkle-Reid 2010 0.05052332 0.2072482 49 43 1.2% 0.05 [-0.36, 0.46] an Haastregt 2000 -0.01953552 0.13007778 120 115 2.9% -0.02 [-0.27, 0.24] darkle-Reid 2016 -0.04768252 0.13007778 120 115 2.9% -0.06 [-0.29, 0.17] 'amada 2003 -0.05872679 0.11674329 139 154 3.5% -0.06 [-0.29, 0.17] 'amada 2003 -0.10274656 0.11364551 160 149 3.6% -0.10 [-0.33, 0.12] 'ommers 2000 -0.17900004 0.10217801 201 183 4.3% -0.18 [-0.37, 0.01] 'am Rossum 1993 -0.0454753 0.08295043 292 288 5.9% -0.05 [-0.21, 0.12] 'aun Rossum 1993 -0.0454753 0.06180403 636 446 8.6% -0.15 [-0.27, -0.03] 'uples 2004 -0.14951835 0.06180403 636 446 8.6% -0.15 [-0.27, -0.03] 'uples 2004 -0.14951835 0.06180403 636 446 8.6% -0.15 [-0.27, -0.03] 'uples 2004 -0.14951835 0.06180403 636 446 8.6% -0.15 [-0.27, -0.03] 'uples 2004 -0.14951835 0.06180403 636 446 8.6% -0.05 [-0.27, -0.03] 'uples 2004 -0.14951835 0.06180403 636 446 8.6% -0.05 [-0.27, -0.03] 'uples 2004 -0.14951835 0.06180403 636 446 8.6% -0.05 [-0.27, -0.03] 'uples 2004 -0.14951835 0.06180403 636 446 8.6% -0.05 [-0.27, -0.03] 'uples 2004 -0.14951835 0.06180403 636 446 8.6% -0.05 [-0.27, -0.03] 'uples 2004 -0.14951835 0.06180403 636 446 8.6% -0.05 [-0.27, -0.03] 'uples 2004 -0.14951835 0.06180403 636 4468 9 100.0% -0.06 [-0.11, -0.02] 'est for overall effect: Z = 2.50 (P = 0.09)	Ploeg 2010	-0.10764642	0.08215403					
Test for overall effect: $Z = 1.14$ (P = 0.25) 1.48.35 or More Visits Trawford Shearer 2010 -0.15973573 0.30370371 20 22 0.6% -0.16 [-0.75, 0.44] in 2007 -0.68159697 0.22962498 39 40 1.0% -0.68 [-1.13, -0.23] Trawford Shearer 2010 0.05052332 0.2072482 49 43 1.2% 0.05 [-0.36, 0.46] Trawford Shearer 2000 -0.01953552 0.13007778 120 115 2.9% -0.02 [-0.27, 0.24] Trawfakle-Reid 2016 -0.04768252 0.12860815 120 121 3.0% -0.05 [-0.30, 0.20] Trawfakle-Reid 2006 -0.04768252 0.12860815 120 121 3.0% -0.06 [-0.29, 0.17] Tramada 2003 -0.10274656 0.11364501 160 149 3.6% -0.10 [-0.38, 0.02] Tramada 2003 -0.10274656 0.11264501 160 149 3.6% -0.10 [-0.38, 0.02] Tramada 2003 -0.10274656 0.10217801 201 183 4.3% -0.18 [-0.37, 0.01] Tramada 2003 -0.04554753 0.08295043 292 285 5.9% -0.05 [-0.21, 0.12] Tramada 2007 0.09213862 0.06485754 474 477 8.2% 0.09 [-0.17, -0.01] Tramada 2007 -0.04554753 0.08295043 292 2234 47.5% -0.09 [-0.17, -0.01] Tramada 2007 -0.04554753 0.06180403 2636 4468 8.6% -0.15 [-0.27, -0.03] Tramada 2007 -0.04554753 0.06180403 2473 2234 47.5% -0.09 [-0.17, -0.01] Tramada 2007 -0.09213862 0.061885754 474 477 8.2% 0.09 [-0.17, -0.01] Tramada 2007 -0.04554753 0.06180403 2636 4468 8.6% -0.15 [-0.27, -0.03] Tramada 2007 -0.09213862 0.061885754 474 477 8.2% 0.09 [-0.17, -0.01] Tramada 2007 -0.09213862 0.061805754 474 477 8.2% 0.09 [-0.17, -0.01] Tramada 2007 -0.091; Tramada 200; Chi ² = 18.10, df = 11 (P = 0.08); I ² = 39% Tramada 2008 -0.05 [-0.21, -0.05] Tramada 2009 -0.00; Chi ² = 32.24, df = 26 (P = 0.19); I ² = 19% Tramada 2008 -0.05 [-0.21, -0.05] Tramada 2009 -0.00; Chi ² = 32.24, df = 26 (P = 0.19); I ² = 19% Tramada 2008 -0.05 [-0.21, -0.02] Tramada 2009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	Subtotal (95% CI)			1736	1562	33.7%	-0.05 [-0.14, 0.04]	•
L48.3 5 or More Visits Trawford Shearer 2010 -0.15973573 0.30370371 20 22 0.6% -0.16 [-0.75, 0.44] in 2007 -0.68159697 0.22962498 39 40 1.0% -0.68 [-1.13, -0.23] darkle-Reid 2010 0.05052332 0.2072482 49 43 1.2% 0.05 [-0.36 , 0.46] an Haastreg 2000 -0.01953552 0.13007778 120 115 2.9% -0.02 [-0.27 , 0.24] darkle-Reid 2006 -0.04768252 0.12860815 120 121 3.0% -0.05 [-0.30 , 0.20] darkle-Reid 2008 -0.05872679 0.11674329 139 154 3.5% -0.06 [-0.29 , 0.27] framada 2003 -0.10274656 0.11364501 160 149 3.6% -0.10 [-0.33 , 0.12] iommers 2000 -0.17900004 0.10217801 201 183 4.3% -0.18 [-0.38 , 0.02] iommers 2000 -0.17900004 0.08295043 292 288 5.9% -0.05 [-0.21 , 0.12] iam Rossum 1993 -0.04554753 0.062895043 292 288 5.9% -0.05 [-0.21 , 0.12] iousell 2007 0.09213862 0.06485754 474 477 8.2% 0.09 [-0.03 , 0.22] ivibtotal (95% CI) teterogeneity: Tau ² = 0.01; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 39% Test for overall effect: Z = 2.15 (P = 0.03) Total (95% CI) teterogeneity: Tau ² = 0.00; Chi ² = 32.24, df = 26 (P = 0.19); l ² = 19% Test for overall effect: Z = 2.60 (P = 0.09)			$(P = 0.15); I^2 =$	33%				
Trawford Shearer 2010 -0.15973573 0.30370371 20 22 0.6% -0.16 [-0.75, 0.44] in 2007 -0.68159697 0.22962498 39 40 1.0% -0.68 [-1.13, -0.23] Aarkle-Reid 2010 0.05052332 0.2072482 49 43 1.2% 0.05 [-0.36, 0.46] an Haastregt 2000 -0.01953552 0.13007778 120 115 2.9% -0.02 [-0.27, 0.24] Aarkle-Reid 2006 -0.04768252 0.12860815 120 121 3.0% -0.05 [-0.30, 0.20] bouman 2008 -0.05872679 0.11674329 139 134 3.5% -0.016 [-0.29, 0.17] arada 2003 -0.10274656 0.11364501 160 149 3.6% -0.018 [-0.38, 0.02] 'arada 2003 -0.10274656 0.11364501 160 149 3.6% -0.018 [-0.37, 0.01] an Rossum 1993 -0.04554753 0.068295043 292 288 5.9% -0.05 [-0.21, 0.12] can Rossum 1993 -0.04554753 0.068295043 292 288 5.9% -0.05 [-0.21, 0.12] cubtoal [2007 0.09213862 0.06485754 474 477 8.2% 0.09 [-0.03, 0.22] 'yles 2004 -0.14951835 0.06180403 636 468 8.6% -0.15 [-0.27, -0.03] 'ubtoal (95% CI) 2473 2234 47.5% -0.09 [-0.17, -0.01] teterogeneity: Tau ² = 0.01; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 39% Test for overall effect: Z = 2.15 (P = 0.03) Total (95% CI) 5064 4689 100.0% -0.06 [-0.11, -0.02] teterogeneity: Tau ² = 0.00; Chi ² = 32.24, df = 26 (P = 0.19); l ² = 19% Test for overall effect: Z = 2.60 (P = 0.09)	Test for overall effect: Z	= 1.14 (P = 0.25)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.48.3 5 or More Visits							
in 2007 -0.68159697 0.22962498 39 40 1.0% -0.68 [-1.13, -0.23] darkle-Reid 2010 0.05052332 0.2072482 49 43 1.2% 0.05 [-0.36, 0.46] an Haastregt 2000 -0.01953552 0.13007778 120 115 2.9% -0.02 [-0.27, 0.24] darkle-Reid 2006 -0.04768252 0.12860815 120 121 3.0% -0.05 [-0.30, 0.20] darkle-Reid 2003 -0.05872679 0.11674329 139 154 3.5% -0.06 [-0.29, 0.17] (amada 2003 -0.1274656 0.11364501 160 149 3.6% -0.10 [-0.33, 0.12] iommers 2000 -0.17900004 0.10217801 201 183 4.3% -0.18 [-0.38, 0.02] iathy 1992 -0.17854933 0.09792811 223 196 4.6% -0.18 [-0.37, 0.01] ian Rossum 1993 -0.04554753 0.08295043 292 288 5.9% -0.05 [-0.21, 0.12] iounsell 2007 0.09213862 0.06485754 474 477 8.2% 0.09 [-0.03, 0.22] ivibitotal (95% CI) 2473 2234 47.5% -0.09 [-0.17, -0.01] teterogeneity: Tau ² = 0.01; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 39% fest for overall effect: Z = 2.15 (P = 0.03) Total (95% CI) 5064 4689 100.0% -0.06 [-0.11, -0.02] teterogeneity: Tau ² = 0.00; Chi ² = 32.24, df = 26 (P = 0.19); l ² = 19% fest for overall effect: Z = 2.60 (P = 0.009)	Crawford Shearer 2010	-0.15973573	0.30370371	20	22	0.6%	-0.16 [-0.75, 0.44]	
Markle-Reid 2010 0.05052332 0.2072482 49 43 1.2% $0.05[-0.36, 0.46]$ an Haastregt 2000 -0.01953552 0.13007778 120 112 2.9% $-0.02[-0.27, 0.24]$ Markle-Reid 2006 -0.04768252 0.120767852 121 3.0% $-0.05[-0.30, 0.20]$ Journal 2008 -0.05872679 0.11674329 139 154 3.5% $-0.06[-0.29, 0.17]$ 'amada 2003 -0.10274656 0.1127801 201 183 4.3% $-0.18[-0.38, 0.02]$ 'amato 2000 -0.17900004 0.10217801 201 183 4.3% $-0.18[-0.37, 0.01]$ 'amato 2007 -0.09213862 0.06485754 474 477 8.2% $0.09[-0.03, 0.22]$ 'oursell 2007 -0.14951835 0.06180403 636 446 8.6% $-0.15[-0.27, -0.03]$ 'oursell 2007 0.09213862 0.06485754 474 477 8.2% $0.09[-0.17, -0.01]$ 'uetrogeneity: Tau' = $0.01;$ Chi ² = $18.10,$ df = $11 (P = 0.08);$ l ² = 39% 2234 47.5% $-0.09[-0.17, -0.01]$ $-1, -0.5, 0$ <td>Lin 2007</td> <td></td> <td></td> <td>39</td> <td>40</td> <td>1.0%</td> <td></td> <td></td>	Lin 2007			39	40	1.0%		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Markle-Reid 2010							
Markle-Reid 2006 -0.04768252 0.12860815 120 121 3.0% $-0.05[-0.30, 0.20]$ Namada 2003 -0.05872679 0.11674329 139 154 3.5% $-0.06[-0.29, 0.17]$ aramada 2003 -0.0274656 0.11364501 160 149 3.6% $-0.06[-0.39, 0.20]$ iommers 2000 -0.17900004 0.10217801 201 183 4.3% $-0.18[-0.38, 0.02]$ iarthy 1992 -0.17854933 0.09792811 223 196 4.6% $-0.18[-0.37, 0.01]$ ara Rossum 1993 -0.04554753 0.08295043 292 288 5.9% $-0.05[-0.21, 0.12]$ coursell 2007 0.09213862 0.06485754 474 477 8.2% $0.09[-0.03, 0.22]$ iyles 2004 -0.14951835 0.06180403 636 446 8.6% $-0.17, -0.01$] iestofor overall effect: Z = 2.15 (P = 0.03) 2473 2244 47.5% $-0.09[-0.17, -0.01]$ -1 iest for overall effect: Z = 2.60 (P = 0.09); l ² = 32.64, df = 26 (P = 0.19); l ² = 19% is an usity E Favours control -1 -0.5 0.5 <	van Haastregt 2000			120	115			
bouman 2008 -0.05872679 0.11674329 139 154 3.5% $-0.06[-0.29, 0.17]$ famada 2003 -0.10274656 0.11364501 160 149 3.6% $-0.010[-0.38, 0.02]$ famada 2003 -0.10274656 0.10217801 201 183 4.3% $-0.18[-0.38, 0.02]$ tathy 1992 -0.17854933 0.09792811 223 196 4.6% $-0.18[-0.37, 0.01]$ an Rossum 1993 -0.04554753 0.08295043 292 288 5.9% $-0.05[-0.21, 0.12]$ counsell 2007 0.09213862 0.06485754 474 477 8.2% $0.09[-0.03, 0.22]$ types 2004 -0.14951835 0.06180403 636 446 8.6% $-0.15[-0.27, -0.03]$ types 2004 -0.14951835 0.06180403 636 446 8.6% $-0.15[-0.27, -0.03]$ theterogeneity: Tau ² = 0.01; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 39% Total (95% CI) 5064 4689 100.0% $-0.06[-0.11, -0.02]$ teterogeneity: Tau ² = 0.00; Chi ² = 32.24, df = 26 (P = 0.19); l ² = 19% Test for overall effect: Z = 2.60 (P = 0.009)		-0.04768252	0.12860815	120	121	3.0%		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bouman 2008							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								_ _ +
athy 1992 -0.17854933 0.09792811 223 196 4.6% $-0.18 [-0.37, 0.01]$ an Rossum 1993 -0.04554753 0.08295043 292 288 5.9% $-0.05 [-0.21, 0.12]$ counsell 2007 0.09213862 0.06485754 474 477 8.2% $0.09 [-0.03, 0.22]$ vibectal (95% CI) 2473 2234 47.5% $-0.09 [-0.17, -0.01]$ rest for overall effect: Z = 2.15 (P = 0.03) 5064 4689 100.0\% $-0.06 [-0.11, -0.02]$ rest for overall effect: Z = 2.60 (P = 0.09) 5064 4689 100.0\% $-0.06 [-0.11, -0.02]$								
Total (95% CI) teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% teterogeneity: Tau ² = 0.00; Chl ² = 32.24, df = 26 (P = 0.19); l ² = 19% t								
counsell 2007 0.09213862 0.06485754 474 477 8.2% 0.09 [-0.03, 0.22] viples 2004 -0.14951835 0.06180403 636 446 8.6% -0.15 [-0.27, -0.03] vibtotal (95% CI) 2473 2234 47.5% -0.09 [-0.17, -0.01] 4eterogeneity: Tau ² = 0.01; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 39% 5064 4689 100.0% -0.06 [-0.11, -0.02] fortal (95% CI) 5064 4689 100.0% -0.06 [-0.11, -0.02] -1 -0.5 0 0.5 1 rest for overall effect: Z = 2.60 (P = 0.09) 5064 4689 100.0% -0.06 [-0.11, -0.02] -1 -0.5 0 0.5 1								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Subtotal (95% CI) 2473 2234 47.5% $-0.09[-0.17, -0.01]$ deterogeneity: Tau ² = 0.01; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 39% rest for overall effect: Z = 2.15 (P = 0.03) 5064 4689 100.0% $-0.06[-0.11, -0.02]$ deterogeneity: Tau ² = 0.00; Chi ² = 32.24, df = 26 (P = 0.19); l ² = 19% rest for overall effect: Z = 2.60 (P = 0.009) Fail (95% CI) $-1 - 0.5 = 0 - 0.5 = 1$ rest for overall effect: Z = 2.60 (P = 0.009)								
Atterogeneity: Tau ² = 0.01; Chi ² = 18.10, df = 11 (P = 0.08); l ² = 39% Test for overall effect: Z = 2.15 (P = 0.03) Total (95% CI) Atterogeneity: Tau ² = 0.00; Chi ² = 32.24, df = 26 (P = 0.19); l ² = 19% Test for overall effect: Z = 2.60 (P = 0.009) Test for overall effect: Z = 2.60 (P = 0.009)	Subtotal (95% CI)	-0.14551055	0.00100403					
Test for overall effect: $Z = 2.15$ (P = 0.03) Fotal (95% CI) Test for overall effect: $Z = 2.00$; Chi ² = 32.24, df = 26 (P = 0.19); l ² = 19% Test for overall effect: $Z = 2.60$ (P = 0.009) Test for overall effect: $Z = 2.60$ (P = 0.009)		01: Chi ² - 18 10 df - 1	$1 (P - 0.08) \cdot I^2 -$					•
Fotal (95% CI) 5064 4689 100.0% -0.06 [-0.11, -0.02] 4 tetrogeneity: Tau ² = 0.00; Chi ² = 32.24, df = 26 (P = 0.19); l ² = 19% (est for overall effect: Z = 2.60 (P = 0.009) Favours for overall effect: Z = 2.60 (P = 0.009)			.1 (1 = 0.00), 1 =	- 33/0				
Heterogeneity: Tau ² = 0.00; Chi ² = 32.24, df = 26 (P = 0.19); l ² = 19% Test for overall effect: Z = 2.60 (P = 0.009) Favours for overall effect: Z = 2.60 (P = 0.009)				505	1000	100.00	0.001.011.000	
Test for overall effect: $Z = 2.60$ (P = 0.009)		00. Chil 22.24 df 2	C (D 0 10) 12		4689	100.0%	-0.06 [-0.11, -0.02]	• • • •
			$0 (P = 0.19); I^{*} =$	- 19%				
			$P = 0.56$ $I^2 = -$	0%				Favours home visits Favours control

Analysis 41: Hospitalisation admissions, results at longest follow-up

			Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
Lightbody 2002	-0.210405	0.474342	155	159	1.9%	0.81 [0.32, 2.05]]
Lenaghan 2007	-0.07195722	0.31244047	68	66	3.9%	0.93 [0.50, 1.72]]
Caplan 2004	-0.48954823	0.29135827	370	369	4.3%	0.61 [0.35, 1.08]]
Dalby 2000	0.27287577	0.28986801	70	69	4.4%	1.31 [0.74, 2.32]]
Tinetti 1994	-0.31480238	0.19720266	153	148	7.3%	0.73 [0.50, 1.07]]
Balaban 1988	0.59420569	0.18601026	103	95	7.8%	1.81 [1.26, 2.61]]
Close 1999	-0.20134241	0.15748661	184	213	9.2%	0.82 [0.60, 1.11]]
Sommers 2000	0.13693273	0.13824932	238	227	10.3%	1.15 [0.87, 1.50]	1
Pathy 1992	-0.12503838	0.13131131	219	200	10.7%	0.88 [0.68, 1.14]	j _ ∎ ∔
Pathy 1992	-0.13916677	0.11309618	150	156	11.8%	0.87 [0.70, 1.09	i —•+
van Rossum 1993	-0.32160726	0.09614351	292	288	12.9%	0.72 [0.60, 0.88	j <u> </u>
Counsell 2007	-0.05338644	0.05272497	474	477	15.6%	0.95 [0.85, 1.05)
Total (95% CI)			2476	2467	100.0%	0.93 [0.81, 1.06]	1 🔶
Heterogeneity: Tau ² =	0.03; Chi ² = 28.	07. df = 11 (P	$= 0.003$; I^2 =	= 61%			05071152
Test for overall effect:			, , .				0.5 0.7 1 1.5 2
							Favours home visits Favours control

Analysis 42: Hospitalisation admissions at each follow-up interval

Study on Subarran	log(Data Datia)	SE	Home visits Total		Wainht	Rate Ratio IV. Random. 95% CI	Rate Ratio IV, Random, 95% CI
Study or Subgroup 1.50.1 01-11 month	log[Rate Ratio]	SE	Total	Total	weight	IV, Kandom, 95% CI	IV, Random, 95% CI
Lightbody 2002	-0.210405	0.474342	155	159	16.8%	0.81 [0.32, 2.05]	
Lenaghan 2007	-0.07195722				38.7%	0.93 [0.50, 1.72]	_
Caplan 2004	-0.48954823					0.61 [0.35, 1.08]	
Subtotal (95% CI)			593	594	100.0%	0.75 [0.52, 1.11]	
Heterogeneity: Tau ² =			0.61 ; $I^2 = 0$ %	6			
Test for overall effect:	Z = 1.45 (P = 0.	15)					
1.50.2 12-23 month	s						
Dalby 2000	0.27287577	0.28986801	70	69	9.0%	1.31 [0.74, 2.32]	
Tinetti 1994	-0.31480238					0.73 [0.50, 1.07]	_ _
Balaban 1988	0.59420569	0.18601026	103	95	13.6%	1.81 [1.26, 2.61]	— —
van Rossum 1993	-0.415743	0.16824	292	288	14.5%	0.66 [0.47, 0.92]	_
Close 1999	-0.20134241	0.15748661	184	213	15.1%	0.82 [0.60, 1.11]	
Sommers 2000	0.10222723				15.4%	1.11 [0.82, 1.49]	
Counsell 2007	0.074388	0.073467					+ -
Subtotal (95% CI)			1514		100.0%	1.00 [0.80, 1.26]	•
Heterogeneity: Tau ² =			= 0.0009); I ² :	= 74%			
Test for overall effect:	Z = 0.03 (P = 0.)	97)					
1.50.3 24-35 month	s						
Sommers 2000	0.13693273	0.13824932	238	227	28.2%	1.15 [0.87, 1.50]	- + =
van Rossum 1993	-0.3740302	0.11381009	292	288	31.7%	0.69 [0.55, 0.86]	
Counsell 2007	-0.05338644	0.05272497					-
Subtotal (95% CI)			1004		100.0%	0.90 [0.71, 1.15]	-
Heterogeneity: Tau ² =			$(0.009); I^2 = 7$	9%			
Test for overall effect:	Z = 0.82 (P = 0.5)	41)					
1.50.4 36+ months							
Pathy 1992	-0.12503838						
Pathy 1992	-0.13916677						
van Rossum 1993 Subtotal (95% CI)	-0.32160726	0.09614351	292 661		43.4% 100.0%	0.72 [0.60, 0.88] 0.81 [0.71, 0.92]	
Heterogeneity: Tau ² =	0.00; Chi ² = 2.1	5 df - 2 (P -			100.070	0.01 [0.71, 0.52]	•
Test for overall effect:			0.54), 1 = 77				
						-	0.5 0.7 1 1.5 2

Favours home visits Favours control

Analysis 43: Hospitalisation admissions; focus of visit subgroups

			Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.51.2 MGA Only							
Caplan 2004	-0.48954823	0.29135827	370	369	4.3%	0.61 [0.35, 1.08]	
Dalby 2000	0.27287577	0.28986801	70	69	4.4%	1.31 [0.74, 2.32]	
Balaban 1988	0.59420569	0.18601026	103	95	7.8%	1.81 [1.26, 2.61]	
Sommers 2000	0.13693273	0.13824932	238	227	10.3%	1.15 [0.87, 1.50]	- + •
Pathy 1992	-0.12503838	0.13131131	219	200	10.7%	0.88 [0.68, 1.14]	
Pathy 1992	-0.13916677	0.11309618	150	156	11.8%	0.87 [0.70, 1.09]	+
van Rossum 1993	-0.32160726	0.09614351	292		12.9%		
Counsell 2007 Subtotal (95% CI)	-0.05338644	0.05272497	474 1916		15.6% 77.7%		
Heterogeneity: Tau ² = Test for overall effect:			0.0005); I ² =	= 73%			
1.51.3 Both							
Lightbody 2002	-0.210405	0.474342	155	159	1.9%	0.81 [0.32, 2.05]	
Tinetti 1994	-0.31480238		153	148	7.3%		
Close 1999	-0.20134241	0.15748661	184		9.2%		
Subtotal (95% CI)			492		18.4%	0.78 [0.62, 0.99]	-
Heterogeneity: Tau ² = Test for overall effect:			0.90); l ² = 0%	5			
1.51.4 Neither							
Lenaghan 2007	-0.07195722	0.31244047	68	66	3.9%	0.93 [0.50, 1.72]	
Subtotal (95% CI)			68	66	3.9%	0.93 [0.50, 1.72]	
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.23 (P = 0.8)	32)					
Total (95% CI)			2476	2467	100.0%	0.93 [0.81, 1.06]	•
Heterogeneity: Tau ² =	0.03; Chi ² = 28.0	07, df = 11 (P	= 0.003); I ² =	= 61%			0.5 0.7 1 1.5 2
Test for overall effect:							Favours home visits Favours control
Test for subgroup diff	erences: Chi ² = 2.	04, df = 2 (P =	$= 0.36$), $I^2 = 2$	2.1%			ravours nome visits ravours control

Analysis 44: Hospitalisation admissions; age of participants subgroups

			Home visits			Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.52.1 <=70							
Balaban 1988	0.59420569				7.8%		
Pathy 1992	-0.12503838	0.13131131			10.7%		
Subtotal (95% CI)			322		18.4%	1.25 [0.62, 2.53]	
Heterogeneity: Tau ² =			0.002 ; $I^2 = 9$	0%			
Test for overall effect:	Z = 0.62 (P = 0.5)	54)					
1.52.2 71-75							
Lightbody 2002	-0.210405	0.474342	155	159	1.9%	0.81 [0.32, 2.05]	
Counsell 2007	-0.05338644	0.05272497			15.6%		
Subtotal (95% CI)			629	636	17.5%	0.95 [0.85, 1.05]	♦
Heterogeneity: Tau2 =			0.74 ; $I^2 = 0\%$	6			
Test for overall effect:	Z = 1.06 (P = 0.3)	29)					
1.52.3 76-80							
Dalby 2000	0.27287577	0.28986801	70	69	4.4%	1.31 [0.74, 2.32]	
Tinetti 1994	-0.31480238	0.19720266	153	148	7.3%		
Close 1999	-0.20134241	0.15748661	184	213	9.2%	0.82 [0.60, 1.11]	
Sommers 2000	0.13693273	0.13824932	238	227	10.3%	1.15 [0.87, 1.50]	- +-
Pathy 1992	-0.13916677	0.11309618	150	156	11.8%	0.87 [0.70, 1.09]	
van Rossum 1993	-0.32160726	0.09614351			12.9%		
Subtotal (95% CI)			1087		55.8%	0.87 [0.74, 1.04]	◆
Heterogeneity: Tau ² =			= 0.07); I ² = 5	2%			
Test for overall effect:	Z = 1.55 (P = 0.1)	12)					
1.52.4 81-85							
Lenaghan 2007	-0.07195722	0.31244047	68	66	3.9%	0.93 [0.50, 1.72]	
Caplan 2004	-0.48954823	0.29135827	370		4.3%		
Subtotal (95% CI)			438		8.2%	0.74 [0.49, 1.13]	-
Heterogeneity: Tau ² =			$(0.33); I^2 = 0\%$	6			
Test for overall effect:	Z = 1.39 (P = 0.1)	17)					
Total (95% CI)			2476	2467	100.0%	0.93 [0.81, 1.06]	▲
Heterogeneity: Tau ² =	0.03; Chi ² = 28.	07, df = 11 (P	$= 0.003$; $I^2 =$	= 61%			0.5 0.7 1 1.5 2
Test for overall effect:	Z = 1.10 (P = 0.1)	27)					0.5 0.7 1 1.5 2 Favours home visits Favours control
Test for subgroup diff	erences: Chi ² = 2.	35. df = 3 (P	$= 0.50$, $l^2 = 0$	0%			ravours nome visits Favours control

Analysis 45: Hospitalisation admissions; type of visitor subgroups

			Home visits	Control		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Fixed, 95% C	I IV, Fixed, 95% CI
1.53.1 Nurse							
Lightbody 2002	-0.210405	0.474342	155	159	0.6%	0.81 [0.32, 2.05]]
Caplan 2004	-0.48954823	0.29135827	370	369	1.5%	0.61 [0.35, 1.08]	ı ——
Dalby 2000	0.27287577	0.28986801	70	69	1.5%	1.31 [0.74, 2.32]]
van Rossum 1993	-0.32160726	0.09614351	292	288		0.72 [0.60, 0.88]	
Subtotal (95% CI)			887	885	17.3%	0.76 [0.64, 0.89]	1 🔶
Heterogeneity: Chi ² =							
Test for overall effect	Z = 3.28 (P = 0.00)	L)					
1.53.2 Other							
Lenaghan 2007	-0.07195722	0.31244047	68	66	1.3%	0.93 [0.50, 1.72]	1
Close 1999	-0.20134241	0.15748661	184	213	5.1%	0.82 [0.60, 1.11]	i —+
Pathy 1992	-0.12503838	0.13131131	219	200	7.3%	0.88 [0.68, 1.14]	i <u></u> +
Pathy 1992	-0.13916677	0.11309618	150	156	9.9%	0.87 [0.70, 1.09]	i —•+
Subtotal (95% CI)			621	635	23.6%	0.87 [0.75, 1.00]	i 🔶
Heterogeneity: Chi ² =	0.21, df = 3 (P = 0.	98); I ² = 0%					
Test for overall effect	Z = 1.97 (P = 0.05)						
1.53.3 Combined							
Tinetti 1994	-0.31480238	0.19720266	153	148	3.3%	0.73 [0.50, 1.07]	ı ————————————————————————————————————
Balaban 1988	0.59420569	0.18601026	103	95	3.7%	1.81 [1.26, 2.61]	j
Sommers 2000	0.13693273	0.13824932	238	227	6.6%	1.15 [0.87, 1.50]	i +
Counsell 2007	-0.05338644	0.05272497	474	477		0.95 [0.85, 1.05]	
Subtotal (95% CI)			968	947	59.1%	0.99 [0.91, 1.09	1 🔶
Heterogeneity: Chi2 =	14.74, df = 3 (P = 0	$(.002); I^2 = 80$	%				
Test for overall effect	Z = 0.14 (P = 0.89)						
Total (95% CI)			2476	2467	100.0%	0.92 [0.86, 0.98]	ı 🔶
Heterogeneity: Chi ² =	28.07, df = 11 (P =	0.003 ; $I^2 = 6$	1%				0.5 0.7 1 1.5 2
Test for overall effect	Z = 2.43 (P = 0.02)						Favours home visits Favours control
Test for subgroup dif	ferences: $Chi^2 = 8.76$	df = 2 (P = 0)	$(0.01), I^2 = 77.2$	%			ravours nome visits ravours control

Analysis 46: Hospitalisation admissions; number of visits subgroups

			Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.54.1 1 Visit							
Lightbody 2002	-0.210405	0.474342	155	159	1.2%	0.81 [0.32, 2.05]	
Close 1999	-0.20134241	0.15748661			8.3%		
Subtotal (95% CI)			339	372	9.5%	0.82 [0.61, 1.09]	-
Heterogeneity: Tau ² =	0.00; Chi ² = 0.0	0, df = 1 (P =	$(0.99); I^2 = 0\%$	í			
Test for overall effect:	Z = 1.35 (P = 0.1)	18)					
1.54.2 2-4 Visits							
Lenaghan 2007	-0.07195722	0.31244047	68	66	2.6%	0.93 [0.50, 1.72]	
Caplan 2004	-0.48954823	0.29135827	370	369	2.9%	0.61 [0.35, 1.08]	
Dalby 2000	0.27287577	0.28986801	70	69	2.9%	1.31 [0.74, 2.32]	
Subtotal (95% CI)			508	504	8.4%	0.91 [0.58, 1.41]	
Heterogeneity: Tau ² =	0.06; Chi ² = 3.4	5, df = 2 (P =	0.18 ; $I^2 = 42$	%			
Test for overall effect:	Z = 0.43 (P = 0.00)	57)					
1.54.3 5 or More Vis	its						
Tinetti 1994	-0.31480238	0.19720266	153	148	5.8%	0.73 [0.50, 1.07]	
Sommers 2000	0.13693273	0.13824932	238	227	10.1%	1.15 [0.87, 1.50]	
Pathy 1992	-0.12503838	0.13131131	219	200	10.9%	0.88 [0.68, 1.14]	
Pathy 1992	-0.13916677	0.11309618	150	156	13.2%	0.87 [0.70, 1.09]	
van Rossum 1993	-0.32160726	0.09614351	292	288	16.0%	0.72 [0.60, 0.88]	
Counsell 2007	-0.05338644	0.05272497	474	477	26.1%	0.95 [0.85, 1.05]	
Subtotal (95% CI)			1526	1496	82.1%	0.88 [0.78, 1.00]	•
Heterogeneity: Tau ² =	0.01; Chi ² = 10.	34, df = 5 (P =	$= 0.07$; $I^2 = 5$	2%			
Test for overall effect:	Z = 1.97 (P = 0.0)	05)					
Total (95% CI)			2373	2372	100.0%	0.88 [0.79, 0.97]	•
Heterogeneity: Tau ² =	0.01; Chi ² = 14.	18, df = 10 (P	$= 0.16$; $I^2 =$	29%			0507 1152
Test for overall effect:	Z = 2.49 (P = 0.0)	01)					Favours home visits Favours control
Test for subgroup diff	erences: Chi ² = 0.	25. df = 2 (P	$= 0.88$, $I^2 = 0$	0%			ravours nome visits Favours control

Analysis 47: Hospitalisation (days), results at longest follow-up

			Home visits	Control		Rate Ratio	Rate	Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Rando	m, 95% CI
Markle-Reid 2010	2.41082692	0.30107939	54	55	4.5%	11.14 [6.18, 20.10]		•
Davison 2005	-1.69743135	0.09532616	159	154	7.5%	0.18 [0.15, 0.22]	•	
Tinetti 1994	-0.83210697	0.06945248	153	148	7.8%	0.44 [0.38, 0.50]	←	
Balaban 1988	-0.31561464	0.06397298	103	95	7.9%	0.73 [0.64, 0.83]		
Lightbody 2002	-0.21465082	0.06182697	155	159	7.9%	0.81 [0.71, 0.91]		
Dalby 2000	0.56767531	0.04626165	70	69	8.0%	1.76 [1.61, 1.93]		
Stuck 1995	0.20802991	0.04419946	215	199	8.0%	1.23 [1.13, 1.34]		
Bernabei 1998	-0.43656359	0.0429571	99	100	8.0%	0.65 [0.59, 0.70]		
Bouman 2008	-0.02296921	0.03816434	160	170	8.0%	0.98 [0.91, 1.05]		-
Pathy 1992 (1)	-0.05789343	0.03040131	150	156	8.1%	0.94 [0.89, 1.00]		-
Pathy 1992 (2)	-0.38036169	0.02767676	219	200	8.1%	0.68 [0.65, 0.72]		
Counsell 2007	-0.0770609	0.02262275	474	477	8.1%	0.93 [0.89, 0.97]	+	
van Rossum 1993	-0.25133501	0.02166482	292	288	8.1%	0.78 [0.75, 0.81]	+	
Total (95% CI)			2303	2270	100.0%	0.85 [0.71, 1.02]	•	-
Heterogeneity: Tau ² =	0.11: Chi ² = 909	.84. df = 12 (P < 0.00001	$ ^2 = 99\%$				
Test for overall effect:				,			0.5 0.7	1 1.5 2
		/					Favours home visits	Favours control
(1) Pathy 1992b								
(2) Pathy 1992a								
(2) Patny 1992a								

Analysis 48: Hospitalisation (days) at each follow-up interval

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 3 9 21 0 24 0.00, df = 0.11) 9 1 5 4 9 6 9 17 0 23 7 36 5 42 5 42 5 42 5 42 5 5 4 9 51	100 62 162 1 (P = 0 60 122 84 154 95 144 199 288	9.3% 90.7% 100.0% 0.98); I ² = 0.3% 0.9% 1.5% 4.1% 6.5% 9.1% 10.0%	M-H, Random, 95% CI 0.66 [0.11, 3.87] 0.64 [0.36, 1.13] 0.64 [0.38, 1.10] • 0% 1.02 [0.07, 15.88] 0.68 [0.15, 2.97] 0.89 [0.28, 2.79] 0.80 [0.41, 1.56] 0.91 [0.54, 1.52] 0.87 [0.57, 1.32] 0.86 [0.58, 1.27]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 21 20 24 0.00, df = 0.11) 9 1 5 4 9 6 9 17 0 23 7 36 5 42 2 64 9 51	62 162 1 (P = 0 60 122 84 154 95 144 199 288	90.7% 100.0% 0.98); l ² = 0.3% 0.9% 1.5% 4.1% 6.5% 9.1% 10.0%	0.64 [0.36, 1.13] 0.64 [0.38, 1.10] 0.64 [0.38, 1.10] 1.02 [0.07, 15.88] 0.68 [0.15, 2.97] 0.89 [0.28, 2.79] 0.80 [0.41, 1.56] 0.91 [0.54, 1.52] 0.87 [0.57, 1.32]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 21 20 24 0.00, df = 0.11) 9 1 5 4 9 6 9 17 0 23 7 36 5 42 2 64 9 51	62 162 1 (P = 0 60 122 84 154 95 144 199 288	90.7% 100.0% 0.98); l ² = 0.3% 0.9% 1.5% 4.1% 6.5% 9.1% 10.0%	0.64 [0.36, 1.13] 0.64 [0.38, 1.10] 0.64 [0.38, 1.10] 1.02 [0.07, 15.88] 0.68 [0.15, 2.97] 0.89 [0.28, 2.79] 0.80 [0.41, 1.56] 0.91 [0.54, 1.52] 0.87 [0.57, 1.32]	
$\begin{array}{c} 17\\ 17\\ 00; Chi^2 = 0\\ = 1.60 \ (P = 1)\\ 1 & 5\\ 3 & 13\\ 5 & 7\\ 14 & 15\\ 22 & 10\\ 32 & 14\\ 39 & 21\\ 45 & 25\\ 36 & 26\\ 68 & 16\end{array}$	24 0.00, df = 0.11) 9 1 5 4 9 6 9 17 0 23 7 36 5 42 2 64 9 51	162 1 (P = 0 60 122 84 154 95 144 199 288	100.0% 0.98); l ² = 0.3% 0.9% 1.5% 4.1% 6.5% 9.1% 10.0%	0.64 [0.38, 1.10] = 0% 1.02 [0.07, 15.88] 0.68 [0.15, 2.97] 0.89 [0.28, 2.79] 0.80 [0.41, 1.56] 0.91 [0.54, 1.52] 0.87 [0.57, 1.32]	
$\begin{array}{c} 17\\ 00; Chi^2 = 0\\ = 1.60 \ (P = 1)\\ 1 & 5\\ 3 & 13\\ 5 & 7\\ 14 & 15\\ 22 & 10\\ 32 & 14\\ 39 & 21\\ 45 & 25\\ 36 & 9\\ 68 & 16\end{array}$	24 0.00, df = 0.11) 9 1 5 4 9 6 9 17 0 23 7 36 5 42 2 64 9 51	60 122 84 154 95 144 199 288	0.98); I ² = 0.3% 0.9% 1.5% 4.1% 6.5% 9.1% 10.0%	1.02 [0.07, 15.88] 0.68 [0.15, 2.97] 0.89 [0.28, 2.79] 0.80 [0.41, 1.56] 0.91 [0.54, 1.52] 0.87 [0.57, 1.32]	
00; Chi ² = (= 1.60 (P = 1 5 3 13 5 7 14 15 22 10 32 14 39 21 45 25 36 5 68 16	0.00, df = 0.11) 9 1 5 4 9 6 9 17 0 23 7 36 5 42 2 64 9 51	60 122 84 154 95 144 199 288	0.3% 0.9% 1.5% 4.1% 6.5% 9.1% 10.0%	1.02 [0.07, 15.88] 0.68 [0.15, 2.97] 0.89 [0.28, 2.79] 0.80 [0.41, 1.56] 0.91 [0.54, 1.52] 0.87 [0.57, 1.32]	
1 5 3 13 5 7 14 15 22 10 32 14 39 21 45 25 36 5 68 16	0.11) 9 1 5 4 9 6 9 17 0 23 7 36 5 42 2 64 9 51	60 122 84 154 95 144 199 288	0.3% 0.9% 1.5% 4.1% 6.5% 9.1% 10.0%	1.02 [0.07, 15.88] 0.68 [0.15, 2.97] 0.89 [0.28, 2.79] 0.80 [0.41, 1.56] 0.91 [0.54, 1.52] 0.87 [0.57, 1.32]	
1 5 3 13 5 7 14 15 22 10 32 14 39 21 45 29 36 9	9 1 5 4 9 6 9 17 0 23 7 36 5 42 2 64 9 51	122 84 154 95 144 199 288	0.9% 1.5% 4.1% 6.5% 9.1% 10.0%	0.68 [0.15, 2.97] 0.89 [0.28, 2.79] 0.80 [0.41, 1.56] 0.91 [0.54, 1.52] 0.87 [0.57, 1.32]	
3 13 5 7 14 15 22 10 32 14 39 21 45 29 36 9 68 16	5 4 9 6 9 17 0 23 7 36 5 42 62 64 99 51	122 84 154 95 144 199 288	0.9% 1.5% 4.1% 6.5% 9.1% 10.0%	0.68 [0.15, 2.97] 0.89 [0.28, 2.79] 0.80 [0.41, 1.56] 0.91 [0.54, 1.52] 0.87 [0.57, 1.32]	
3 13 5 7 14 15 22 10 32 14 39 21 45 29 36 9 68 16	5 4 9 6 9 17 0 23 7 36 5 42 62 64 99 51	122 84 154 95 144 199 288	0.9% 1.5% 4.1% 6.5% 9.1% 10.0%	0.68 [0.15, 2.97] 0.89 [0.28, 2.79] 0.80 [0.41, 1.56] 0.91 [0.54, 1.52] 0.87 [0.57, 1.32]	
5 7 14 15 22 10 32 14 39 21 45 29 36 9 68 16	'9 6 '9 17 '0 23 '7 36 '5 42 '2 64 '9 51	84 154 95 144 199 288	1.5% 4.1% 6.5% 9.1% 10.0%	0.68 [0.15, 2.97] 0.89 [0.28, 2.79] 0.80 [0.41, 1.56] 0.91 [0.54, 1.52] 0.87 [0.57, 1.32]	
14 15 22 10 32 14 39 21 45 29 36 9 68 16	9 17 0 23 7 36 5 42 2 64 9 51	154 95 144 199 288	1.5% 4.1% 6.5% 9.1% 10.0%	0.89 [0.28, 2.79] 0.80 [0.41, 1.56] 0.91 [0.54, 1.52] 0.87 [0.57, 1.32]	
22 10 32 14 39 21 45 29 36 9 68 16	0 23 7 36 5 42 2 64 9 51	95 144 199 288	6.5% 9.1% 10.0%	0.80 [0.41, 1.56] 0.91 [0.54, 1.52] 0.87 [0.57, 1.32]	
32 14 39 21 45 29 36 9 68 16	7 36 5 42 2 64 9 51	144 199 288	9.1% 10.0%	0.91 [0.54, 1.52] 0.87 [0.57, 1.32]	
32 14 39 21 45 29 36 9 68 16	7 36 5 42 2 64 9 51	144 199 288	9.1% 10.0%	0.87 [0.57, 1.32]	
39 21 45 29 36 9 68 16	5 42 2 64 9 51	199 288	10.0%		
45 29 36 9 68 16	2 64 9 51	288			- 1
36 9 68 16	9 51		12.0%	0.69 [0.49, 0.98]	
68 16		100	13.1%	0.71 [0.52, 0.99]	_
	0 61		16.5%	1.18 [0.90, 1.55]	+
163 33	1 141		25.9%	1.12 [0.95, 1.32]	+ - -
177			100.0%	0.92 [0.80, 1.07]	•
428	446				-
01; Chi ² = 1		= 10 (P	= 0.20); I	$^{2} = 26\%$	
= 1.10 (P =	0.27)				
80 16	0 71	170	26.8%	1.20 [0.95, 1.52]	+
			27.5%	0.80 [0.64, 1.01]	
			45.7%	0.95 [0.87, 1.04]	-
				0.97 [0.81, 1.15]	
					٦
			$(0.06): I^2 =$	= 65%	
99 21	5 93	199	22.4%	0 99 [0 80 1 21]	
					1
			100.070	0.55 [0.04, 1.05]	•
			0 80) 12 -	- 0%	
		2 (F ≅ (5.80), T =	0/0	
· 1.45 (P =	0.13)				
					0.5 0.7 1 1.5 2
0=	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Favours home visits Favours control

Analysis 49: Hospitalisation (days); focus of visit subgroups

			Home visits	Control		Rate Ratio	Rate I	Ratio
Study or Subgroup	log[Rate Ratio]	SE	E Total	Total	Weight	IV, Random, 95% C	I IV, Randor	n, 95% Cl
1.57.2 MGA Only								
Balaban 1988	-0.31561464	0.06397298	103	95	7.9%	0.73 [0.64, 0.83]) —	
Dalby 2000	0.56767531	0.04626165	70	69	8.0%	1.76 [1.61, 1.93]	-
Stuck 1995	0.20802991	0.04419946	215	199	8.0%	1.23 [1.13, 1.34]]	
Bernabei 1998	-0.43656359	0.0429571	. 99	100	8.0%	0.65 [0.59, 0.70]) 🗕	
Bouman 2008	-0.02296921	0.03816434	160	170	8.0%	0.98 [0.91, 1.05]] –	-
Pathy 1992 (1)	-0.05789343	0.03040131	. 219	200	8.1%	0.94 [0.89, 1.00]) +	
Pathy 1992 (2)	-0.38036169				8.1%	0.68 [0.65, 0.72]		
Counsell 2007	-0.0770609	0.02262275	474	477	8.1%	0.93 [0.89, 0.97]) +	
van Rossum 1993	-0.25133501	0.02166482		288	8.1%	0.78 [0.75, 0.81]		
Subtotal (95% CI)			1782	1754	72.3%	0.92 [0.78, 1.08]	1 🔶	•
Heterogeneity: Tau ² =	 0.06; Chi² = 477 	7.23, df = 8 (F	P < 0.00001);	$^{2} = 98\%$				
Test for overall effect:	Z = 1.01 (P = 0.)	31)						
1.57.3 Both								
Markle-Reid 2010	2.41082692			55		11.14 [6.18, 20.10]		
Davison 2005	-1.69743135				7.5%	0.18 [0.15, 0.22]		
Tinetti 1994	-0.83210697			148	7.8%	0.44 [0.38, 0.50]		
Lightbody 2002	-0.21465082	0.06182697		159	7.9%	0.81 [0.71, 0.91		
Subtotal (95% CI)	_		521	516	27.7%	0.86 [0.37, 2.02]		
Heterogeneity: Tau ² =			P < 0.00001); I	$^{2} = 99\%$				
Test for overall effect:	Z = 0.34 (P = 0.)	73)						
Total (95% CI)			2303	2270	100.0%	0.85 [0.71, 1.02]		
Heterogeneity: Tau ² =	0 11: Chi ² - 900	84 df = 12			200.0/0	0.05 [0.71, 1.02]		
Test for overall effect:			(1 < 0.00001),	1 - 99%			0.5 0.7 1	1.5 2
Test for subgroup diff			-0.89) $l^2 - 0$	19/			Favours home visits	Favours control
(1) Pathy 1992a	erences. Chi = 0	.02, ui = 1 (F	- 0.03), 1 = 0	//0				
(2) Pathy 1992b								
(2) Patny 1992b								

Analysis 50: Hospitalisation (days); age of participants subgroups

			Home visits			Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.58.1 <=70							
Balaban 1988	-0.31561464		103	95	8.2%	0.73 [0.64, 0.83]	
Pathy 1992 (1)	-0.38036169	0.02767676	219		8.5%		
Subtotal (95% CI)			322		16.7%	0.69 [0.66, 0.73]	•
Heterogeneity: Tau ² =			0.35 ; $I^2 = 0\%$	6			
Test for overall effect:	Z = 14.57 (P < 0	.00001)					
1.58.2 71-75							
Lightbody 2002	-0.21465082	0.06182607	155	159	8.2%	0.81 [0.71, 0.91]	
Counsell 2007	-0.0770609		474		8.5%		
Subtotal (95% CI)	-0.0770003	0.02202275	629		16.7%		
Heterogeneity: Tau ² =	$0.01 \cdot Chi^2 = 4.3$	7 df = 1 (P = 1)				,	•
Test for overall effect:			0.04), 1 = 77	/0			
1.58.3 76-80							
	1 60743135	0.00533616	150	154	7.00/	0 10 (0 15 0 22)	
Davison 2005 Tinetti 1994	-1.69743135 -0.83210697		159 153		7.8% 8.2%		
			153				
Dalby 2000 Bouman 2008	0.56767531 -0.02296921		160		8.4% 8.4%		
Pathy 1992	-0.05789343		150		8.5%		
van Rossum 1993	-0.25133501		292		8.5%		
Subtotal (95% CI)	-0.23133301	0.02100402	984		49.8%		
Heterogeneity: Tau ² =	0.19° Chi ² = 647	76 df = 5 (P)	< 0.00001)			,	-
Test for overall effect:			< 0.00001),	- 55%			
1.58.4 81-85							
1.58.4 81-85 Stuck 1995	0.20802991	0.04410046	215	199	0 40/	1 22 (1 12 1 24)	
Stuck 1995 Bernabei 1998	-0.43656359		215		8.4% 8.4%		
Subtotal (95% CI)	-0.43030339	0.0429571	314		8.4% 16.8%		
Heterogeneity: Tau ² =	0 21: Chi ² - 100	37 df = 1 /P			10.070	0.05 [0.47, 1.00]	
Test for overall effect:			< 0.00001),	- 99%			
		-					
Total (95% CI)			2249		100.0%	0.75 [0.63, 0.90]	◆
Heterogeneity: Tau ² =			P < 0.00001	; I ² = 99%			0.5.0.7 1 1.5.2
Test for overall effect:							Favours home visits Favours control
Test for subgroup diff	erences: Chi ² = 1	1.20, df = 3 (P	$= 0.01), I^2 =$	73.2%			
(1) Pathy 1992a							

Analysis 51: Hospitalisation (days); type of visitor subgroups

			Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Tota	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
1.59.1 Nurse							
Lightbody 2002	-0.21465082	0.06182697	155	159	7.9%	0.81 [0.71, 0.91]]
Dalby 2000	0.56767531	0.04626165	70	69	8.0%	1.76 [1.61, 1.93]]
Stuck 1995	0.20802991	0.04419946	215	199	8.0%	1.23 [1.13, 1.34]]
Bouman 2008	-0.02296921	0.03816434	160	170	8.0%	0.98 [0.91, 1.05]] 🗕
van Rossum 1993 Subtotal (95% CI)	-0.25133501	0.02166482	292 892		8.1% 40.0%		
Heterogeneity: Tau ² =	0.11; Chi ² = 306	5.04, df = 4 (P	< 0.00001);	$l^2 = 99\%$			
Test for overall effect:							
1.59.2 Other							
Bernabei 1998	-0.43656359	0.0429571	99	100	8.0%	0.65 [0.59, 0.70]	
Pathy 1992	-0.05789343				8.1%		
Pathy 1992 (1)	-0.38036169				8.1%		
Subtotal (95% CI)	-0.38030109	0.02707070	468		24.2%		
Heterogeneity: Tau ² =	0.04 Chi ² = 79	60 df = 2 (P -					
Test for overall effect:			< 0.00001), I	- 5176			
1.59.3 Combined							
Markle-Reid 2010	2 41082602	0.30107939	54	55	1 5%	11.14 [6.18, 20.10]	
Davison 2005	-1.69743135				7.5%		
Tinetti 1994	-0.83210697				7.8%		
Balaban 1988	-0.31561464				7.9%		
Counsell 2007		0.02262275			8.1%		
Subtotal (95% CI)	-0.0770003	0.02202275	943		35.8%		
Heterogeneity: Tau ² =	0.45: Chi ² = 436	5.38. df = 4 (P	< 0.00001)	$l^2 = 9.9\%$			
Test for overall effect:			(0.00001),				
Total (95% CI)			2303	2270	100.0%	0.85 [0.71, 1.02]	•
Heterogeneity: Tau ² =	0.11: Chi ² = 909	9.84. df = 12 ((P < 0.00001)	$ ^2 = 9.9\%$			·
Test for overall effect:				,. 55%			0.5 0.7 1 1.5 2
Test for subgroup diff			$= 0.20$, $I^2 = 1$	38.5%			Favours home visits Favours control
(1) Pathy 1992a							

Analysis 52: Hospitalisation (days); number of visits subgroups

			Home visits	Control		Rate Ratio	Rate Ratio	
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI	
1.60.1 1 Visit								
Lightbody 2002 Subtotal (95% CI)	-0.21465082	0.06182697	155 155	159 159	9.3% 9.3%	0.81 [0.71, 0.91] 0.81 [0.71, 0.91]		
Heterogeneity: Not ap	plicable							
Test for overall effect	Z = 3.47 (P = 0.1)	0005)						
1.60.2 2-4 Visits								
Dalby 2000 Subtotal (95% CI)	0.56767531	0.04626165	70 70	69 69	9.5% 9.5%	1.76 [1.61, 1.93] 1.76 [1.61, 1.93]		
Heterogeneity: Not ap	plicable							
Test for overall effect	Z = 12.27 (P < 0)	.00001)						
1.60.3 5 or More Vis	its							
Markle-Reid 2010	2.41082692	0.30107939	54	55	4.6%	11.14 [6.18, 20.10]	1	•
Tinetti 1994	-0.83210697	0.06945248	153	148	9.2%	0.44 [0.38, 0.50]	i —	
Stuck 1995	0.20802991	0.04419946	215	199	9.5%	1.23 [1.13, 1.34]]	
Bernabei 1998	-0.43656359	0.0429571	99	100	9.5%	0.65 [0.59, 0.70]] 🗕 🗕	
Bouman 2008	-0.02296921	0.03816434	160	170	9.6%	0.98 [0.91, 1.05]	1 +	
Pathy 1992	-0.05789343	0.03040131	150	156	9.6%	0.94 [0.89, 1.00]) •	
Pathy 1992	-0.38036169	0.02767676	219	200	9.7%	0.68 [0.65, 0.72]	1 +	
Counsell 2007	-0.0770609	0.02262275	474	477	9.7%	0.93 [0.89, 0.97]	i +	
van Rossum 1993	-0.25133501	0.02166482	292	288	9.7%	0.78 [0.75, 0.81]	•	
Subtotal (95% CI)			1816	1793	81.2%	0.90 [0.77, 1.06]	i 🔶	
Heterogeneity: Tau ² =	0.06; Chi ² = 391	1.92, df = 8 (P	< 0.00001); I ²	$^{2} = 98\%$				
Test for overall effect	Z = 1.28 (P = 0.1)	20)						
Total (95% CI)			2041	2021	100.0%	0.97 [0.82, 1.16]	1 🔶	
Heterogeneity: Tau ² =	0.08; Chi ² = 642	2.25. df = 10 (P < 0.00001);	$I^2 = 98\%$				
Test for overall effect							0.5 0.7 1 1.5 2 Favours home visits Favours contro	
Test for subgroup dif	ferences: $Chi^2 = 1$	21.54. df = 2	(P < 0.00001).	$l^2 = 98.4$	4%		ravours nome visits Favours contro	л

Analysis 53: Hospitalisation (people) at each follow-up interval

	Home v		Cont			Risk Ratio	Risk Ratio
tudy or Subgroup		Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
.62.1 01-11 month	s						
Ciaschini 2009	2	101	3	100	9.3%	0.66 [0.11, 3.87]	< <u>-</u>
Ciechanowski 2004	15	69	21	62	90.7%	0.64 [0.36, 1.13]	
ubtotal (95% CI)		170		162	100.0%	0.64 [0.38, 1.10]	
otal events	17		24				
leterogeneity: Tau ² =	0.00; Ch	$i^2 = 0.0$	0, df = 1	1 (P = 0)).98); I ² =	= 0%	
est for overall effect:	Z = 1.60	(P = 0.	11)				
.62.2 12-23 month	s						
(ono 2004	1	59	1	60	0.3%	1.02 [0.07, 15.88]	•
AcEwan 1990	3	135	4	122	0.9%	0.68 [0.15, 2.97]	· · · · · · · · · · · · · · · · · · ·
logan 2001	5	79	6	84	1.5%	0.89 [0.28, 2.79]	
Davison 2005	14	159	17	154	4.1%	0.80 [0.41, 1.56]	
abacher 1994	22	100	23	95	6.5%	0.91 [0.54, 1.52]	
inetti 1994	32	147	36	144	9.1%	0.87 [0.57, 1.32]	
tuck 1995	39	215	42	199	10.0%	0.86 [0.58, 1.27]	
an Rossum 1993	45	292	64	288	12.0%	0.69 [0.49, 0.98]	
ernabei 1998	36	99	51	100	13.1%	0.71 [0.52, 0.99]	_
Souman 2008	68	160	61	170	16.5%	1.18 [0.90, 1.55]	_ _
an Hout 2010	163	331	141	320	25.9%	1.12 [0.95, 1.32]	+ - -
Subtotal (95% CI)		1776		1736	100.0%	0.92 [0.80, 1.07]	•
otal events	428		446				-
leterogeneity: Tau ² =	0.01; Ch	$i^2 = 13$	53, df =	10 (P	= 0.20); I	² = 26%	
est for overall effect:	Z = 1.10	(P = 0.	27)				
.62.3 24-35 month	s						
Souman 2008	80	160	71	170	26.8%	1.20 [0.95, 1.52]	
an Rossum 1993	88	292	108	288	27.5%	0.80 [0.64, 1.01]	
orensen 1988	345	585	482	777	45.7%	0.95 [0.87, 1.04]	
ubtotal (95% CI)		1037		1235	100.0%	0.97 [0.81, 1.15]	
otal events	513		661				-
		$i^2 = 5.7$	2 df = 3	P = 0	$(0.06): 1^2 =$	6.5%	
	0.02: Ch					: 65%	
leterogeneity: Tau ² = Test for overall effect:				_ (i _ (· 65%	
leterogeneity: Tau ² =				- (1 - (· 65%	
leterogeneity: Tau ² = Test for overall effect:				199		0.99 [0.80, 1.21]	
leterogeneity: Tau ² = Fest for overall effect: 1.62.4 36+ months	Z = 0.39	(P = 0.	70)				-
Heterogeneity: Tau ² = Test for overall effect: L 62.4 36+ months ituck 1995	Z = 0.39 99	(P = 0.	70) 93	199	22.4%	0.99 [0.80, 1.21]	-
Heterogeneity: Tau ² = Test for overall effect: L. 62.4 36+ months Stuck 1995 Van Rossum 1993	Z = 0.39 99 121	(P = 0. 215 292	70) 93 133	199 288 446	22.4% 28.2%	0.99 [0.80, 1.21] 0.90 [0.75, 1.08]	
Heterogeneity: Tau ² = Fest for overall effect: L.62.4 36+ months ituck 1995 an Rossum 1993 Byles 2004	Z = 0.39 99 121	(P = 0. 215 292 636	70) 93 133	199 288 446	22.4% 28.2% 49.4%	0.99 [0.80, 1.21] 0.90 [0.75, 1.08] 0.92 [0.80, 1.06]	•
Heterogeneity: Tau ² = Fest for overall effect: L.62.4 36+ months ituck 1995 an Rossum 1993 Syles 2004 Subtotal (95% CI)	Z = 0.39 99 121 261 481	(P = 0. 215 292 636 1143	70) 93 133 198 424	199 288 446 933	22.4% 28.2% 49.4% 100.0%	0.99 [0.80, 1.21] 0.90 [0.75, 1.08] 0.92 [0.80, 1.06] 0.93 [0.84, 1.03]	•
Heterogeneity: Tau ² = Test for overall effect: L.62.4 36+ months Stuck 1995 Van Rossum 1993 Syles 2004 Subtotal (95% CI) Total events	Z = 0.39 99 121 261 481 0.00; Ch	$(P = 0.1)^{215}$ 292 636 1143 $i^2 = 0.4$	70) 93 133 198 424 5, df = 2	199 288 446 933	22.4% 28.2% 49.4% 100.0%	0.99 [0.80, 1.21] 0.90 [0.75, 1.08] 0.92 [0.80, 1.06] 0.93 [0.84, 1.03]	•
Heterogeneity: Tau ² = Fest for overall effect: L.62.4 36+ months Stuck 1995 Fan Rossum 1993 Byles 2004 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² =	Z = 0.39 99 121 261 481 0.00; Ch	$(P = 0.1)^{215}$ 292 636 1143 $i^2 = 0.4$	70) 93 133 198 424 5, df = 2	199 288 446 933	22.4% 28.2% 49.4% 100.0%	0.99 [0.80, 1.21] 0.90 [0.75, 1.08] 0.92 [0.80, 1.06] 0.93 [0.84, 1.03]	•

Favours home visits Favours control

Analysis 54: Hospitalisation (people); focus of visit subgroups

	Home v	isits	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
1.63.1 Falls Only							
Hogan 2001	5	79	6	84	0.2%	0.89 [0.28, 2.79]	
Subtotal (95% CI)		79		84	0.2%	0.89 [0.28, 2.79]	
Total events	5		6				
Heterogeneity: Not ap							
Test for overall effect:	Z = 0.21	(P = 0.	84)				
1.63.2 MGA Only							
Kono 2004	1	59	1	60	0.0%	1.02 [0.07, 15.88]	· · · · · · · · · · · · · · · · · · ·
McEwan 1990	3	135	4	122	0.1%	0.68 [0.15, 2.97]	· · · · · · · · · · · · · · · · · · ·
Bernabei 1998	36	99	51	100	3.0%	0.71 [0.52, 0.99]	
Bouman 2008	80	160	71	170	5.7%	1.20 [0.95, 1.52]	
Stuck 1995	99	215	93	199	7.4%	0.99 [0.80, 1.21]	
van Rossum 1993	121	292	133	288	9.3%	0.90 [0.75, 1.08]	
Byles 2004	261	636	198	446	16.2%	0.92 [0.80, 1.06]	
Sorensen 1988	345	585	482	777	41.6%	0.95 [0.87, 1.04]	
Subtotal (95% CI)		2181		2162	83.3%	0.95 [0.88, 1.01]	•
Total events	946		1033				
Heterogeneity: Tau ² =	= 0.00; Ch	$i^2 = 7.5$	5, df = 7	7 (P = 0)).37); I ² =	= 7%	
Test for overall effect:	Z = 1.57	(P = 0.	12)				
1.63.3 Both							
Ciaschini 2009	2	101	3	100	0.1%	0.66 [0.11, 3.87]	· · · · ·
Davison 2005	14	159	17	154	0.7%	0.80 [0.41, 1.56]	
Fabacher 1994	22	100	23	95	1.2%	0.91 [0.54, 1.52]	
Tinetti 1994	32	147	36	144	1.8%	0.87 [0.57, 1.32]	
van Hout 2010	163	331	141	320	11.6%	1.12 [0.95, 1.32]	
Subtotal (95% CI)		838		813	15.4%	1.05 [0.91, 1.21]	•
Total events	233	_	220		_		
Heterogeneity: Tau ² =				4 (P = 0)).62); I ² =	= 0%	
Test for overall effect:	Z = 0.64	(P = 0.	52)				
1.63.4 Neither							
Ciechanowski 2004	15	69	21	62	1.0%	0.64 [0.36, 1.13]	
Subtotal (95% CI)		69		62	1.0%	0.64 [0.36, 1.13]	
Total events	15		21				
Heterogeneity: Not ap							
Test for overall effect:	Z = 1.53	(P = 0.	13)				
Total (95% CI)		3167		3121	100.0%	0.96 [0.91, 1.01]	•
Total events	1199		1280				
Heterogeneity: Tau ² =			. ,	14 (P :	= 0.47);	$r^{2} = 0\%$	0.5 0.7 1 1.5 2
Test for overall effect:							Favours home visits Favours control
Test for subgroup diff	ferences: ($Chi^2 = 3$.56. df =	= 3 (P =	: 0.31), I ²	= 15.8%	rateas control

Analysis 55: Hospitalisation (people); age of participants subgroups

	Home v	isits	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.64.2 71-75							
Ciaschini 2009	2	101	3	100	0.1%	0.66 [0.11, 3.87]	· · · · · · · · · · · · · · · · · · ·
Ciechanowski 2004	15	69	21	62	1.1%	0.64 [0.36, 1.13]	
Fabacher 1994	22	100	23	95	1.4%	0.91 [0.54, 1.52]	
Subtotal (95% CI)		270		257	2.6%	0.77 [0.53, 1.12]	-
Total events	39		47				
Heterogeneity: Tau ² =				2 (P = 0)	0.66); I ² =	- 0%	
Test for overall effect:	Z = 1.37	(P = 0.	17)				
1.64.3 76-80							
Hogan 2001	5	79	6	84	0.3%	0.89 [0.28, 2.79]	
Davison 2005	14	159	17	154	0.8%	0.80 [0.41, 1.56]	
Tinetti 1994	32	147	36	144	2.0%	0.87 [0.57, 1.32]	
Bouman 2008	80	160	71	170	6.3%	1.20 [0.95, 1.52]	
van Rossum 1993	121	292	133	288	10.0%	0.90 [0.75, 1.08]	
Byles 2004	261	636	198	446	16.8%	0.92 [0.80, 1.06]	
Sorensen 1988	345	585	482	777	37.6%	0.95 [0.87, 1.04]	-
Subtotal (95% CI)		2058		2063	73.7%	0.95 [0.89, 1.01]	•
Total events	858		943				
Heterogeneity: Tau ² =	0.00; Ch	$i^2 = 4.6$	6, df = 6	5 (P = 0)).59); I ² =	= 0%	
Test for overall effect:	Z = 1.52	(P = 0.	13)				
1.64.4 81-85							
Kono 2004	1	59	1	60	0.0%	1.02 [0.07, 15.88]	← →
Bernabei 1998	36	99	51	100	3.4%	0.71 [0.52, 0.99]	
Stuck 1995	99	215	93	199	8.0%	0.99 [0.80, 1.21]	
van Hout 2010	163	331	141	320	12.3%	1.12 [0.95, 1.32]	+
Subtotal (95% CI)		704		679	23.8%	0.96 [0.79, 1.18]	•
Total events	299		286				
Heterogeneity: Tau ² =				3 (P = 0)	0.11); I ² =	= 50%	
Test for overall effect:	Z = 0.36	(P = 0.	72)				
Total (95% CI)		3032		2999	100.0%	0.96 [0.90, 1.02]	•
Total events	1196		1276				
Heterogeneity: Tau ² =	0.00; Ch	$i^2 = 13$	48, df =	13 (P	= 0.41);	$a^2 = 4\%$	0.5 0.7 1 1.5 2
Test for overall effect:							0.5 0.7 1 1.5 2 Favours home visits Favours control
Test for subgroup diff	erences: ($Chi^2 = 1$.21. df =	= 2 (P =	0.55), I ²	= 0%	

Analysis 56: Hospitalisation (people); type of visitor subgroups

Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI 1.65.1 Nurse Kono 2004 1 59 1 60 0.0% 1.02 [0.07, 15.88] Image: Comparison of the comparison
Kono 2004 1 59 1 60 0.0% $1.02 [0.07, 15.88]$ Ciaschini 2009 2 101 3 100 0.1% 0.66 [0.11, 3.87] McEwan 1990 3 135 4 122 0.1% 0.68 [0.15, 2.97] Bouman 2008 80 160 71 170 5.7% 1.20 [0.95, 1.52] Stuck 1995 99 215 93 199 7.4% 0.99 [0.80, 1.21] van Rossum 1993 121 292 133 288 9.3% 0.90 [0.75, 1.08] van Hout 2010 163 331 141 320 11.6% 1.12 [0.95, 1.32] Subtotal (95% CI) 1293 1259 34.2% 1.03 [0.94, 1.14] Total events 469 446 Heterogeneity: Tau ² = 0.00; Chl ² = 5.38, df = 6 (P = 0.50); l ² = 0%
Ciaschini 2009 2 101 3 100 0.1% 0.66 $[0.11, 3.87]$ McEwan 1990 3 135 4 122 0.1% 0.68 $[0.15, 2.97]$ Bouman 2008 80 160 71 170 5.7% 1.20 $[0.95, 1.52]$ Stuck 1995 99 215 93 199 7.4% 0.99 $[0.80, 1.21]$ van Rossum 1993 121 292 133 288 9.3% 0.90 $[0.75, 1.08]$ van Hout 2010 163 331 141 320 11.6% 1.12 $[0.94, 1.14]$ Total events 469 446 Heterogeneity: Tau ² = 0.00; Chl ² = 5.38, df = 6 (P = 0.50); l ² = 0%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bouman 2008 80 160 71 170 5.7% 1.20 [0.95, 1.52] Stuck 1995 99 215 93 199 7.4% 0.99 [0.80, 1.21] van Rossum 1993 121 292 133 288 9.3% 0.90 [0.75, 1.08] van Hout 2010 163 331 141 320 11.6% 1.12 [0.95, 1.32] Subtotal (95% Cl) 1293 1259 34.2% 1.03 [0.94, 1.14] Total events 469 446 Heterogeneity: Tau ² = 0.00; Chl ² = 5.38, df = 6 (P = 0.50); l ² = 0%
Stuck 1995 99 215 93 199 7.4% 0.99 $[0.80, 1.21]$ van Rossum 1993 121 292 133 288 9.3% 0.90 $[0.75, 1.08]$ van Hout 2010 163 331 141 320 11.6% 1.12 $[0.95, 1.32]$ Subtotal (95% CI) 1293 1259 34.2% 1.03 $[0.94, 1.14]$ Total events 469 446 Heterogeneity: Tau ² = 0.00; Chl ² = 5.38, df = 6 (P = 0.50); l ² = 0%
van Rossum 1993 121 292 133 288 9.3% 0.90 $[0.75, 1.08]$ van Hout 2010 163 331 141 320 11.6% 1.12 $[0.95, 1.32]$ Subtotal (95% CI) 1293 1259 34.2% 1.03 $[0.94, 1.14]$ Total events 469 446 Heterogeneity: Tau ² = 0.00; Chi ² = 5.38, df = 6 (P = 0.50); l ² = 0%
van Hout 2010 163 331 141 320 11.6% 1.12 [0.95, 1.32] Subtotal (95% CI) 1293 1259 34.2% 1.03 [0.94, 1.14] Total events 469 446 Heterogeneity: Tau ² = 0.00; Chi ² = 5.38, df = 6 (P = 0.50); $l^2 = 0\%$
Subtotal (95% CI) 1293 1259 34.2% 1.03 [0.94, 1.14] Total events 469 446 Heterogeneity: Tau ² = 0.00; Chi ² = 5.38, df = 6 (P = 0.50); l ² = 0%
Total events $469 + 446$ Heterogeneity: Tau ² = 0.00; Chi ² = 5.38, df = 6 (P = 0.50); l ² = 0%
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 5.38$, $df = 6$ (P = 0.50); $I^2 = 0\%$
Test for overall effect: $Z = 0.66$ (P = 0.51)
165 3 Other
1.65.2 Other
Ciechanowski 2004 15 69 21 62 1.0% 0.64 [0.36, 1.13]
Bernabei 1998 36 99 51 100 3.0% 0.71 [0.52, 0.99]
Subtotal (95% CI) 168 162 4.0% 0.69 [0.52, 0.92]
Total events 51 72
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.10$, $df = 1$ (P = 0.75); $I^2 = 0\%$
Test for overall effect: $Z = 2.54$ (P = 0.01)
1.65.3 Combined
Hogan 2001 5 79 6 84 0.2% 0.89 [0.28, 2.79]
Davison 2005 14 159 17 154 0.7% 0.80 [0.41, 1.56]
Fabacher 1994 22 100 23 95 1.2% 0.91 [0.54, 1.52]
Tinetti 1994 32 147 36 144 1.8% 0.87 [0.57, 1.32]
Byles 2004 261 636 198 446 16.2% 0.92 [0.80, 1.06]
Sorensen 1988 345 585 482 777 41.6% 0.95 [0.87, 1.04]
Subtotal (95% CI) 1706 1700 61.8% 0.94 [0.87, 1.01]
Total events 679 762
Heterogeneity: Tau ² = 0.00; Chi ² = 0.53, df = 5 (P = 0.99); l ² = 0%
Test for overall effect: $Z = 1.75$ (P = 0.08)
Total (95% CI) 3167 3121 100.0% 0.96 [0.91, 1.01]
Total events 1199 1280
Heterogeneiter Tau ² = 0.00; Ch ² = 12.70; df = 14 (P = 0.47); l ² = 0%
Test for supplied for $7 = 1.40$ ($P = 0.14$)
Test for subgroup differences; $Chi^2 = 7.69$, $df = 2$ (P = 0.02), $l^2 = 74.0\%$ Favours home visits Favours contributions for the subgroup differences; $Chi^2 = 7.69$, $df = 2$ (P = 0.02), $l^2 = 74.0\%$

Analysis 57: Hospitalisation (people); number of visits subgroups

	Home v	isits	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.66.1 1 Visit							
McEwan 1990	3	135	4	122	0.2%	0.68 [0.15, 2.97]	• • • • • • • • • • • • • • • • • • • •
Sorensen 1988	345	585	482	777	33.4%	0.95 [0.87, 1.04]	
Subtotal (95% CI)		720		899	33.6%	0.95 [0.87, 1.04]	•
Total events	348		486				
Heterogeneity: Tau ² =	0.00; Ch	$i^2 = 0.2$	0, df =	I (P = 0)).65); I ² =	= 0%	
Test for overall effect:	Z = 1.17	(P = 0.	24)				
1.66.2 2-4 Visits							
Kono 2004	1	59	1	60	0.1%	1.02 [0.07, 15.88]	· · · · · · · · · · · · · · · · · · ·
Hogan 2001	5	79	6	84	0.3%	0.89 [0.28, 2.79]	
Fabacher 1994	22	100	23	95	1.6%	0.91 [0.54, 1.52]	
van Hout 2010	163	331	141	320	13.1%	1.12 [0.95, 1.32]	+
Byles 2004	261	636	198	446	17.2%	0.92 [0.80, 1.06]	
Subtotal (95% CI)		1205		1005	32.3%	1.00 [0.90, 1.10]	•
Total events	452		369				
Heterogeneity: Tau ² =				4 (P = 0)).53); I ² =	= 0%	
Test for overall effect:	Z = 0.08	(P = 0.	93)				
1.66.3 5 or More Visi	its						
Ciechanowski 2004	15	69	21	62	1.3%	0.64 [0.36, 1.13]	
Tinetti 1994	32	147	36	144	2.4%	0.87 [0.57, 1.32]	
Bernabei 1998	36	99	51	100	3.9%	0.71 [0.52, 0.99]	
Bouman 2008	80	160	71	170	7.0%	1.20 [0.95, 1.52]	+
Stuck 1995	99	215	93	199	8.8%		
van Rossum 1993	121	292	133	288	10.8%	0.90 [0.75, 1.08]	
Subtotal (95% CI)		982		963	34.1%	0.92 [0.79, 1.07]	-
Total events	383		405				
Heterogeneity: Tau ² =				S(P = 0)).10); l ² =	= 46%	
Test for overall effect:	Z = 1.07	(P = 0.	28)				
Total (95% CI)		2907		2867	100.0%	0.96 [0.90, 1.02]	•
Total events	1183		1260				
Heterogeneity: Tau ² =				12 (P :	= 0.35);	$l^2 = 9\%$	0.5.0.7 1 1.5.2
Test for overall effect:		4	,				Favours home visits Favours control
Test for subgroup diff	erences: 0	$Chi^2 = 0$.84. df =	= 2 (P =	0.66), l ²	= 0%	

Analysis 58: Injuries (number), results at longest follow-up

			Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Tota	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Tinetti 1994	-0.35254271	0.36397614	147	144	2.9%	0.70 [0.34, 1.43]	· · · · · · · · · · · · · · · · · · ·
van Haastregt 2000	0.25131443	0.26514719	159	157	5.4%	1.29 [0.76, 2.16]	
Robertson 2001a	-0.18993339	0.21025423	121	119	8.6%	0.83 [0.55, 1.25]	
Luukinen 2006	-0.05406722	0.19269937	243	243	10.3%	0.95 [0.65, 1.38]	
Campbell 2005	-0.07302514	0.17609464	98	96	12.3%	0.93 [0.66, 1.31]	
Stevens 2001	-0.08338161	0.11371102	635	1244	29.5%	0.92 [0.74, 1.15]	
Elley 2008	0.10878192	0.11087204	155	157	31.0%	1.11 [0.90, 1.39]	
Total (95% CI)			1558	2160	100.0%	0.98 [0.87, 1.11]	•
Heterogeneity: Tau ² =	= 0.00; Chi ² = 4.3	2, df = 6 (P =	0.63 ; $I^2 = 09$	6			
Test for overall effect	Z = 0.30 (P = 0.7)	77)					Favours home visits Favours control

Analysis 59: Injuries (people), results at longest follow-up

			Home visits	Control		Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Tota	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Ciaschini 2009	-1.8017098	1.07087146	101	100	1.0%	0.17 [0.02, 1.35]	·
Hogan 2001	-0.44945668	0.71328139	79	84	2.2%	0.64 [0.16, 2.58]	· · · · · · · · · · · · · · · · · · ·
Davison 2005	-0.65099081	0.45496967	159	154	5.4%	0.52 [0.21, 1.27]	· · · · · · · · · · · · · · · · · · ·
Close 1999	-0.54679077	0.42115363	184	213	6.3%	0.58 [0.25, 1.32]	
Tinetti 1994	-0.17476997	0.37551929	147	144	7.9%	0.84 [0.40, 1.75]	
Vetter 1992	0	0.35355339	240	210	8.9%	1.00 [0.50, 2.00]	
Wyman 2007	-0.24370983	0.33432736	131	132	9.9%	0.78 [0.41, 1.51]	
Hendriks 2008	-0.27911671	0.3254249	124	134	10.5%	0.76 [0.40, 1.43]	
Luukinen 2006 (1)	0.0861777	0.22333797	243	243	22.3%	1.09 [0.70, 1.69]	
Campbell 1999	-0.45677951	0.20766596	116	117	25.8%	0.63 [0.42, 0.95]	
Total (95% CI)			1524	1531	100.0%	0.77 [0.63, 0.95]	•
Heterogeneity: Tau ² =	= 0.00; Chi ² = 7.2	4, df = 9 (P =	0.61 ; $I^2 = 0$ %	6			0.5.0.7 1 1.5.2
Test for overall effect	Z = 2.49 (P = 0.0)	01)					Favours home visits Favours control
(1) Hazard Ratio							

Analysis 60: Injuries (people) at each follow-up interval

		I	lome visits	Control		Risk Ratio	I	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Ra	andom, 95% CI
1.74.1 01-11 month	15							
Ciaschini 2009	-1.8017098	1.07087146	101	100	29.5%	0.17 [0.02, 1.35]	•	<u> </u>
Hendriks 2008	-0.24882493	0.39598229	131	143	70.5%	0.78 [0.36, 1.69]		
Subtotal (95% CI)			232	243	100.0%	0.49 [0.12, 1.98]		
Heterogeneity: Tau ² =	= 0.55; Chi ² = 1.85	5, df = 1 (P = 0	$(.17); I^2 = 46$	%				
Test for overall effect	Z = 1.00 (P = 0.3)	32)						
1.74.2 12-23 month	15							
Hogan 2001	-0.44945668	0.71328139	79	84	2.4%	0.64 [0.16, 2.58]	·	
Davison 2005	-0.65099081	0.45496967	159	154	6.0%	0.52 [0.21, 1.27]	• • •	<u> </u>
Close 1999	-0.54679077	0.42115363	184	213	6.9%	0.58 [0.25, 1.32]		
Tinetti 1994	-0.17476997	0.37551929	147	144	8.7%	0.84 [0.40, 1.75]		
Wyman 2007	-0.24370983	0.33432736	131	132	11.0%	0.78 [0.41, 1.51]		•
Hendriks 2008	-0.27911671	0.3254249	124	134	11.6%	0.76 [0.40, 1.43]		•
Luukinen 2006	0.0861777	0.22333797	243	243	24.7%	1.09 [0.70, 1.69]		
Campbell 1999	-0.45677951	0.20766596	116	117	28.6%	0.63 [0.42, 0.95]		
Subtotal (95% CI)			1183	1221	100.0%	0.76 [0.61, 0.95]		
Heterogeneity: Tau ² =	= 0.00; Chi ² = 4.62	2, df = 7 (P = 0	$(.71); I^2 = 0\%$					
Test for overall effect	Z = 2.45 (P = 0.0)	01)						
1.74.4 36+ months								
Vetter 1992	0	0.35355339	240	210	100.0%	1.00 [0.50, 2.00]		
Subtotal (95% CI)			240	210	100.0%	1.00 [0.50, 2.00]		
Heterogeneity: Not ap	plicable							
Test for overall effect	Z = 0.00 (P = 1.0)	00)						

0.5 0.7 1 1.5 2 Favours home visits Favours control

Analysis 61: Injuries (people); focus of visit subgroups

			Home visits	Control		Risk Ratio	Risk Ratio	
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
1.75.1 Falls Only								
Hogan 2001	-0.44945668	0.71328139	79	84	2.2%	0.64 [0.16, 2.58]	· · · · · · · · · · · · · · · · · · ·	
Wyman 2007	-0.24370983	0.33432736	131	132	9.9%	0.78 [0.41, 1.51]		
Luukinen 2006	0.0861777	0.22333797	243	243	22.3%	1.09 [0.70, 1.69]		
Campbell 1999 Subtotal (95% CI)	-0.45677951	0.20766596	116 569	117 576	25.8% 60.1%			
Heterogeneity: Tau ² =	0.01: Chi ² = 3.2	9. df = 3 (P =	(0.35) ; $I^2 = 9\%$				-	
Test for overall effect:			, ,					
1.75.3 Both								
Ciaschini 2009	-1.8017098	1.07087146	101	100	1.0%	0.17 [0.02, 1.35]	<	
Davison 2005	-0.65099081	0.45496967	159	154	5.4%	0.52 [0.21, 1.27]	· · · · · · · · · · · · · · · · · · ·	
Close 1999	-0.54679077	0.42115363	184	213	6.3%	0.58 [0.25, 1.32]		
Tinetti 1994	-0.17476997	0.37551929	147	144	7.9%	0.84 [0.40, 1.75]		
Vetter 1992	0	0.35355339	240	210	8.9%	1.00 [0.50, 2.00]		
Hendriks 2008 Subtotal (95% CI)	-0.27911671	0.3254249	124 955	134 955	10.5% 39.9%			
Heterogeneity: Tau ² =	0.00 · Chi ² = 3.7	2 df = 5 (P =			55.570	0112 [0152, 1100]		
Test for overall effect:			0.000,,. 0,0					
Total (95% CI)			1524	1531	100.0%	0.77 [0.63, 0.95]	•	
Heterogeneity: Tau ² = 0.00; Chi ² = 7.24, df = 9 (P = 0.61); l ² = 0%								
Test for overall effect: $Z = 2.49$ (P = 0.01) Favours control								
Test for subgroup diff			$= 0.63$, $I^2 = 0$)%			ravours nome visits Favours control	

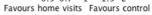
Analysis 62: Injuries (people); age of participants subgroups

			Home visits C	ontrol		Risk Ratio	Risk Ratio	
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
1.76.2 71-75								
Ciaschini 2009	-1.8017098	1.07087146	101	100	1.0%	0.17 [0.02, 1.35]	·	
Hendriks 2008	-0.27911671	0.3254249	124	134	10.5%	0.76 [0.40, 1.43]		
Subtotal (95% CI)			225	234	11.5%	0.50 [0.13, 1.89]		
Heterogeneity: Tau ² =			0.17 ; $I^2 = 46\%$					
Test for overall effect:	Z = 1.03 (P = 0.3)	30)						
1.76.3 76-80								
Hogan 2001	-0.44945668	0.71328139	79	84	2.2%	0.64 [0.16, 2.58]	← <u></u>	
Davison 2005	-0.65099081	0.45496967	159	154	5.4%	0.52 [0.21, 1.27]	<	
Close 1999	-0.54679077	0.42115363	184	213	6.3%	0.58 [0.25, 1.32]		
Tinetti 1994	-0.17476997	0.37551929	147	144	7.9%	0.84 [0.40, 1.75]		
Vetter 1992	0	0.35355339	240	210	8.9%	1.00 [0.50, 2.00]		
Wyman 2007	-0.24370983	0.33432736	131	132	9.9%	0.78 [0.41, 1.51]		
Subtotal (95% CI)			940	937	40.5%	0.75 [0.54, 1.04]	-	
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 1.84$, $df = 5$ (P = 0.87); $I^2 = 0\%$								
Test for overall effect:	Z = 1.74 (P = 0.0)	08)						
1.76.4 81-85								
Campbell 1999	-0.45677951	0.20766596	116	117	25.8%	0.63 [0.42, 0.95]	_	
Subtotal (95% CI)			116	117	25.8%	0.63 [0.42, 0.95]		
Heterogeneity: Not app								
Test for overall effect:	Z = 2.20 (P = 0.0)	03)						
1.76.5 86+								
Luukinen 2006	0.0861777	0.22333797	243	243	22.3%	1.09 [0.70, 1.69]	_	
Subtotal (95% CI)			243	243	22.3%	1.09 [0.70, 1.69]		
Heterogeneity: Not app	licable						_	
Test for overall effect:	Z = 0.39 (P = 0.3)	70)						
Total (95% CI)			1524	1531	100.0%	0.77 [0.63, 0.95]	•	
Haterogeneiby: $T_{2}u^{2} = 0.00$; $Chi^{2} = 7.24$ df = $0.(P = 0.61)$; $l^{2} = 0.00$								
Test for overall effect: $Z = 2.49$ (P = 0.01) Favours home visits Favours control								
Test for subgroup differences: $Chi^2 = 3.74$, $df = 3$ (P = 0.29), $l^2 = 19.9\%$								

Analysis 63: Injuries (people); type of visitor subgroups

			Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Random, 95% C	IV, Random, 95% CI
1.77.1 Nurse							
Ciaschini 2009	-1.8017098	1.07087146	101	100	1.0%	0.17 [0.02, 1.35]	•
Wyman 2007	-0.24370983	0.33432736	131	132	9.9%		
Subtotal (95% CI)			232	232	10.9%	0.50 [0.13, 1.99]	
Heterogeneity: Tau ² =			0.16 ; $I^2 = 48$	%			
Test for overall effect	Z = 0.98 (P = 0.2)	33)					
1.77.2 Other							
Close 1999	-0.54679077	0.42115363	184	213	6.3%	0.58 [0.25, 1.32]	I — • – – –
Vetter 1992	0	0.35355339	240	210	8.9%	1.00 [0.50, 2.00]	
Campbell 1999	-0.45677951	0.20766596	116	117	25.8%		
Subtotal (95% CI)			540	540	40.9%	0.69 [0.50, 0.95]	
Heterogeneity: Tau ² =	= 0.00; Chi ² = 1.4	5, df = 2 (P =	0.49 ; $I^2 = 0\%$				
Test for overall effect	Z = 2.25 (P = 0.0)	02)					
1.77.3 Combined							
Hogan 2001	-0.44945668	0.71328139	79	84	2.2%	0.64 [0.16, 2.58]	+
Davison 2005	-0.65099081	0.45496967	159	154	5.4%	0.52 [0.21, 1.27]	+
Tinetti 1994	-0.17476997	0.37551929	147	144	7.9%	0.84 [0.40, 1.75]	I
Hendriks 2008	-0.27911671	0.3254249		134	10.5%		
Luukinen 2006 (1)	0.0861777	0.22333797	243	243	22.3%		
Subtotal (95% CI)			752	759	48.2%	0.87 [0.64, 1.17]	-
Heterogeneity: Tau ² =			0.62 ; $I^2 = 0\%$				
Test for overall effect	Z = 0.94 (P = 0.1)	35)					
Total (95% CI)			1524	1531	100.0%	0.77 [0.63, 0.95]	•
Heterogeneity: Tau ² =	0.00; Chi ² = 7.2	4, df = 9 (P =	0.61 ; $I^2 = 0\%$				0.5.0.7 1 1.5.2
Test for overall effect	Z = 2.49 (P = 0.6)	01)					Favours home visits Favours control
Test for subgroup diff (1) Hazard Ratio	ferences: $Chi^2 = 1$.43, df = 2 (P	$= 0.49$), $I^2 = 0$	%			ravours nome visits ravours control

Analysis 64: Injuries (people); number of visits subgroups


			Home visits	Control		Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
1.78.1 1 Visit							
Close 1999	-0.54679077	0.42115363	184	213	6.7%	0.58 [0.25, 1.32]]
Hendriks 2008	-0.27911671	0.3254249	124	134	11.2%	0.76 [0.40, 1.43]]
Subtotal (95% CI)			308	347	17.9%	0.68 [0.41, 1.13]	
Heterogeneity: Tau ² =			0.62 ; $I^2 = 0\%$				
Test for overall effect:	Z = 1.47 (P = 0.1)	14)					
1.78.2 2-4 Visits							
Hogan 2001	-0.44945668	0.71328139	79	84	2.3%	0.64 [0.16, 2.58]] ←
Vetter 1992	0	0.35355339	240	210	9.5%	1.00 [0.50, 2.00	j <u> </u>
Luukinen 2006	0.0861777	0.22333797	243	243	23.8%	1.09 [0.70, 1.69]]
Campbell 1999	-0.45677951	0.20766596	116	117	27.5%		
Subtotal (95% CI)			678	654	63.1%	0.84 [0.62, 1.14	1 🔶
Heterogeneity: Tau ² =	= 0.02; Chi ² = 3.6	0, df = 3 (P =	0.31 ; $I^2 = 17\%$	6			
Test for overall effect:	Z = 1.12 (P = 0.3)	26)					
1.78.3 5 or More Vis	its						
Tinetti 1994	-0.17476997	0.37551929	147	144	8.4%	0.84 [0.40, 1.75]]
Wyman 2007	-0.24370983	0.33432736	131	132	10.6%		
Subtotal (95% CI)			278	276	19.0%	0.81 [0.50, 1.32]	
Heterogeneity: Tau2 =	 0.00; Chi² = 0.0 	2, df = 1 (P =	0.89 ; $I^2 = 0\%$				
Test for overall effect:	Z = 0.85 (P = 0.2)	39)					
Total (95% CI)			1264	1277	100.0%	0.80 [0.65, 0.99]	
Heterogeneity: Tau ² =	= 0.00; Chi ² = 4.3	2, df = 7 (P =	0.74 ; $I^2 = 0\%$				0.5.0.7 1 1.5.2
Test for overall effect:							0.5 0.7 1 1.5 2 Favours home visits Favours control
Test for subgroup diff	ferences: Chi ² = 0.	45, df = 2 (P	$= 0.80$, $I^2 = 0$	6			ravours nome visits Favours control

Analysis 65: Institutionalisation (days), results at longest follow-up

			Home visits	Control		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Total	Total	Weight	IV, Fixed, 95% C	I IV, Fixed, 95% CI
Fabacher 1994	0	0	100	95		Not estimable	2
Bouman 2008	-0.16929775	0.10792658	160	170	1.3%	0.84 [0.68, 1.04]
Bernabei 1998	-0.67379941	0.037302	99	100	11.0%	0.51 [0.47, 0.55] +
Stuck 1995	-1.45636192	0.03080896	215	199	16.1%	0.23 [0.22, 0.25] •
van Rossum 1993	0.08819482	0.01460808	292	288	71.6%	1.09 [1.06, 1.12] 📕
Total (95% CI)			866	852	100.0%	0.78 [0.76, 0.80	1 1
Heterogeneity: Chi ² = Test for overall effect			; I ² = 100%				0.2 0.5 1 2 5 Favours home visits Favours control

Analysis 66: Institutionalisation (people) at each follow-up interval

	Events	isits Total	Cont		Weight	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI
Study or Subgroup 1.86.1 01–11 months	Lvents	Total	Lvents	Total	weight	M-11, Kandolli, 55% CI	M-II, Kalidolli, 95% Cl
Lenaghan 2007	1	68	3	66	11.2%	0.32 [0.03, 3.03]	
Holland 2005	37	429	32	426	88.8%	1.15 [0.73, 1.81]	
Subtotal (95% CI)	57	497	52		100.0%	1.00 [0.46, 2.18]	
Total events	38	457	35	152	100.070	1.00 [0.40, 2.10]	
Heterogeneity: Tau ² = 0.1		1 10		- 0.28	12 - 16	∞⁄	
Test for overall effect: Z =				- 0.20	5), 1 = 10	/0	
1.86.2 12-23 months							
Fabacher 1994	0	100	0	95		Not estimable	
Dalby 2000	õ	70	1	69	0.4%	0.33 [0.01, 7.93]	←
Hogan 2001	2	79	1	84	0.7%	2.13 [0.20, 22.99]	
Shapiro 2002	1	40	11	65	1.0%	0.15 [0.02, 1.10]	
Newbury 2001	2	45	2	44	1.1%	0.98 [0.14, 6.64]	
Sommers 2000	7	238	3	227	2.3%	2.23 [0.58, 8.50]	
Hall 1992	3	81	8	86	2.4%	0.40 [0.11, 1.45]	←
Hebert 2001	5	250	5	253	2.7%	1.01 [0.30, 3.45]	
Kono 2004	5	59	8	60	3.6%	0.64 [0.22, 1.83]	←
Yamada 2003	12	184	9	169	5.7%	1.22 [0.53, 2.83]	
Kono 2011	12	161	9	162	5.8%	1.34 [0.58, 3.10]	
Bernabei 1998	10	99	15	100	7.2%	0.67 [0.32, 1.43]	
Close 1999	18	184	18	213	10.4%	1.16 [0.62, 2.16]	
Gunner-Svensson 1984	23	1844		1899	15.0%	0.66 [0.39, 1.11]	_
Caplan 2004	32	370	28	369	17.1%	1.14 [0.70, 1.85]	
van Hout 2010	43	331	39	320	24.6%	1.07 [0.71, 1.60]	
Subtotal (95% CI)		4135	55		100.0%	0.95 [0.78, 1.17]	-
Total events	175		193				-
Heterogeneity: Tau ² = 0.4 Test for overall effect: Z =	00; Chi ² =		df = 14	(P = 0	.52); I ² =	0%	
Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 1.86.3 24-35 months	00; Chi ² =		df = 14	(P = 0	.52); I ² =	0%	
Test for overall effect: Z =	00; Chi ² =		df = 14	(P = 0 86	.52); I ² = 2.6%	0.18 [0.04, 0.77]	·
Test for overall effect: Z = 1.86.3 24-35 months	00; Chi ² = = 0.47 (P	= 0.64)	df = 14				<u>ــــــــــــــــــــــــــــــــــــ</u>
Test for overall effect: Z = 1.86.3 24-35 months Hall 1992	00; Chi ² = = 0.47 (P 2	= 0.64)	df = 14	86	2.6%	0.18 [0.04, 0.77]	·
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008	00; Chi ² = = 0.47 (P 2 10	= 0.64) 81 160	df = 14 12 11	86 170	2.6% 7.5%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21]	
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner-Svensson 1984	00; Chi ² = = 0.47 (P 2 10 18 26 96	81 160 238 436 1844	df = 14 12 11 14 18 107	86 170 227 440 1899	2.6% 7.5% 10.5% 13.0% 31.9%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21]	
Test for overall effect: Z = 1.86.3 24-35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner-Svensson 1984 Sorensen 1988	00; Chi ² = = 0.47 (P 2 10 18 26	81 160 238 436 1844 585	df = 14 12 11 14 18	86 170 227 440 1899 777	2.6% 7.5% 10.5% 13.0% 31.9% 34.4%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35]	
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner-Svensson 1984 Sorensen 1988 Subtotal (95% CI)	00; Chi ² = = 0.47 (P 2 10 18 26 96 99	81 160 238 436 1844	df = 14 12 11 14 18 107 124	86 170 227 440 1899 777	2.6% 7.5% 10.5% 13.0% 31.9%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21]	
Test for overall effect: Z = 1.86.3 24-35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner-Svensson 1984 Sorensen 1988 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² =	81 160 238 436 1844 585 3344 5.87, 0	df = 14 12 11 14 18 107 124 286	86 170 227 440 1899 777 3599	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30]	
Test for overall effect: Z = 1.86.3 24-35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner-Svensson 1984 Sorensen 1988 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² =	81 160 238 436 1844 585 3344 5.87, 0	df = 14 12 11 14 18 107 124 286	86 170 227 440 1899 777 3599	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30]	
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner-Svensson 1984 Sorensen 1988 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 1.86.4 36+ months	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² = = 0.14 (P	= 0.64) 81 160 238 436 1844 585 3344 57.87, o = 0.89)	df = 14 12 11 14 18 107 124 286 if = 5 (P	86 170 227 440 1899 777 3599 = 0.16	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30]	
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner–Svensson 1984 Sorensen 1988 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 1.86.4 36+ months Pathy 1992 (1)	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² = = 0.14 (P 8	= 0.64) 81 160 238 436 1844 585 3344 (7.87, c = 0.89) 201	df = 14 12 11 14 18 107 124 286 if = 5 (P	86 170 227 440 1899 777 3599 = 0.16	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30] %	
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner–Svensson 1984 Sorensen 1988 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 1.86.4 36+ months Pathy 1992 (1) Hall 1992	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² = = 0.14 (P 8 6	= 0.64) 81 160 238 436 1844 585 3344 = 0.89) 201 81	df = 14 12 11 14 18 107 124 286 if = 5 (P	86 170 227 440 1899 777 3599 = 0.16	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0% 5); $l^2 = 36$ 6.4% 7.9%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30] %	
Test for overall effect: Z = 1.86.3 24-35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner-Svensson 1984 Sorensen 1988 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 1.86.4 36+ months Pathy 1992 (1) Hall 1992 Byles 2004	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² = = 0.14 (P 8 6 30	= 0.64) 81 160 238 436 1844 585 3344 = 0.89) 201 81 942	df = 14 12 11 14 18 107 124 286 df = 5 (P 6 17 7	86 170 227 440 1899 777 3599 = 0.16 195 86 627	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0% 5); $I^2 = 36$ 6.4% 7.9% 8.6%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30] %	
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner–Svensson 1984 Sorensen 1988 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 1.86.4 36+ months Pathy 1992 (1) Hall 1992 Byles 2004 Stuck 1995	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² = = 0.14 (P 8 6 30 9 9	= 0.64) 81 160 238 436 1844 585 3344 (7.87, c = 0.89) 201 81 942 215	df = 14 12 11 14 18 107 124 286 if = 5 (P 6 17 7 20	86 170 227 440 1899 777 3599 = 0.16 195 86 627 199	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0% 5); $l^2 = 36$ 6.4% 7.9% 8.6% 9.2%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30] % 1.29 [0.46, 3.66] 0.37 [0.16, 0.90] 2.85 [1.26, 6.45] 0.42 [0.19, 0.89]	
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner-Svensson 1984 Sorensen 1988 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 1.86.4 36+ months Pathy 1992 (1) Hall 1992 Byles 2004 Stuck 1995 Pathy 1992 (2)	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² = = 0.14 (P 8 6 30 9 9 12	= 0.64) 81 160 238 436 1844 585 3344 (7.87, c = 0.89) 201 81 942 215 139	df = 14 12 11 14 18 107 124 286 df = 5 (P 6 17 7 20 22	86 170 227 440 1899 777 3599 = 0.16 195 86 627 199 143	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0% 5); $I^2 = 36$ 6.4% 7.9% 8.6% 9.2% 10.5%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30] % 1.29 [0.46, 3.66] 0.37 [0.16, 0.90] 2.85 [1.26, 6.45] 0.42 [0.19, 0.89] 0.56 [0.29, 1.09]	
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner–Svensson 1984 Sorensen 1988 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0 Total events Heterogeneity: Tau ² = 0.0 Stat (195%) Pathy 1992 (2) van Rossum 1993	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² = = 0.14 (P 8 6 30 9 9 12 27	= 0.64) 81 160 238 436 1844 585 3344 (7.87, c = 0.89) 201 81 942 215 139 292	df = 14 12 11 14 18 107 124 286 1f = 5 (P 6 17 7 20 0 22 23	86 170 227 440 1899 777 3599 = 0.16 195 86 627 199 143 288	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0% 5); I ² = 36 6.4% 7.9% 8.6% 9.2% 10.5% 12.4%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30] % 1.29 [0.46, 3.66] 0.37 [0.16, 0.90] 2.85 [1.26, 6.45] 0.42 [0.19, 0.89] 0.56 [0.29, 1.09] 1.16 [0.68, 1.97]	
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner–Svensson 1984 Sorensen 1988 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 1.86.4 36+ months Pathy 1992 (1) Hall 1992 Byles 2004 Stuck 1995 Pathy 1992 (2) van Rossum 1993 Thomas 2007	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² = = 0.14 (P 8 6 30 9 2 27 54	= 0.64) 81 160 238 436 1844 53344 53344 (* 7.87, c = 0.89) 201 81 942 215 139 292 345	df = 14 12 11 14 18 107 124 286 1f = 5 (P 6 17 7 20 223 23 23	86 170 227 440 1899 777 3599 = 0.16 195 86 627 199 143 288 175	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0% 5); I ² = 36 6.4% 7.9% 8.6% 9.2% 10.5% 12.4% 13.6%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30] % 1.29 [0.46, 3.66] 0.37 [0.16, 0.90] 2.85 [1.26, 6.45] 0.42 [0.19, 0.89] 0.56 [0.29, 1.09] 1.16 [0.68, 1.97] 1.19 [0.76, 1.87]	
Test for overall effect: Z = 1.86.3 24-35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner-Svensson 1984 Sorensen 1988 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 1.86.4 36+ months Pathy 1992 (1) Hall 1992 Byles 2004 Stuck 1995 Pathy 1992 (2) van Rossum 1993 Thomas 2007 Stuck 2000	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² = = 0.14 (P 8 6 30 9 9 12 27 54 34	= 0.64) 81 160 238 436 1844 585 3344 57.87, c = 0.89) 201 81 942 215 139 292 245 264	df = 14 12 11 14 18 107 124 286 if = 5 (P 6 17 7 20 22 23 23 23 45	86 170 227 440 1899 777 3599 = 0.16 195 86 627 199 143 288 175 527	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0% 5); $l^2 = 36$ 6.4% 7.9% 8.6% 9.2% 10.5% 12.4% 13.6% 14.2%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30] % 1.29 [0.46, 3.66] 0.37 [0.16, 0.90] 2.85 [1.26, 6.45] 0.42 [0.19, 0.89] 0.56 [0.29, 1.09] 1.16 [0.68, 1.97] 1.19 [0.76, 1.87] 1.51 [0.99, 2.30]	
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner–Svensson 1984 Sorensen 1988 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 1.86.4 36+ months Pathy 1992 (1) Hall 1992 Byles 2004 Stuck 1995 Pathy 1992 (2) van Rossum 1993 Thomas 2007 Stuck 2000 Gunner–Svensson 1984	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² = = 0.14 (P 8 6 30 9 2 27 54	= 0.64) 81 160 238 436 1844 53344 53344 (* 7.87, c = 0.89) 201 81 942 215 139 292 345	df = 14 12 11 14 18 107 124 286 if = 5 (P 6 17 7 20 22 23 23 23 45	86 170 227 440 1899 777 3599 = 0.16 195 86 627 199 143 288 175 527 1899	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0% 5); I ² = 36 6.4% 7.9% 8.6% 9.2% 10.5% 12.4% 13.6%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30] % 1.29 [0.46, 3.66] 0.37 [0.16, 0.90] 2.85 [1.26, 6.45] 0.42 [0.19, 0.89] 0.56 [0.29, 1.09] 1.16 [0.68, 1.97] 1.19 [0.76, 1.87]	
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner–Svensson 1984 Sorensen 1988 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 1.86.4 36+ months Pathy 1992 (1) Hall 1992 Byles 2004 Stuck 1995 Pathy 1992 (2) van Rossum 1993 Thomas 2007	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² = = 0.14 (P 8 6 30 9 9 12 27 54 34	= 0.64) 81 160 238 436 1844 585 3344 57.87, 6 = 0.89) 201 81 942 215 139 292 345 264 1844	df = 14 12 11 14 18 107 124 286 if = 5 (P 6 17 7 20 22 23 23 23 45	86 170 227 440 1899 777 3599 = 0.16 195 86 627 199 143 288 175 527 1899	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0% 5); $l^2 = 36$ 6.4% 7.9% 8.6% 9.2% 10.5% 12.4% 13.6% 14.2% 17.3%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30] % 1.29 [0.46, 3.66] 0.37 [0.16, 0.90] 2.85 [1.26, 6.45] 0.42 [0.19, 0.89] 0.56 [0.29, 1.09] 1.16 [0.68, 1.97] 1.19 [0.76, 1.87] 1.51 [0.99, 2.30] 0.84 [0.69, 1.03]	
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner–Svensson 1984 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 1.86.4 36+ months Pathy 1992 (1) Hall 1992 Byles 2004 Stuck 1995 Pathy 1992 (2) van Rossum 1993 Thomas 2007 Stuck 2000 Gunner–Svensson 1984 Subtotal (95% CI) Total events	00; Chi ² = = 0.47 (P 2 10 18 26 99 251 03; Chi ² = = 0.14 (P 8 6 30 9 9 12 27 54 34 154 334	= 0.64) 81 160 238 436 1844 585 3344 (7.87, c = 0.89) 201 81 942 215 139 292 345 264 1844 4323	df = 14 12 11 14 18 107 124 286 1f = 5 (P 6 17 7 20 21 23 23 23 23 23 45 189 352	86 170 227 440 1899 777 3599 = 0.16 195 86 627 199 143 288 175 527 1899 4139	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0% 5); I ² = 36 6.4% 7.9% 8.6% 9.2% 10.5% 12.4% 13.6% 12.4% 13.6% 14.2% 17.3%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30] % 1.29 [0.46, 3.66] 0.37 [0.16, 0.90] 2.85 [1.26, 6.45] 0.42 [0.19, 0.89] 0.56 [0.29, 1.09] 1.16 [0.68, 1.97] 1.19 [0.76, 1.87] 1.51 [0.99, 2.30] 0.84 [0.69, 1.03] 0.96 [0.69, 1.33]	
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner–Svensson 1984 Sorensen 1988 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 1.86.4 36+ months Pathy 1992 (1) Hall 1992 Byles 2004 Stuck 1995 Pathy 1992 (2) van Rossum 1993 Thomas 2007 Stuck 2000 Gunner–Svensson 1984 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² = = 0.14 (P 8 6 30 9 2 54 34 154 334 15; Chi ² =	= 0.64) 81 160 238 436 1844 585 3344 = 0.89) 201 81 942 215 139 292 345 264 1844 4323 = 26.07,	df = 14 12 11 14 18 107 124 286 1f = 5 (P 6 17 7 20 223 23 45 189 352 df = 8 (86 170 227 440 1899 777 3599 = 0.16 195 86 627 199 143 288 175 527 1899 4139	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0% 5); I ² = 36 6.4% 7.9% 8.6% 9.2% 10.5% 12.4% 13.6% 12.4% 13.6% 14.2% 17.3%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30] % 1.29 [0.46, 3.66] 0.37 [0.16, 0.90] 2.85 [1.26, 6.45] 0.42 [0.19, 0.89] 0.56 [0.29, 1.09] 1.16 [0.68, 1.97] 1.19 [0.76, 1.87] 1.51 [0.99, 2.30] 0.84 [0.69, 1.03] 0.96 [0.69, 1.33]	
Test for overall effect: Z = 1.86.3 24–35 months Hall 1992 Bouman 2008 Sommers 2000 Counsell 2007 Gunner–Svensson 1984 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.4 Test for overall effect: Z = 1.86.4 36+ months Pathy 1992 (1) Hall 1992 Byles 2004 Stuck 1995 Pathy 1992 (2) van Rossum 1993 Thomas 2007 Stuck 2000 Gunner–Svensson 1984 Subtotal (95% CI) Total events	00; Chi ² = = 0.47 (P 2 10 18 26 96 99 251 03; Chi ² = = 0.14 (P 8 6 30 9 2 54 34 154 334 15; Chi ² =	= 0.64) 81 160 238 436 1844 585 3344 = 0.89) 201 81 942 215 139 292 345 264 1844 4323 = 26.07,	df = 14 12 11 14 18 107 124 286 1f = 5 (P 6 17 7 20 223 23 45 189 352 df = 8 (86 170 227 440 1899 777 3599 = 0.16 195 86 627 199 143 288 175 527 1899 4139	2.6% 7.5% 10.5% 13.0% 31.9% 34.4% 100.0% 5); I ² = 36 6.4% 7.9% 8.6% 9.2% 10.5% 12.4% 13.6% 12.4% 13.6% 14.2% 17.3%	0.18 [0.04, 0.77] 0.97 [0.42, 2.21] 1.23 [0.62, 2.41] 1.46 [0.81, 2.62] 0.92 [0.71, 1.21] 1.06 [0.83, 1.35] 1.02 [0.80, 1.30] % 1.29 [0.46, 3.66] 0.37 [0.16, 0.90] 2.85 [1.26, 6.45] 0.42 [0.19, 0.89] 0.56 [0.29, 1.09] 1.16 [0.68, 1.97] 1.19 [0.76, 1.87] 1.51 [0.99, 2.30] 0.84 [0.69, 1.03] 0.96 [0.69, 1.33]	

Analysis 67: Institutionalisation (people); focus of visit subgroups

			rol		Risk Ratio	
Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
				-		
2	79	1	84	0.4%	2.13 [0.20, 22,99]	· · · · · · · · · · · · · · · · · · ·
	79		84	0.4%	2.13 [0.20, 22.99]	
2		1				
		-				
	= 0.53)					
- 0.02 (1	- 0.33)					
0	70	1	69	0.2%	0 33 [0 01 7 93]	•
-		-				•
		-				
-						· · · · · · · · · · · · · · · · · · ·
						+ •
						-
					1.14 [0.70, 1.85]	
54	345	23	175	6.2%	1.19 [0.76, 1.87]	_
34	264	45	527	6.7%	1.51 [0.99, 2.30]	
99	585	124	777	10.7%	1.06 [0.83, 1.35]	_ +
154	1844	189		11.7%	0.84 [0.69, 1.03]	
	6791		6831	79.0%	0.99 [0.82, 1.20]	•
552		596		_		
		df = 19	(P = 0.	$(01); I^2 = $	46%	
= 0.07 (P	= 0.94)					
		_				• • •
12	184	9	169	2.5%	1.22 [0.53, 2.83]	
18	184	18	213	4.0%	1.16 [0.62, 2.16]	-
43		39				
	844		841	14.1%	1.11 [0.81, 1.51]	-
75		68				
00; Chi ² =	0.13, 0	df = 3 (P	= 0.99); I ² = 0%		
= 0.64 (P	= 0.52)					
1	68	3	66	0.4%	0.32 [0.03, 3.03]	←
37	429	32	426	6.1%	1.15 [0.73, 1.81]	
	497		492	6.6%	1.00 [0.46, 2.18]	
38		35				
13; Chi ² =	1.19, 0	df = 1 (P	= 0.28	3); $I^2 = 16$	%	
			0740	100.0%	1.03/0.00.1.101	\perp
	8211		8248	100.0%	1.02 [0.88, 1.18]	—
				· ·· · · · · · · · · · · · · · · · · ·		
			(P = 0.	$.07$; $I^2 = 1$	31%	0.5 0.7 1 1.5 2
						Favours home visits Favours control
nces: Chi ²	= 0.71	, df = 3	(P = 0.8)	$87), I^2 = 0$	9%	
	2 able = $0.62 (P = 0.62 $	2 79 79 2 able = $0.62 (P = 0.53)$ 0 70 1 40 5 250 5 59 8 201 6 81 12 161 10 160 30 942 9 215 10 99 18 238 12 139 26 436 27 292 32 370 54 345 34 264 99 585 154 1844 6791 552 206; Chi ² = 35.34, = 0.07 (P = 0.94) 0 100 2 45 12 184 18 184 43 331 844 75 20; Chi ² = 0.13, c = 0.64 (P = 0.52) 1 68 37 429 497 38 13; Chi ² = 1.19, c = 0.01 (P = 0.99) 8211 667 04; Chi ² = 37.64, = 0.30 (P = 0.77)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Analysis 68: Institutionalisation (people); age of participants subgroups

	Home v	isits	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events				Weiaht	M-H, Random, 95% CI	M-H, Random, 95% CI
1.88.1 <=70	Licito	Total	Licito	Total	neight	in fightenitionity 55% er	in fig failuding 55% ef
Pathy 1992 (1)	8	201	6	195	1.9%	1.29 [0.46, 3.66]	
Subtotal (95% CI)	0	201	0	195	1.9%	1.29 [0.46, 3.66]	
		201	6	155	1.570	1.25 [0.40, 5.00]	
Total events	8		6				
Heterogeneity: Not ap							
Test for overall effect:	Z = 0.49	(P = 0.	.63)				
1.88.2 71-75							
Fabacher 1994	0	100	0	95		Not estimable	
Counsell 2007	26	436	18	440	5.0%	1.46 [0.81, 2.62]	
Subtotal (95% CI)		536		535	5.0%	1.46 [0.81, 2.62]	
Total events	26		18				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 1.26	(P = 0)	21)				
		(· ·	/				
1.88.3 76-80							
Dalby 2000	0	70	1	69	0.2%	0.33 [0.01, 7.93]	←
Hogan 2001	2	79	1	84	0.2%	2.13 [0.20, 22.99]	
Shapiro 2002	1	40	11	65	0.4%	0.15 [0.02, 1.10]	
,	2	40	2	44	0.6%		
Newbury 2001			-			0.98 [0.14, 6.64]	
Hebert 2001	5	250	5	253	1.4%	1.01 [0.30, 3.45]	
Hall 1992	6	81	17	86	2.6%	0.37 [0.16, 0.90]	•
Yamada 2003	12	184	9	169	2.8%	1.22 [0.53, 2.83]	
Kono 2011	12	161	9	162	2.8%	1.34 [0.58, 3.10]	
Bouman 2008	10	160	11	170	2.9%	0.97 [0.42, 2.21]	
Byles 2004	30	942	7	627	3.0%	2.85 [1.26, 6.45]	
Sommers 2000	18	238	14	227	4.0%	1.23 [0.62, 2.41]	
Pathy 1992 (2)	12	139	22	143	4.1%	0.56 [0.29, 1.09]	
Close 1999	18	184	18	213	4.5%	1.16 [0.62, 2.16]	•
van Rossum 1993	27	292	23	288	5.7%	1.16 [0.68, 1.97]	.
Sorensen 1988	99	585	124	777	12.3%	1.06 [0.83, 1.35]	_
Subtotal (95% CI)		3450		3377	48.1%	1.03 [0.81, 1.31]	-
Total events	254		274				Ť
Heterogeneity: Tau ² =		$i^2 = 10$		14 (P	- 0 13).	² = 30%	
Test for overall effect:				14 (1	0.13),	- 30%	
rest for overall effect.	L = 0.21	(1 = 0.	.03)				
1.88.4 81-85							
Lenaghan 2007	1	68	3	66	0.5%	0.32 [0.03, 3.03]	•
Kono 2004	5	59	8	60	1.9%	0.64 [0.22, 1.83]	
	9			199			
Stuck 1995	-	215	20		3.3%	0.42 [0.19, 0.89]	
Bernabei 1998	10	99	15	100	3.4%	0.67 [0.32, 1.43]	
Caplan 2004	32	370	28	369	6.4%	1.14 [0.70, 1.85]	! •
Holland 2005	37	429	32	426	7.0%	1.15 [0.73, 1.81]	+•
Thomas 2007	54	345	23	175	7.0%	1.19 [0.76, 1.87]	+•
Stuck 2000	34	264	45	527	7.6%	1.51 [0.99, 2.30]	
van Hout 2010	43	331	39	320	7.9%	1.07 [0.71, 1.60]	
Subtotal (95% CI)		2180		2242	45.0%	1.02 [0.80, 1.29]	•
Total events	225		213				
		$i^2 = 12$.33, df =	8 (P =	0.14); I ²	= 35%	
Heterogeneity: Tau ² =							
			/				
		6367		6349	100.0%	1.05 [0.90, 1.22]	
Test for overall effect:							T
Test for overall effect: Total (95% CI)	512	0307	511				
Test for overall effect: Total (95% CI) Total events	513	_	511	25 /P	- 0 1 3 1 - 1	2 - 25%	
Test for overall effect: Total (95% CI) Total events Heterogeneity: Tau ² =	0.03; Ch	i ² = 33	51, df =	25 (P	= 0.12);	$^{2} = 25\%$	0.5 0.7 1 1.5 2
Test for overall effect: Total (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	= 0.03; Ch Z = 0.62	$i^2 = 33$ (P = 0.	51, df =				
Test for overall effect: Total (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff	= 0.03; Ch Z = 0.62	$i^2 = 33$ (P = 0.	51, df =				
Test for overall effect: Total (95% CI) Total events Heterogeneity: Tau ² =	= 0.03; Ch Z = 0.62	$i^2 = 33$ (P = 0.	51, df =				0.5 0.7 1 1.5 2 Favours home visits Favours control

Analysis 69: Institutionalisation (people); type of visitor subgroups

	Home v	isits	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup					Weight	M-H, Random, 95% CI	
1.89.1 Nurse							
Dalby 2000	0	70	1	69	0.2%	0.33 [0.01, 7.93]	←
Shapiro 2002	1	40	11	65	0.5%	0.15 [0.02, 1.10]	
Newbury 2001	2	45	2	44	0.6%	0.98 [0.14, 6.64]	
Hebert 2001	5	250	5	253	1.3%	1.01 [0.30, 3.45]	
Kono 2004	5	59	8	60	1.7%	0.64 [0.22, 1.83]	
Hall 1992	6	81	17	86	2.3%	0.37 [0.16, 0.90]	
Yamada 2003	12	184	9	169	2.5%	1.22 [0.53, 2.83]	
Bouman 2008	10	160	11	170	2.6%	0.97 [0.42, 2.21]	
Stuck 1995	9	215	20	199	2.9%	0.42 [0.19, 0.89]	
van Rossum 1993	27	292	23	288	5.0%	1.16 [0.68, 1.97]	
Caplan 2004	32	370	23	369	5.6%	1.14 [0.70, 1.85]	
Thomas 2007	54	345	23	175	6.2%	1.19 [0.76, 1.87]	
Stuck 2000	34	264	45	527	6.7%		
		331	45	320		1.51 [0.99, 2.30]	
van Hout 2010	43	1844			7.0% 11.7%	1.07 [0.71, 1.60]	
Gunner-Svensson 1984 Subtotal (95% CI)	154	4550	189	1899 4693	11.7% 56.8%	0.84 [0.69, 1.03] 0.95 [0.77, 1.16]	
Total events	394		431				-
Heterogeneity: $Tau^2 = 0.0$		21 92		(P = 0)	$(0.8) \cdot 1^2 = -1^2$	36%	
Test for overall effect: Z =				(r = 0	.00), T = .	0.070	
rescrut overall effect. Z =	- 0.51 (P	- 0.01)					
1.89.2 Other							
Lenaghan 2007	1	68	3	66	0.4%	0.32 [0.03, 3.03]	←
Pathy 1992 (1)	8	201	6	195	1.7%	1.29 [0.46, 3.66]	
Bernabei 1998	10	99	15	100	3.0%	0.67 [0.32, 1.43]	
Pathy 1992 (2)	12	139	22	143	3.7%	0.56 [0.29, 1.09]	
Close 1999	18	184	18	213	4.0%	1.16 [0.62, 2.16]	-
Holland 2005	37	429	32	426	6.1%	1.15 [0.73, 1.81]	
Subtotal (95% CI)		1120		1143	19.0%	0.92 [0.68, 1.24]	-
Total events	86		96				
Heterogeneity: Tau ² = 0.0	01; Chi ² =	5.48,	df = 5 (P	= 0.36	5); $I^2 = 9\%$		
Test for overall effect: Z =	= 0.56 (P	= 0.58)					
1.89.3 Combined							
Fabacher 1994	0	100	0	95		Not estimable	
Hogan 2001	2	79	1	84	0.4%	2.13 [0.20, 22.99]	
Kono 2011	12	161	9	162	2.5%	1.34 [0.58, 3.10]	
Byles 2004	30	942	7	627	2.5%	2.85 [1.26, 6.45]	
Sommers 2004	18	238	14	227	2.6%	1.23 [0.62, 2.41]	
Counsell 2007	26	436	14	440	4.4%	1.46 [0.81, 2.62]	
Sorensen 1988	20	585	124	777	4.4%	1.06 [0.83, 1.35]	
Subtotal (95% CI)	39	2541	124	2412	24.2%	1.29 [0.99, 1.69]	
Total events	187	2041	173		<u>_</u> /J	2120 [0100]	
Heterogeneity: $Tau^2 = 0.0$		6.13		= 0.29	$(1)^2 = 1.89$	%	
Test for overall effect: Z =				0.23	.,, 10,		
Total (95% CI)		8211		8248	100.0%	1.02 [0.88, 1.18]	
Total events	667	5211	700	5240	100.0/0	1.02 [0.00, 1.10]	Ť
Heterogeneity: $Tau^2 = 0.0$		37 64		(P - 0	07) 12 -	21%	
				$(\mathbf{r} = 0$.07); 1 = .		0.5 0.7 1 1.5 2
Test for overall effect: Z = Test for subgroup differe (1) Pathy 1992a				(P = 0.	14), I ² = 4	9.2%	Favours home visits Favours control
(1) Pathy 1992a (2) Pathy 1992b							
(2) Patriy 1992D							

Analysis 70: Institutionalisation (people); number of visits subgroups

	Home v	isits	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events				Weight	M-H, Random, 95% CI	
1.90.1 1 Visit						,,	,
Newbury 2001	2	45	2	44	0.4%	0.98 [0.14, 6.64]	←───→
Hebert 2001	5	250	5	253	1.1%	1.01 [0.30, 3.45]	
Close 1999	18	184	18	213	4.0%	1.16 [0.62, 2.16]	
Sorensen 1988	99	585	124	777	21.3%	1.06 [0.83, 1.35]	
Subtotal (95% CI)		1064		1287	26.8%	1.07 [0.86, 1.33]	
Total events	124	.7	149				
Heterogeneity: Tau ² =				3 (P = 0)).99); l* =	= 0%	
Test for overall effect:	Z = 0.60	(P = 0.	55)				
1.90.2 2-4 Visits							
Fabacher 1994	0	100	0	95		Not estimable	
Dalby 2000	0	70	1	69	0.2%	0.33 [0.01, 7.93]	
Hogan 2001	2	79	1	84	0.3%	2.13 [0.20, 22.99]	
Lenaghan 2007	1	68	3	66	0.3%	0.32 [0.03, 3.03]	
Kono 2004	5	59	8	60	1.4%	0.64 [0.22, 1.83]	<
Kono 2011	12	161	9	162	2.3%	1.34 [0.58, 3.10]	
Caplan 2004	32	370	28	369	6.4%	1.14 [0.70, 1.85]	
Holland 2005	37	429	32	426	7.2%	1.15 [0.73, 1.81]	-
Thomas 2007	54	345	23	175	7.3%	1.19 [0.76, 1.87]	+•
van Hout 2010	43	331	39	320	8.9%	1.07 [0.71, 1.60]	
Subtotal (95% CI)		2012		1826	34.2%	1.10 [0.90, 1.36]	+
Total events	186		144				
Heterogeneity: Tau ² =				8 (P = 0)).90); l ² =	= 0%	
Test for overall effect:	Z = 0.93	(P = 0.	35)				
1.90.3 5 or More Visi	its						
Pathy 1992	8	201	6	195	1.5%	1.29 [0.46, 3.66]	
Yamada 2003	12	184	9	169	2.2%	1.22 [0.53, 2.83]	
Bouman 2008	10	160	11	170	2.3%	0.97 [0.42, 2.21]	
Byles 2004	30	942	7	627	2.4%	2.85 [1.26, 6.45]	│ ———→
Stuck 1995	9	215	20	199	2.7%	0.42 [0.19, 0.89]	·
Bernabei 1998	10	99	15	100	2.8%	0.67 [0.32, 1.43]	
Sommers 2000	18	238	14	227	3.4%	1.23 [0.62, 2.41]	-
Pathy 1992	12	139	22	143	3.5%	0.56 [0.29, 1.09]	+
Counsell 2007	26	436	18	440	4.5%	1.46 [0.81, 2.62]	_
van Rossum 1993	27	292	23	288	5.4%	1.16 [0.68, 1.97]	— <u></u>
Stuck 2000	34	264	45	527	8.3%	1.51 [0.99, 2.30]	
Subtotal (95% CI)		3170		3085	39.0%	1.08 [0.80, 1.45]	-
Total events	196	_	190			_	
Heterogeneity: Tau ² =				10 (P	= 0.03);	$l^2 = 51\%$	
Test for overall effect:	Z = 0.52	(P = 0.	60)				
Total (95% CI)		6246		6198	100.0%	1.10 [0.97, 1.25]	•
Total events	506		483				
Heterogeneity: Tau ² =	0.00; Ch	$i^2 = 24$	09, df =	23 (P	= 0.40);	$r^{2} = 5\%$	0.5 0.7 1 1.5 2
Test for overall effect:	Z = 1.47	(P = 0.	14)				0.5 0.7 1 1.5 2 Favours home visits Favours control
Test for subaroup diff	erences: 0	$Chi^2 = 0$.05. df =	= 2 (P =	: 0.98), l ²	= 0%	

Analysis 71: Mortality (Focus of visits subgroups)

Study or Subgroup	Home v Events		Contr Events		Weight	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% Cl
2.90.1 Falls Only	-		-			N	
Wyman 2007	0	137	0	135		Not estimable	
Gallagher 1996	0	50	0	50		Not estimable	
in 2007	1	50	0	50	0.0%	3.00 [0.13, 71.92]	+
Gustafsson 2012	2	174	0	114	0.1%	3.29 [0.16, 67.82]	• • •
iu-Ambrose 2008	1	36	2	38	0.1%	0.53 [0.05, 5.57]	+
Robertson 2001a	ī	121	6	119	0.1%	0.16 [0.02, 1.34]	•
Hogan 2001	ź	79	5	84	0.2%	0.43 [0.08, 2.13]	←
Green 2002	4	85	5	85	0.3%	0.80 [0.22, 2.88]	
	7						
Elley 2008		155	4	157	0.3%	1.77 [0.53, 5.93]	
Campbell 1999	4	116	7	117	0.3%	0.58 [0.17, 1.92]	
Campbell 2005	4	98	7	96	0.3%	0.56 [0.17, 1.85]	• • • • • • • • • • • • • • • • • • • •
uukinen 2006	48	243	50	243	3.5%	0.96 [0.67, 1.37]	
Subtotal (95% CI)		1344		1288	5.2%	0.88 [0.66, 1.18]	
Total events	74		86				
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z =			f = 9 (P =	0.60);	$I^2 = 0\%$		
2.90.2 MGA Only							
hapiro 2002	1	40	4	65	0.1%	0.41 [0.05, 3.51]	• • • • • • • • • • • • • • • • • • • •
Dalby 2000	7	70	3	69	0.3%	2.30 [0.62, 8.53]	
Kono 2004	4	59	6	60	0.3%	0.68 [0.20, 2.28]	•
							·
Ploeg 2010	10	361	10	358	0.6%	0.99 [0.42, 2.35]	
Bernabei 1998	12	100	13	100	0.8%	0.92 [0.44, 1.92]	
lebert 2001	12	250	18	253	0.9%	0.67 [0.33, 1.37]	
(ono 2011	11	161	20	162	0.9%	0.55 [0.27, 1.12]	
iall 1992	14	81	18	86	1.2%	0.83 [0.44, 1.55]	
McEwan 1990	16	151	23	145	1.3%	0.67 [0.37, 1.21]	
Sommers 2000	26	383	26	351	1.6%	0.92 [0.54, 1.55]	
Stuck 1995	24	215	26	199	1.7%	0.85 [0.51, 1.44]	
Bouman 2008	29	160	20	170	1.7%		
						1.34 [0.81, 2.22]	
Balaban 1988	31	103	20	95	1.9%	1.43 [0.88, 2.33]	
Pathy 1992	27	219	31	200	2.0%	0.80 [0.49, 1.28]	
Counsell 2007	33	474	37	477	2.2%	0.90 [0.57, 1.41]	
/etter 1984b	35	296	60	296	3.0%	0.58 [0.40, 0.86]	
/etter 1984a	45	281	45	273	3.1%	0.97 [0.67, 1.42]	
an Rossum 1993	42	292	50	288	3.1%	0.83 [0.57, 1.21]	
Caplan 2004	55	370	53	369	3.6%	1.03 [0.73, 1.47]	
Stuck 2000	47	264	67	527	3.7%	1.40 [0.99, 1.97]	L
Pathy 1992	40	150	55	156	3.8%		
						0.76 [0.54, 1.06]	
Thomas 2007	89	345	49	175	4.8%	0.92 [0.68, 1.24]	
Byles 2004	115	942	61	627	4.9%	1.25 [0.94, 1.68]	+
Gunner–Svensson 1984	449	1844	443	1899	21.7%	1.04 [0.93, 1.17]	-
Subtotal (95% CI)		7611		7400	69.1%	0.95 [0.86, 1.05]	•
rotal events	1174		1161				
Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both			1161 df = 23 (P = 0.1	1); I ² = 2;	7%	
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both	01; Chi ² = 0.95 (P =	= 0.34)	df = 23 (
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008	01; Chi ² = • 0.95 (P • 5	= 0.34)	df = 23 (167	0.1%	5.03 [0.59, 42.59]	
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001	01; Chi ² = 0.95 (P = 5 1	= 0.34) 166 50	df = 23 (1 1 5	167 50	0.1% 0.1%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65]	<u> </u>
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010	01; Chi ² = 0.95 (P = 5 1 3	= 0.34) 166 50 54	df = 23 (1 1 5 4	167 50 55	0.1% 0.1% 0.2%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25]	
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005	01; Chi ² = • 0.95 (P + 5 1 3 3	= 0.34) 166 50 54 159	df = 23 (1 5 4 5	167 50 55 154	0.1% 0.1% 0.2% 0.2%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39]	• • • • • • • • • • • • • • • • • • •
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994	01; Chi ² = 0.95 (P = 5 1 3 3 4	= 0.34) 166 50 54 159 131	df = 23 (1 5 4 5 4	167 50 55 154 123	0.1% 0.1% 0.2% 0.2%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25]	• • • • • • • • • • • • • • • • • • •
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005	01; Chi ² = • 0.95 (P + 5 1 3 3	= 0.34) 166 50 54 159	df = 23 (1 5 4 5	167 50 55 154	0.1% 0.1% 0.2% 0.2%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39]	• • • • • • • • • • • • • • • • • • •
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994	01; Chi ² = 0.95 (P = 5 1 3 3 4	= 0.34) 166 50 54 159 131	df = 23 (1 5 4 5 4	167 50 55 154 123	0.1% 0.1% 0.2% 0.2%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10]	• • • • • • • • • • • • • • • • • • •
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle–Reid 2010 Davison 2005 Fabacher 1994 Ciaschini 2009 Tinetti 1994	01; Chl ² = 0.95 (P = 1 3 3 4 6 7	= 0.34) 166 50 54 159 131 101 153	df = 23 (1 5 4 5 4 4 5 5	167 50 55 154 123 100 148	0.1% 0.2% 0.2% 0.2% 0.3% 0.4%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17]	• • • • • • • • • • • • • • • • • • •
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Claschini 2009 Tinetti 1994 Lightbody 2002	01; Chl ² = 0.95 (P = 1 3 4 6 7 11	= 0.34) 166 50 54 159 131 101 153 171	df = 23 (1 5 4 5 4 4 5 7	167 50 55 154 123 100 148 177	0.1% 0.2% 0.2% 0.2% 0.3% 0.4% 0.5%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10]	• • • • • • • • • • • • • • • • • • •
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markie-Reid 2010 Davison 2005 Fabacher 1994 Ciaschini 2009 Tinetti 1994 Lightbody 2002 van Haastregt 2000	01; Chl ² = 0.95 (P - 5 1 3 4 6 7 11 10	= 0.34) 166 50 54 159 131 101 153 171 159	df = 23 (1 5 4 5 4 5 4 5 7 14	167 50 55 154 123 100 148 177 157	0.1% 0.2% 0.2% 0.2% 0.3% 0.4% 0.5% 0.8%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54]	• • • • • • • • • • • • • • • • • • •
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Claschini 2009 Finetti 1994 Lightbody 2002 van Haastregt 2000 Yamada 2003	01; Chl ² = 0.95 (P - 5 1 3 4 6 7 11 10 11	= 0.34) 166 50 54 159 131 101 153 171 159 184	df = 23 () 1 5 4 5 4 4 5 7 14 15	167 50 55 154 123 100 148 177 157 184	0.1% 0.2% 0.2% 0.3% 0.4% 0.5% 0.8%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55]	• • • • • • • • • • • • • • • • • • • •
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Ciaschini 2009 Tinetti 1994 Lightbody 2002 van Haastregt 2000 Yamada 2003 Close 1999)1; Chi ² = • 0.95 (P - 5 1 3 4 6 7 11 10 11 19	= 0.34) 166 50 54 159 131 101 153 171 159 184 184	df = 23 () 1 5 4 5 4 4 5 7 14 15 27	167 50 55 154 123 100 148 177 157 184 213	0.1% 0.2% 0.2% 0.3% 0.3% 0.5% 0.8% 0.8% 1.5%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42]	• • • • • • • • • • • • • • • • • • • •
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Claschini 2009 Finetti 1994 Lightbody 2002 Van Haastregt 2000 famada 2003 Close 1999 Van Hout 2010	01; Chi ² = • 0.95 (P - 5 1 3 3 4 6 7 11 10 11 19 27	= 0.34) 166 50 54 159 131 101 153 171 159 184 184 331	df = 23 () 1 5 4 5 4 4 5 7 14 5 7 14 15 27 31	167 50 55 154 123 100 148 177 157 184 213 320	0.1% 0.2% 0.2% 0.2% 0.3% 0.4% 0.5% 0.8% 0.8% 1.5%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38]	• • • • • • • • • • • • • • • • • • • •
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Claschini 2009 Finetti 1994 Lightbody 2002 Van Haastregt 2000 Yamada 2003 Close 1999 Van Hout 2010 Sitlin 2006	D1; Chi ² = • 0.95 (P - 5 1 3 3 4 6 7 11 10 11 10 11 19 27 34	= 0.34) 166 50 54 159 131 101 153 171 159 184 184 331 160	df = 23 () 1 5 4 5 4 5 7 14 15 27 14 15 27 31 42	167 50 55 154 123 100 148 177 157 184 213 320 159	0.1% 0.2% 0.2% 0.2% 0.3% 0.4% 0.5% 0.8% 1.5% 1.9% 2.8%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.054, 1.19]	• • • • • • • • • • • • • • • • • • • •
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Claschini 2009 Finetti 1994 Lightbody 2002 Van Haastregt 2000 Yamada 2003 Close 1999 Van Hout 2010 Sitlin 2006	01; Chi ² = • 0.95 (P - 5 1 3 3 4 6 7 11 10 11 19 27	= 0.34) 166 50 54 159 131 101 153 171 159 184 184 331	df = 23 () 1 5 4 5 4 4 5 7 14 5 7 14 15 27 31	167 50 55 154 123 100 148 177 157 184 213 320	0.1% 0.2% 0.2% 0.2% 0.3% 0.4% 0.5% 0.8% 0.8% 1.5%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38]	•
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Ciaschini 2009 Finetti 1994 Lightbody 2002 van Haastregt 2000 Yamada 2003 Close 1999 van Hout 2010 Gitlin 2006 Sahlen 2006	D1; Chi ² = • 0.95 (P - 5 1 3 3 4 6 7 11 10 11 10 11 19 27 34	= 0.34) 166 50 54 159 131 101 153 171 159 184 184 331 160	df = 23 () 1 5 4 5 4 5 7 14 15 27 14 15 27 31 42	167 50 55 154 123 100 148 177 157 184 213 320 159	0.1% 0.2% 0.2% 0.2% 0.3% 0.4% 0.5% 0.8% 1.5% 1.9% 2.8%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.054, 1.19]	•
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Claschini 2009 Tinetti 1994 Lightbody 2002	D1; Chi ² = • 0.95 (P - 5 1 3 3 4 6 7 11 10 11 19 27 34 50	= 0.34) 166 50 159 131 101 153 171 159 184 184 331 160 248	df = 23 () 1 5 4 5 4 4 5 7 14 15 27 31 1 42 82	167 50 55 154 123 100 148 177 184 213 320 159 346	0.1% 0.2% 0.2% 0.2% 0.3% 0.5% 0.8% 0.8% 1.5% 1.9% 2.8% 4.4%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16]	•
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Claschini 2009 Finetti 1994 Lightbody 2002 Van Haastregt 2000 famada 2003 Close 1999 Van Hout 2010 Gitlin 2006 Sahlen 2006 Vetter 1992 Subtotal (95% CI)	D1; Chi ² = • 0.95 (P - 5 1 3 3 4 6 7 11 10 11 19 27 34 50	= 0.34) 166 50 54 159 131 101 153 171 159 184 184 331 160 248 350	df = 23 () 1 5 4 5 4 4 5 7 14 15 27 31 1 42 82	167 50 154 123 100 148 177 184 213 320 159 346 324	0.1% 0.2% 0.2% 0.3% 0.3% 0.4% 0.5% 0.8% 1.5% 1.9% 2.8% 4.4% 7.1%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16]	•
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Claschini 2009 Tinetti 1994 Lightbody 2002 van Haastregt 2000 Yamada 2003 Close 1999 van Hout 2010 Gitlin 2006 Sahlen 2006 Vetter 1992	01; Chi ² = • 0.95 (P - 5 1 3 4 6 7 11 10 11 19 27 34 50 88 279 00; Chi ² =	= 0.34) 166 50 54 159 131 105 171 159 184 184 331 160 248 350 2601 9.12, d	df = 23 () 1 5 4 5 4 4 5 7 14 15 27 31 42 82 106 352 f = 14 (P	167 50 55 154 123 100 148 177 157 184 213 320 159 346 324 2677	0.1% 0.2% 0.2% 0.3% 0.4% 0.8% 0.8% 0.8% 1.5% 1.9% 2.8% 4.4% 7.1% 21.4%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16]	• • • • • • • • • • • • • • • • • • •
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markie-Reid 2010 Davison 2005 Fabacher 1994 Claschini 2009 Tinetti 1994 Lightbody 2002 Van Haastregt 2000 Yamada 2003 Close 1999 Van Haastregt 2000 Yamada 2003 Close 1999 Van Hout 2010 Gitlin 2006 Sahlen 2006 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z =	01; Chi ² = • 0.95 (P - 5 1 3 4 6 7 11 10 11 19 27 34 50 88 279 00; Chi ² =	= 0.34) 166 50 54 159 131 105 171 159 184 184 331 160 248 350 2601 9.12, d	df = 23 () 1 5 4 5 4 4 5 7 14 15 27 31 42 82 106 352 f = 14 (P	167 50 55 154 123 100 148 177 157 184 213 320 159 346 324 2677	0.1% 0.2% 0.2% 0.3% 0.4% 0.8% 0.8% 0.8% 1.5% 1.9% 2.8% 4.4% 7.1% 21.4%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16]	•
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markie-Reid 2010 Davison 2005 Fabacher 1994 Ciaschini 2009 Tinetti 1994 Lightbody 2002 van Haastregt 2000 Yamada 2003 Close 1999 van Hout 2010 Gitlin 2006 Sahlen 2006 Sahlen 2006 Sahlen 2006 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.4 Neither	01; Chi ² = • 0.95 (P - 5 1 3 3 4 6 7 11 10 11 19 27 34 50 88 279 20; Chi ² = • 2.66 (P -	= 0.34) 166 50 54 159 131 101 153 171 159 184 184 184 184 184 160 248 350 2601 9.12, d = 0.008	df = 23 () 1 5 4 5 4 4 5 7 14 15 27 14 15 27 14 15 27 14 15 27 14 15 27 14 15 27 10 5 5 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	167 50 55 154 123 100 148 177 184 213 320 159 346 324 2677 = 0.82	0.1% 0.2% 0.2% 0.3% 0.4% 0.3% 0.8% 0.8% 0.8% 1.5% 1.9% 2.8% 4.4% 7.1% 21.4%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16] 0.77 [0.61, 0.98] 0.82 [0.72, 0.95]	
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Claschini 2009 Tinetti 1994 Lightbody 2002 van Hoastregt 2000 Yamada 2003 Close 1999 van Hout 2010 Gitlin 2006 Sahlen 2006 Vetter 1992 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.4 Neither Nelson 2004	01; Chi ² = • 0.95 (P = 5 1 3 3 4 6 7 11 10 11 19 27 34 50 88 279 00; Chi ² = • 2.66 (P = 1	= 0.34) 166 50 54 159 131 101 153 171 153 171 159 184 184 350 2601 9.12, d = 0.008; 34	df = 23 (0) 1 5 4 5 4 4 5 7 14 15 27 31 42 82 106 352 $f = 14 (P)$ 0	167 50 55 154 123 100 148 177 187 184 213 320 346 324 2677 = 0.82	$\begin{array}{c} 0.1\%\\ 0.1\%\\ 0.2\%\\ 0.2\%\\ 0.3\%\\ 0.4\%\\ 0.8\%\\ 0.8\%\\ 0.8\%\\ 1.5\%\\ 1.9\%\\ 2.8\%\\ 4.4\%\\ 7.1\%\\ 21.4\%\\ 21.4\%\\ 0; \ l^2=0\%\\ 0.0\%\\ \end{array}$	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16] 0.77 [0.61, 0.98] 0.82 [0.72, 0.95]	
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Claschini 2009 Tinetti 1994 Lightbody 2002 van Haastregt 2000 Yamada 2003 Close 1999 van Hout 2010 Gitlin 2006 Sahlen 2006 Vetter 1992 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.4 Neither Nelson 2004 Crawford Shearer 2010	01; Chi ² = • 0.95 (P = 5 1 3 3 4 6 7 11 10 11 10 11 10 27 34 50 88 279 00; Chi ² = • 2.66 (P = 1 2	= 0.34) 166 50 54 159 131 101 153 184 184 160 248 350 2601 9.12, d = 0.008; 34 27	df = 23 () 1 5 4 5 4 4 5 7 14 15 27 31 42 82 106 5 5 7 14 15 5 7 14 15 5 7 14 15 5 7 16 16 16 16 16 16 16 16 16 16	167 50 55 154 123 100 148 177 157 184 213 320 159 346 324 2677 = 0.82 38 32	$\begin{array}{c} 0.1\%\\ 0.1\%\\ 0.2\%\\ 0.2\%\\ 0.2\%\\ 0.3\%\\ 0.4\%\\ 0.5\%\\ 0.8\%\\ 0.8\%\\ 1.5\%\\ 0.8\%\\ 1.9\%\\ 2.8\%\\ 4.4\%\\ 7.1\%\\ 21.4\%\\ 21.4\%\\ \end{array}$	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16] 0.77 [0.61, 0.98] 0.82 [0.72, 0.95] 3.34 [0.14, 79.42] 1.19 [0.18, 7.86]	
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markie-Reid 2010 Davison 2005 Fabacher 1994 Ciaschini 2009 Tinetti 1994 Lightbody 2002 van Haastregt 2000 Yamada 2003 Close 1999 van Hout 2010 Gitlin 2006 Sahlen 2006 Vetter 1992 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.4 Neither Nelson 2004 Crawford Shearer 2010 Ciechanowski 2004	01; Chi ² = • 0.95 (P - 5 1 3 3 4 6 7 11 10 11 10 11 10 27 34 50 87 87 900; Chi ² = • 2.66 (P - 1 2 3 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1	= 0.34) 166 50 54 159 131 101 153 171 159 184 184 184 160 248 331 160 2601 9.12, d = 0.008; 34 27 72	df = 23 () 1 5 4 5 4 4 5 7 14 15 27 31 42 82 106 352 f = 14 (P 0 2 2	167 50 55 123 100 148 157 184 213 346 324 2677 = 0.82 38 32 66	$\begin{array}{c} 0.1\%\\ 0.1\%\\ 0.2\%\\ 0.2\%\\ 0.2\%\\ 0.3\%\\ 0.4\%\\ 0.8\%\\ 0.8\%\\ 0.8\%\\ 0.8\%\\ 1.5\%\\ 1.9\%\\ 2.8\%\\ 4.4\%\\ 7.1\%\\ 21.4\%\\ 21.4\%\\ 0.1\%\\ 0.2\%\\ \end{array}$	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16] 0.77 [0.61, 0.98] 0.82 [0.72, 0.95] 3.34 [0.14, 79.42] 1.19 [0.18, 7.86] 1.38 [0.24, 7.97]	
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markie-Reid 2010 Davison 2005 Fabacher 1994 Ciaschini 2009 Tinetti 1994 Lightbody 2002 van Haastregt 2000 Yamada 2003 Close 1999 van Hout 2010 Gitlin 2006 Sahlen 2006 Sahlen 2006 Sahlen 2006 Sahlen 2006 Sahlen 2005 Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.4 Neither Nelson 2004 Crawford Shearer 2010 Ciechanowski 2004 Lenaghan 2007)1; Chi ² = • 0.95 (P - 5 1 3 3 4 6 7 11 10 11 10 11 10 11 10 27 34 50 88 279 20; Chi ² = • 2.66 (P - 1 2 3 7 7	= 0.34) 166 50 54 159 131 101 153 171 159 184 184 350 2601 9.12, d = 0.008, 34 27 72 69	df = 23 () 1 5 4 5 4 4 5 7 14 15 27 31 42 82 106 352 f = 14 (P) 0 2 6	167 50 55 154 123 100 148 177 187 184 213 320 346 324 2677 = 0.82 38 32 32 3 8 32 66 67	0.1% 0.1% 0.2% 0.2% 0.3% 0.4% 0.8% 0.8% 1.5% 1.9% 2.8% 4.4% 7.1% 21.4% $0; ^2 = 0\%$ 0.0% 0.2% 0.2% 0.2% 0.4%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16] 0.77 [0.61, 0.98] 0.82 [0.72, 0.95] 3.34 [0.14, 79.42] 1.19 [0.18, 7.86] 1.38 [0.24, 7.97] 1.13 [0.40, 3.20]	
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Claschini 2009 Finetti 1994 Lightbody 2002 van Haastregt 2000 Yamada 2003 Close 1999 Van Hout 2010 Gitlin 2006 Sahlen 2006 Vetter 1992 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.4 Neither Nelson 2004 Crawford Shearer 2010 Clechanowski 2004 Lenaghan 2007 Holland 2005	01; Chi ² = • 0.95 (P - 5 1 3 3 4 6 7 11 10 11 10 11 10 27 34 50 87 87 900; Chi ² = • 2.66 (P - 1 2 3 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1	= 0.34) 166 50 54 159 131 101 153 171 159 184 184 184 160 248 331 160 2601 9.12, d = 0.008; 34 27 72	df = 23 () 1 5 4 5 4 4 5 7 14 15 27 31 42 82 106 352 f = 14 (P 0 2 2	167 50 55 123 100 148 157 184 213 346 324 2677 = 0.82 38 32 66	$\begin{array}{c} 0.1\%\\ 0.1\%\\ 0.2\%\\ 0.2\%\\ 0.2\%\\ 0.3\%\\ 0.4\%\\ 0.8\%\\ 0.8\%\\ 0.8\%\\ 0.8\%\\ 1.5\%\\ 1.9\%\\ 2.8\%\\ 4.4\%\\ 7.1\%\\ 21.4\%\\ 21.4\%\\ 0.1\%\\ 0.2\%\\ \end{array}$	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16] 0.77 [0.61, 0.98] 0.82 [0.72, 0.95] 3.34 [0.14, 79.42] 1.19 [0.18, 7.86] 1.38 [0.24, 7.97]	
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markie-Reid 2010 Davison 2005 Fabacher 1994 Ciaschini 2009 Tinetti 1994 Lightbody 2002 van Haastregt 2000 Yamada 2003 Close 1999 van Hout 2010 Gitlin 2006 Sahlen 2006 Vetter 1992 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.90.4 Neither Nelson 2004 Crawford Shearer 2010 Ciechanowski 2004)1; Chi ² = • 0.95 (P - 5 1 3 3 4 6 7 11 10 11 10 11 10 11 10 27 34 50 88 279 20; Chi ² = • 2.66 (P - 1 2 3 7 7	= 0.34) 166 50 54 159 131 101 153 171 159 184 184 350 2601 9.12, d = 0.008, 34 27 72 69	df = 23 () 1 5 4 5 4 4 5 7 14 15 27 31 42 82 106 352 f = 14 (P) 0 2 6	167 50 55 154 123 100 148 177 187 184 213 320 346 324 2677 = 0.82 38 32 32 3 8 32 66 67	0.1% 0.1% 0.2% 0.2% 0.3% 0.4% 0.8% 0.8% 1.5% 1.9% 2.8% 4.4% 7.1% 21.4% $0; ^2 = 0\%$ 0.0% 0.2% 0.2% 0.2% 0.4%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16] 0.77 [0.61, 0.98] 0.82 [0.72, 0.95] 3.34 [0.14, 79.42] 1.19 [0.18, 7.86] 1.38 [0.24, 7.97] 1.13 [0.40, 3.20]	
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.3 Both Hendriks 2008 Vewbury 2001 Markle-Reid 2010 Davison 2005 Tabacher 1994 Claschini 2009 Finetti 1994 Jightbody 2002 van Haastregt 2000 Yam Ada 2003 Close 1999 van Hout 2010 Gitlin 2006 Yetter 1992 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.4 Neither Nelson 2004 Crawford Shearer 2010 Clechanowski 2007 Folland 2005 Subtotal (95% CI)	01; Chi ² = • 0.95 (P = 5 1 3 3 4 6 7 11 10 11 10 11 10 11 10 27 34 50 88 279 00; Chi ² = • 2.66 (P = 1 2 3 7 49	= 0.34) 166 50 54 159 131 101 153 184 331 160 248 350 2601 9.12, d = 0.008, 34 27 72 69 437	df = 23 (0) 1 5 4 4 5 7 14 15 27 31 42 82 106 352 $f = 14 (P)$ 0 2 6 63	167 50 55 123 100 148 177 157 184 213 320 159 346 324 2677 = 0.82 38 32 66 67 7 435	$\begin{array}{c} 0.1\%\\ 0.1\%\\ 0.2\%\\ 0.2\%\\ 0.3\%\\ 0.4\%\\ 0.5\%\\ 0.8\%\\ 0.8\%\\ 1.5\%\\ 2.8\%\\ 4.4\%\\ 7.1\%\\ 21.4\%\\ 21.4\%\\ 0.1\%\\ 0.1\%\\ 0.2\%\\ 0.4\%\\ 0.4\%\\ 0.5\%\\ 0.4\%\\ 0.6\%\\ 0.6\%\\ 0.1\%\\ 0.6$	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16] 0.77 [0.61, 0.98] 0.82 [0.72, 0.95] 3.34 [0.14, 79.42] 1.19 [0.18, 7.86] 1.38 [0.24, 7.97] 1.13 [0.40, 3.20] 0.77 [0.55, 1.10]	
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.3 Both Hendriks 2008 Vewbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Claschini 2009 Cinacher 1994 Jightbody 2002 ram dad 2003 Close 1999 ran Hout 2010 Gitlin 2006 Jahlen 2006 Zeterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.4 Neither Nelson 2004 Crawford Shearer 2010 Ciechanowski 2004 Lenangwar 2007 Holland 2005 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.0 Ciechanowski 2004 Lenangwar 2007 Holland 2005 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.0	01; Chi ² = • 0.95 (P = 5 1 3 3 4 6 7 11 10 11 19 27 34 50 (Chi ² = 2.66 (P = 1 2 3 7 49 00; Chi ² = 200; Chi ² =	= 0.34) 166 50 54 159 131 101 153 171 159 184 184 350 2601 9.12, d = 0.008, 34 27 72 69 437 639 1.69, d	df = 23 (0) 1 5 4 4 5 4 4 5 7 14 155 27 311 422 82 106 352 $f = 14 (P)$ 0 2 2 6 63 73	167 50 55 123 100 148 213 346 324 2677 = 0.82 3 8 32 6 6 67 435 638	0.1% 0.1% 0.2% 0.2% 0.3% 0.4% 0.8% 0.8% 1.9% 1.9% 2.8% 4.4% 7.1% 21.4% 0.1% 0.1% 0.2% 0.4% 0.2% 0.4%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16] 0.77 [0.61, 0.98] 0.82 [0.72, 0.95] 3.34 [0.14, 79.42] 1.19 [0.18, 7.86] 1.38 [0.24, 7.97] 1.13 [0.40, 3.20] 0.77 [0.55, 1.10]	
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Davison 2005 Fabacher 1994 Claschini 2009 Finetti 1994 Jightbody 2002 Van Haastregt 2000 famada 2003 Close 1999 Van Hout 2010 Gitlin 2006 Sahlen 2006 Vetter 1992 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.0 Frawford Shearer 2010 Clechanowski 2004 Lenandyan 2007 Holland 2005 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.0 Fotal eve	01; Chi ² = • 0.95 (P = 5 1 3 3 4 6 7 11 10 11 19 27 34 50 (Chi ² = 2.66 (P = 1 2 3 7 49 00; Chi ² = 200; Chi ² =	= 0.34) 166 50 54 159 131 101 153 171 159 184 184 184 160 248 331 160 2601 9.12, d = 0.008; 34 27 72 69 437 639 1.69, d = 0.28)	df = 23 (0) 1 5 4 4 5 7 14 155 27 311 42 82 106 352 $f = 14 (P)$ 0 2 6 63 $f = 4 (P) = 10$	167 50 55 123 100 148 157 184 213 346 326 67 435 638 638 60.79);	$\begin{array}{c} 0.1\%\\ 0.1\%\\ 0.2\%\\ 0.2\%\\ 0.2\%\\ 0.3\%\\ 0.4\%\\ 0.8\%\\ 0.8\%\\ 0.8\%\\ 0.8\%\\ 1.5\%\\ 1.9\%\\ 2.8\%\\ 4.4\%\\ 7.1\%\\ 21.4\%\\ 0.1\%\\ 0.1\%\\ 0.1\%\\ 0.2\%\\ 0.4\%\\ 3.6\%\\ 4.3\%\\ 1^2=0\%\\ \end{array}$	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16] 0.77 [0.61, 0.98] 0.82 [0.72, 0.95] 3.34 [0.14, 79.42] 1.19 [0.18, 7.86] 1.38 [0.24, 7.97] 1.13 [0.40, 3.20] 0.77 [0.55, 1.10] 0.84 [0.61, 1.16]	
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.3 Both Hendriks 2008 Newbury 2001 Markle-Reid 2010 Javison 2005 Fabacher 1994 Claschini 2009 Finetti 1994 Lightbody 2002 Van Haastregt 2000 famada 2003 Close 1999 Van Hout 2010 Gitlin 2006 Sahlen 2006 Vetter 1992 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.0 Crawford Shearer 2010 Clechanowski 2004 Lenaghan 2007 Holland 2005 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.0 Crest for overall effect: Z = Subtotal (95% CI)	01; Chi ² = • 0.95 (P - 5 1 3 3 4 6 7 11 10 11 10 11 10 27 34 50 88 279 927 34 50 88 279 927 34 50 88 279 927 34 50 87 49 62 200; Chi ² = • 2.66 (P - • 49 62 200; Chi ² = • 2.07 (P - • 49 62 200; Chi ² = • 2.07 (P - • 49 62 200; Chi ² = • 2.07 (P - • • • • • • • • • • • • •	= 0.34) 166 50 54 159 131 101 153 171 159 184 184 350 2601 9.12, d = 0.008, 34 27 72 69 437 639 1.69, d	df = 23 (0) 1 5 4 4 5 7 14 15 27 31 42 82 106 352 $f = 14 (P = 6)$ 63 73 $f = 4 (P = 6)$ 73	167 50 55 123 100 148 157 184 213 346 326 67 435 638 638 60.79);	0.1% 0.1% 0.2% 0.2% 0.3% 0.4% 0.8% 0.8% 1.9% 1.9% 2.8% 4.4% 7.1% 21.4% 0.1% 0.1% 0.2% 0.4% 0.2% 0.4%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16] 0.77 [0.61, 0.98] 0.82 [0.72, 0.95] 3.34 [0.14, 79.42] 1.19 [0.18, 7.86] 1.38 [0.24, 7.97] 1.13 [0.40, 3.20] 0.77 [0.55, 1.10]	
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.3 Both Hendriks 2008 Vewbury 2001 Markle-Reid 2010 Davison 2005 Tabacher 1994 Claschini 2009 Tinetti 1994 Lightbody 2002 Yan Haastregt 2000 Yamada 2003 Close 1999 Yan Hout 2010 Gitlin 2006 Jetter 1992 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.4 Neither Nelson 2004 Crawford Shearer 2010 Clechanowski 2004 Lenanghan 2007 Holland 2005 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.0 Fotal	01; Chi ² = • 0.95 (P = 5 1 3 3 4 6 7 11 10 11 19 27 34 50 88 279 00; Chi ² = • 2.66 (P = 1 2 3 7 49 62 00; Chi ² = • 1.07 (P = 1 2 1 3 7 49 62 10, Chi ² = • 1.07 (P = 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	= 0.34) 166 50 54 159 131 101 153 171 159 184 184 350 2601 9.12, d = 0.008, 34 27 77 639 1.69, d = 0.28) 12195	df = 23 (0) 1 5 4 5 4 4 5 7 14 15 27 31 42 82 106 352 $f = 14 (P = 0)$ 0 2 6 63 $f = 4 (P = 0)$ 1672	167 50 55 154 23 100 148 217 7 184 213 320 2677 = 0.82 38 324 2677 = 0.82 38 32 66 67 435 638 67 638	$\begin{array}{c} 0.1\%\\ 0.1\%\\ 0.2\%\\ 0.2\%\\ 0.2\%\\ 0.3\%\\ 0.4\%\\ 0.8\%\\ 0.8\%\\ 0.8\%\\ 1.5\%\\ 1.5\%\\ 1.9\%\\ 2.8\%\\ 4.4\%\\ 7.1\%\\ 21.4\%\\ 0.1\%\\ 0.1\%\\ 0.1\%\\ 0.2\%\\ 0.4\%\\ 3.6\%\\ 4.3\%\\ 1^2=0\%\\ 100.0\%\\ \end{array}$	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16] 0.77 [0.61, 0.98] 0.82 [0.72, 0.95] 3.34 [0.14, 79.42] 1.19 [0.18, 7.86] 1.38 [0.24, 7.97] 1.13 [0.40, 3.20] 0.77 [0.55, 1.10] 0.84 [0.61, 1.16] 0.93 [0.87, 0.99]	
Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.3 Both Hendriks 2008 Vewbury 2001 Markle-Reid 2010 Javison 2005 Sabacher 1994 Claschini 2009 Finetti 1994 Jghtbody 2002 van Haastregt 2000 famata 2003 Close 1999 van Hout 2010 Sitlin 2006 Jaytson 2005 Fotal events Heterogeneity: Tau ² = 0.0 Fest for overall effect: Z = 2.90.4 Neither Velson 2004 Crawford Shearer 2010 Cichanowski 2004 .enaghan 2007 Holad 2005 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.0 Fast for overall effect: Z = Fotal (95% CI)	01; Chi ² = • 0.95 (P = 5 1 3 3 4 6 7 11 10 11 19 27 34 50 88 279 00; Chi ² = 1 2 3 7 49 62 00; Chi ² = 1589 00; Chi ² =	= 0.34) 166 50 54 159 131 101 153 159 184 184 331 160 248 331 160 2601 9.12, d = 0.008; 34 27 72 639 1.69, d = 0.28) 12195 54.89, d	df = 23 (0) 1 5 4 5 4 4 5 7 14 15 27 31 42 82 106 352 $f = 14 (P = 0)$ 0 2 6 63 $f = 4 (P = 0)$ 1672	167 50 55 154 23 100 148 217 7 184 213 320 2677 = 0.82 38 324 2677 = 0.82 38 32 66 67 435 638 67 638	$\begin{array}{c} 0.1\%\\ 0.1\%\\ 0.2\%\\ 0.2\%\\ 0.2\%\\ 0.3\%\\ 0.4\%\\ 0.8\%\\ 0.8\%\\ 0.8\%\\ 1.5\%\\ 1.5\%\\ 1.9\%\\ 2.8\%\\ 4.4\%\\ 7.1\%\\ 21.4\%\\ 0.1\%\\ 0.1\%\\ 0.1\%\\ 0.2\%\\ 0.4\%\\ 3.6\%\\ 4.3\%\\ 1^2=0\%\\ 100.0\%\\ \end{array}$	5.03 [0.59, 42.59] 0.20 [0.02, 1.65] 0.76 [0.18, 3.25] 0.58 [0.14, 2.39] 0.94 [0.24, 3.67] 1.49 [0.43, 5.10] 1.35 [0.44, 4.17] 1.63 [0.65, 4.10] 0.71 [0.32, 1.54] 0.73 [0.35, 1.55] 0.81 [0.47, 1.42] 0.84 [0.51, 1.38] 0.80 [0.54, 1.19] 0.85 [0.62, 1.16] 0.77 [0.61, 0.98] 0.82 [0.72, 0.95] 3.34 [0.14, 79.42] 1.19 [0.18, 7.86] 1.38 [0.24, 7.97] 1.13 [0.40, 3.20] 0.77 [0.55, 1.10] 0.84 [0.61, 1.16] 0.93 [0.87, 0.99]	

Analysis 72: Mortality; age of participants subgroups

Study or Subgroup	Home v Events		Cont Events		Weight	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI
2.91.1 <=70 Balaban 1988	31	103	20	95	2.4%	1.43 [0.88, 2.33]	
Subtotal (95% CI) Total events	31	103	20	95	2.4%	1.43 [0.88, 2.33]	
Heterogeneity: Not applic			20				
Test for overall effect: Z		= 0.15)					
2.91.2 71-75	0	50	0	50		Not estimable	
Gallagher 1996 Hendriks 2008	0	50 166	0	50 167	0.1%	Not estimable 5.03 [0.59, 42.59]	
Ciechanowski 2004	3	72	ź	66	0.2%	1.38 [0.24, 7.97]	· · · · · · · · · · · · · · · · · · ·
Fabacher 1994	4	131	4	123	0.3%	0.94 [0.24, 3.67]	•
Green 2002	4	85	5	85	0.3%	0.80 [0.22, 2.88]	· · · · · · · · · · · · · · · · · · ·
Ciaschini 2009 Lightbody 2002	6 11	101 171	4	100 177	0.4% 0.7%	1.49 [0.43, 5.10]	
Pathy 1992	27	219	31	200	2.5%	1.63 [0.65, 4.10] 0.80 [0.49, 1.28]	
Counsell 2007	33	474	37	477	2.8%	0.90 [0.57, 1.41]	
Subtotal (95% CI)		1469		1445	7.3%	0.97 [0.73, 1.28]	-
Total events Heterogeneity: Tau ² = 0.	93 00: Chi ² -	4 00 d	91 f = 7 (P	- 0 66): I ² − 0%		
Test for overall effect: Z =			T = 7 (P	= 0.00); 1" = 0%		
2.91.3 76-80							
Wyman 2007	0	137	0	135	0.10	Not estimable	
Lin 2007 Nelson 2004	1	50 34	0	50 38	0.1% 0.1%	3.00 [0.13, 71.92] 3.34 [0.14, 79.42]	
Shapiro 2004	1	54 40	4	38 65	0.1%	0.41 [0.05, 3.51]	· · · · · · · · · · · · · · · · · · ·
Newbury 2001	1	50	5	50	0.1%	0.20 [0.02, 1.65]	←
Crawford Shearer 2010	2	27	2	32	0.2%	1.19 [0.18, 7.86]	•
Hogan 2001 Davison 2005	2	79 159	5	84	0.2%	0.43 [0.08, 2.13]	
Davison 2005 Dalby 2000	3 7	159	3	154 69	0.3% 0.3%	0.58 [0.14, 2.39] 2.30 [0.62, 8.53]	· · · · · · · · · · · · · · · · · · ·
Tinetti 1994	7	153	5	148	0.4%	1.35 [0.44, 4.17]	
van Haastregt 2000	10	159	14	157	0.9%	0.71 [0.32, 1.54]	
Yamada 2003	11	184	15	184	1.0%	0.73 [0.35, 1.55]	
Hebert 2001 Kono 2011	12 11	250 161	18 20	253 162	1.1% 1.2%	0.67 [0.33, 1.37] 0.55 [0.27, 1.12]	
Hall 1992	14	81	18	86	1.4%	0.83 [0.44, 1.55]	
Close 1999	19	184	27	213	1.9%	0.81 [0.47, 1.42]	
Sommers 2000	26	383	26	351	2.1%	0.92 [0.54, 1.55]	
Bouman 2008 Gitlin 2006	29 34	$160 \\ 160$	23 42	170 159	2.3% 3.6%	1.34 [0.81, 2.22] 0.80 [0.54, 1.19]	
Vetter 1984b	34	296	42 60	296	3.8%	0.58 [0.40, 0.86]	
Vetter 1984a	45	281	45	273	4.0%	0.97 [0.67, 1.42]	
van Rossum 1993	42	292	50	288	4.0%	0.83 [0.57, 1.21]	
Pathy 1992	40 50	150 248	55 82	156 346	4.9% 5.9%	0.76 [0.54, 1.06]	
Sahlen 2006 Byles 2004	115	248 942	61	627	5.9%	0.85 [0.62, 1.16] 1.25 [0.94, 1.68]	
Vetter 1992	88	350	106	324	10.0%	0.77 [0.61, 0.98]	
Subtotal (95% CI)		5080		4870	56.5%	0.85 [0.76, 0.94]	•
Total events Heterogeneity: Tau ² = 0.	606	25.19	691	(B = 0	40): 12 - 5	. ev	
Test for overall effect: Z		,		(F = 0.	40), 1 = 3	70	
2.91.4 81-85							
Liu-Ambrose 2008 Robertson 2001a	1	36 121	2	38 119	0.1% 0.1%	0.53 [0.05, 5.57]	
Kono 2004	4	59	6	60	0.1%	0.16 [0.02, 1.34] 0.68 [0.20, 2.28]	
Elley 2008	7	155	4	157	0.4%	1.77 [0.53, 5.93]	
Campbell 1999	4	116	7	117	0.4%	0.58 [0.17, 1.92]	
Campbell 2005 Lenaghan 2007	4	98 69	7	96 67	0.4%	0.56 [0.17, 1.85]	•
Lenaghan 2007 Ploeg 2010	10	69 361	6 10	67 358	0.5% 0.8%	1.13 [0.40, 3.20] 0.99 [0.42, 2.35]	
Bernabei 1998	12	100	13	100	1.1%	0.92 [0.44, 1.92]	
Stuck 1995	24	215	26	199	2.1%	0.85 [0.51, 1.44]	
van Hout 2010 Holland 2005	27	331	31	320	2.3%	0.84 [0.51, 1.38]	
Holland 2005 Caplan 2004	49 55	437 370	63 53	435 369	4.7% 4.7%	0.77 [0.55, 1.10] 1.03 [0.73, 1.47]	
Stuck 2000	47	264	67	527	4.9%	1.40 [0.99, 1.97]	
Thomas 2007	89	345	49	175	6.4%	0.92 [0.68, 1.24]	
Subtotal (95% CI) Total events	3.4.1	3077	350	3137	29.2%	0.95 [0.83, 1.10]	•
Heterogeneity: $Tau^2 = 0$. Test for overall effect: Z =				(P = 0.	$(55); I^2 = 0$	0%	
	- 0.03 (P	- 0.31)					
2.91.5 86+		174	0	114	0.14	2 20 10 16 67 031	· · · · · · · · · · · · · · · · · · ·
Gustafsson 2012 Luukinen 2006	2 48	174 243	0 50	114 243	0.1% 4.5%	3.29 [0.16, 67.82] 0.96 [0.67, 1.37]	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)	40	417	30	357	4.6%	0.98 [0.69, 1.39]	-
Total events	50		50				T
Heterogeneity: Tau ² = 0. Test for overall effect: Z =			f = 1 (P	= 0.43); $I^2 = 0\%$		
Total (95% CI)		10146		9904	100.0%	0.90 [0.84, 0.98]	•
Total events	1121	40.00	1202	(B -			
Heterogeneity: Tau ² = 0. Test for overall effect: Z =				(P = 0.	50 ; $I^2 = 0$		0.5 0.7 1 1.5 2
Test for subgroup differe				P = 0.2	(2), $I^2 = 3$	0.2%	Favours home visits Favours control

Analysis 73: Mortality; type of visitor subgroups

Study or Subgroup	Home v Events		Cont Events		Weight	Risk Ratio M-H, Random, 95% CI	Risk Ratio M–H, Random, 95% CI
2.92.1 Nurse	Events	Total	Events	Total	arcigitt		in-ii, kanadii, 55% ci
Gallagher 1996	0	50	0	50		Not estimable	
Wyman 2007	ő	137	ő	135		Not estimable	
Shapiro 2002	1	40	4	65	0.1%	0.41 [0.05, 3.51]	↓
Newbury 2001	1	50	5	50	0.1%	0.20 [0.02, 1.65]	↓
Robertson 2001a	1	121	6	119	0.1%	0.16 [0.02, 1.34]	←
Crawford Shearer 2010	2	27	2	32	0.1%	1.19 [0.18, 7.86]	· · · · · · · · · · · · · · · · · · ·
Dalby 2000	7	70	3	69	0.3%	2.30 [0.62, 8.53]	
Ciaschini 2009	6	101	4	100	0.3%	1.49 [0.43, 5.10]	
Kono 2004	4	59	6	60	0.3%	0.68 [0.20, 2.28]	←
Elley 2008	7	155	4	157	0.3%	1.77 [0.53, 5.93]	
Lightbody 2002	11	171	7	177	0.5%	1.63 [0.65, 4.10]	
Ploeg 2010	10	361	10	358	0.6%	0.99 [0.42, 2.35]	
van Haastregt 2000	10	159	14	157	0.8%	0.71 [0.32, 1.54]	
Yamada 2003	11	184	15	184	0.8%	0.73 [0.35, 1.55]	
Hebert 2001	12	250	18	253	0.9%	0.67 [0.33, 1.37]	
Hall 1992 McEwap 1990	14 16	81 151	18 23	86	1.2%	0.83 [0.44, 1.55]	
McEwan 1990 Stuck 1995	24	215	25	145 199	1.3% 1.7%	0.67 [0.37, 1.21]	
Bouman 2008	24	160	28	170	1.7%	0.85 [0.51, 1.44] 1.34 [0.81, 2.22]	
van Hout 2010	29	331	31	320	1.8%	0.84 [0.51, 1.38]	
van Rossum 1993	42	292	50	288	3.1%	0.83 [0.57, 1.21]	
Caplan 2004	42	370	53	200	3.6%	1.03 [0.73, 1.47]	
Stuck 2000	47	264	67	527	3.7%	1.40 [0.99, 1.97]	
Thomas 2007	89	345	49	175	4.8%	0.92 [0.68, 1.24]	
Gunner-Svensson 1984	449	1844	443	1899	21.7%	1.04 [0.93, 1.17]	_
Subtotal (95% CI)		5988	1.13	6144	49.9%	1.00 [0.91, 1.10]	
Total events	875		881				Í
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	00; Chi ² =			(P = 0.4)	3); I ² = 29	6	
2.92.2 Other							
Lin 2007	1	50	0	50	0.0%	3.00 [0.13, 71.92]	· · · · · · · · · · · · · · · · · · ·
Nelson 2004	1	34	0	38	0.0%	3.34 [0.14, 79.42]	· · · · · · · · · · · · · · · · · · ·
Liu–Ambrose 2008	1	36	2	38	0.1%	0.53 [0.05, 5.57]	· · · · · · · · · · · · · · · · · · ·
Ciechanowski 2004	3	72	2	66	0.2%	1.38 [0.24, 7.97]	· · · · · · · · · · · · · · · · · · ·
Green 2002	4	85	5	85	0.3%	0.80 [0.22, 2.88]	
Campbell 1999	4	116	7	117	0.3%	0.58 [0.17, 1.92]	• • • • • • • • • • • • • • • • • • • •
Lenaghan 2007	7	69	6	67	0.4%	1.13 [0.40, 3.20]	
Bernabei 1998	12	100	13	100	0.8%	0.92 [0.44, 1.92]	
Close 1999	19	184	27	213	1.5%	0.81 [0.47, 1.42]	
Pathy 1992 Vetter 1984b	27 35	219 296	31 60	200 296	2.0% 3.0%	0.80 [0.49, 1.28]	
Vetter 1984a	45	290	45	273	3.1%	0.58 [0.40, 0.86] 0.97 [0.67, 1.42]	
Holland 2005	49	437	63	435	3.6%	0.77 [0.55, 1.10]	
Pathy 1992	49	150	55	156	3.8%	0.76 [0.54, 1.06]	
Vetter 1992	88	350	106	324	7.1%	0.77 [0.61, 0.98]	
Subtotal (95% CI)		2479	100	2458	26.1%	0.78 [0.69, 0.89]	•
Total events	336		422				-
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	00; Chi ² =		f = 14 (P	9 = 0.95); $I^2 = 0\%$		
2.92.3 Combined							
Gustafsson 2012	2	174	0	114	0.1%	3.29 [0.16, 67.82]	←───→
Hendriks 2008	5	166	1	167	0.1%	5.03 [0.59, 42.59]	
Hogan 2001	2	79	5	84	0.2%	0.43 [0.08, 2.13]	←
Markle-Reid 2010	3	54	4	55	0.2%	0.76 [0.18, 3.25]	
Davison 2005	3	159	5	154	0.2%	0.58 [0.14, 2.39]	
Fabacher 1994	4	131	4	123	0.2%	0.94 [0.24, 3.67]	
Campbell 2005	4	98	7	96	0.3%	0.56 [0.17, 1.85]	· · · · · · · · · · · · · · · · · · ·
Tinetti 1994	7	153	5	148	0.4%	1.35 [0.44, 4.17]	
Kono 2011	11	161	20	162	0.9%	0.55 [0.27, 1.12]	
Sommers 2000	26	383	26	351	1.6%	0.92 [0.54, 1.55]	
Balaban 1988	31	103	20	95	1.9%	1.43 [0.88, 2.33]	
Counsell 2007	33	474	37	477	2.2%	0.90 [0.57, 1.41]	
Gitlin 2006	34	160	42	159	2.8%	0.80 [0.54, 1.19]	
Luukinen 2006	48	243	50	243	3.5%	0.96 [0.67, 1.37]	
Sahlen 2006	50	248	82	346	4.4%	0.85 [0.62, 1.16]	
Byles 2004	115	942	61	627	4.9%	1.25 [0.94, 1.68]	
Subtotal (95% CI)		3728		3401	24.0%	0.97 [0.84, 1.11]	₹
Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =			369 df = 15	(P = 0.4)	4); I ² = 19	6	
Total (95% CI)		12195		12003	100.0%	0.93 [0.87, 0.99]	•
Total events	1589		1672	-			
Heterogeneity: Tau ² = 0.0			df = 53	(P = 0.4)	0); $I^2 = 39$	6	0.5 0.7 1 1.5 2
Test for overall effect: Z = Test for subgroup differen			df = 2 (P = 0.00	(7). $I^2 = 7$	9.9%	Favours home visits Favours control

Analysis 74: Mortality; number of visits subgroups

	Home v	isits	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events				Weight	M-H, Random, 95% CI	
2.93.1 1 Visit							
Gustafsson 2012	2	174	0	114	0.1%	3.29 [0.16, 67.82]	· · · · · · · · · · · · · · · · · · ·
Hendriks 2008 Newbury 2001	5 1	166 50	1	167 50	0.1% 0.1%	5.03 [0.59, 42.59] 0.20 [0.02, 1.65]	· · · · · · · · · · · · · · · · · · ·
Lightbody 2002	11	171	7	177	0.1%	1.63 [0.65, 4.10]	·
Hebert 2001	12	250	18	253	1.2%	0.67 [0.33, 1.37]	
McEwan 1990	16	151	23	145	1.7%	0.67 [0.37, 1.21]	
Close 1999	19	184	27	213	1.9%	0.81 [0.47, 1.42]	
Subtotal (95% CI)	66	1146	0.1	1119	5.8%	0.86 [0.57, 1.29]	
Total events Heterogeneity: Tau ² = 0.4	66 08: Chi ² =	8 17 0	81 If = 6 (P	= 0.23	$1^2 = 27$	%	
Test for overall effect: Z =				- 0.23	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
2.93.2 2-4 Visits							
Gallagher 1996	0	50	0	50		Not estimable	
Hogan 2001	2	79	5	84	0.2%	0.43 [0.08, 2.13]	
Fabacher 1994 Dalby 2000	4 7	131 70	4	123 69	0.3% 0.3%	0.94 [0.24, 3.67] 2.30 [0.62, 8.53]	· · · · · · · · · · · · · · · · · · ·
Green 2002	4	85	5	85	0.4%	0.80 [0.22, 2.88]	← `
Kono 2004	4	59	6	60	0.4%	0.68 [0.20, 2.28]	
Campbell 1999	4	116	7	117	0.4%	0.58 [0.17, 1.92]	
Lenaghan 2007	7	69	6	67	0.5%	1.13 [0.40, 3.20]	
Ploeg 2010 Kono 2011	10	361	10	358	0.8%	0.99 [0.42, 2.35] 0.55 [0.27, 1.12]	
van Hout 2010	11 27	161 331	20 31	162 320	1.2% 2.4%	0.84 [0.51, 1.38]	
Vetter 1984b	35	296	60	296	4.0%	0.58 [0.40, 0.86]	
Vetter 1984a	45	281	45	273	4.1%	0.97 [0.67, 1.42]	_
Luukinen 2006	48	243	50	243	4.7%	0.96 [0.67, 1.37]	
Holland 2005	49	437	63	435	4.8%	0.77 [0.55, 1.10]	
Caplan 2004 Sahlen 2006	55 50	370 248	53 82	369 346	4.8% 6.1%	1.03 [0.73, 1.47] 0.85 [0.62, 1.16]	
Thomas 2007	89	345	49	175	6.6%	0.92 [0.68, 1.24]	
Vetter 1992	88	350	106	324	10.3%	0.77 [0.61, 0.98]	_ _
Subtotal (95% CI)		4082		3956	52.4%	0.84 [0.75, 0.93]	◆
Total events	539		605	(8 0	700.12	00/	
Heterogeneity: Tau ² = 0. Test for overall effect: Z =				(P = 0)	.78); l* =	0%	
2.93.3 5 or More Visits	5125 (1	01004	/				
Wyman 2007	0	137	0	135		Not estimable	
Lin 2007	1	50	ŏ	50	0.1%	3.00 [0.13, 71.92]	·
Nelson 2004	1	34	0	38	0.1%	3.34 [0.14, 79.42]	
Liu-Ambrose 2008	1	36	2	38	0.1%	0.53 [0.05, 5.57]	
Robertson 2001a	1	121	6	119	0.1%	0.16 [0.02, 1.34]	
Crawford Shearer 2010 Ciechanowski 2004	2	27 72	2	32 66	0.2% 0.2%	1.19 [0.18, 7.86] 1.38 [0.24, 7.97]	
Markle-Reid 2010	3	54	4	55	0.3%	0.76 [0.18, 3.25]	
Campbell 2005	4	98	7	96	0.4%	0.56 [0.17, 1.85]	
Tinetti 1994	7	153	5	148	0.5%	1.35 [0.44, 4.17]	
van Haastregt 2000	10	159	14	157	1.0%	0.71 [0.32, 1.54]	
Yamada 2003 Barnabai 1998	11 12	184 100	15 13	184 100	1.0% 1.1%	0.73 [0.35, 1.55]	
Bernabei 1998 Sommers 2000	26	383	26	351	2.1%	0.92 [0.44, 1.92] 0.92 [0.54, 1.55]	
Stuck 1995	24	215	26	199	2.2%	0.85 [0.51, 1.44]	
Bouman 2008	29	160	23	170	2.3%	1.34 [0.81, 2.22]	-
Pathy 1992	27	219	31	200	2.6%	0.80 [0.49, 1.28]	
Counsell 2007	33	474	37	477	2.9%	0.90 [0.57, 1.41]	
Gitlin 2006	34 42	160 292	42 50	159	3.8%	0.80 [0.54, 1.19] 0.83 [0.57, 1.21]	
van Rossum 1993 Stuck 2000	42	292	67	288 527	4.1% 5.0%	1.40 [0.99, 1.97]	
Pathy 1992	40	150	55	156	5.1%	0.76 [0.54, 1.06]	_ _
Byles 2004	115	942	61	627	6.8%	1.25 [0.94, 1.68]	
Subtotal (95% CI)		4484		4372	41.8%	0.96 [0.86, 1.09]	•
Total events	473	20.20	488	(D = C	E (1) - 12	0%	
Heterogeneity: Tau ² = 0.4 Test for overall effect: Z =			df = 21	(P = 0)	.50); F =	0%	
Total (95% CI)		9712		9447	100.0%	0.89 [0.82, 0.96]	◆
Total events	1078	43.00	1174	(n	E 63. 12 -	0%	
Heterogeneity: Tau ² = 0. Test for overall effect: Z =				(P = 0.	.56); l* =	0%	0.5 0.7 1 1.5 2
							Favours home visits Favours control

Analysis 75: Psychiatric (anxiety and depression), results at longest follow-up

			Home visits	Control		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% C	IV, Random, 95% CI
Shapiro 2002	-0.38438454	0.27919357	32	21	2.1%	-0.38 [-0.93, 0.16]	· · · · · ·
Kono 2004	-0.1249206	0.26073557	32	26	2.3%	-0.12 [-0.64, 0.39]	ı
Lin 2007	-0.21979435	0.22352157	39	40	3.1%	-0.22 [-0.66, 0.22]	1
Balaban 1988	-0.04008557	0.21429989	40	46	3.3%	-0.04 [-0.46, 0.38]]
Markle-Reid 2010	0.14926786	0.20750508	49	43	3.5%	0.15 [-0.26, 0.56]]
Ciechanowski 2004	-0.34318576	0.17798035	67	60	4.6%	-0.34 [-0.69, 0.01]]
Bernabei 1998	-0.40447154	0.15207651	88	87	6.0%	-0.40 [-0.70, -0.11]	
Luukinen 2006	-0.10410841	0.1411547	144	150	6.7%	-0.10 [-0.38, 0.17]]
Markle-Reid 2006	0.01619677	0.13202045	113	115	7.5%	0.02 [-0.24, 0.27]	
Hendriks 2008	0.05020461	0.12426243	124	134	8.2%	0.05 [-0.19, 0.29]]
Bouman 2008	-0.08667185	0.11676946	139	154	9.0%	-0.09 [-0.32, 0.14]]
Kono 2011	-0.02557471	0.11102786	161	162	9.6%	-0.03 [-0.24, 0.19]]
Sommers 2000	-0.06566503	0.10200118	201	183	10.8%	-0.07 [-0.27, 0.13]]
Vetter 1984a	-0.28999705	0.09935649	206	202	11.2%	-0.29 [-0.48, -0.10]]
Vetter 1984b	0.05857493	0.09322435	241	219	12.1%	0.06 [-0.12, 0.24]	ı — • —
Total (95% CI)			1676	1642	100.0%	-0.10 [-0.18, -0.02]	ı 🔶
Heterogeneity: Tau ² =	= 0.01; Chi ² = 18.06, df	= 14 (P = 0.2)	0); $I^2 = 22\%$				
Test for overall effect:							-1 -0.5 0 0.5 1 Favours home visits Favours control

Analysis 76: Psychiatric (anxiety and depression) at each follow-up interval

Study or Subgroup	Std. Mean Difference	SE	Home visits Total			Std. Mean Difference IV, Random, 95% CI	Std. Mean Difference IV, Random, 95% CI
2.95.1 01-11 months		36	Total	rotai	weight	iv, Kanuom, 95% CI	iv, Kaldolli, 93% Cl
Lin 2007	-0.21979435	0.22352157	39	40	17.3%	-0.22 [-0.66, 0.22]	
Markle-Reid 2010	0.14926786		49			0.15 [-0.26, 0.56]	
Ciechanowski 2004	-0.80517631		69			-0.81 [-1.16, -0.45]	
Markle-Reid 2006	0.01619677		113				
Hendriks 2008	0.04129397		131				
Subtotal (95% CI)	0.04125557	0.12001550	401		100.0%	-0.16 [-0.47, 0.16]	
Heterogeneity: Tau ² =	0.10: Chi ² = 19.05. df	= 4 (P = 0.00)				,	-
Test for overall effect: 2		. (. 0.00	00,,				
2.95.2 12-23 months							
Shapiro 2002	-0.38438454	0.27919357	32	21	3.4%	-0.38 [-0.93, 0.16]	-
Kono 2004	-0.1249206	0.26073557	32	26	3.9%	-0.12 [-0.64, 0.39]	
Balaban 1988	-0.04008557	0.21429989	40	46	5.8%	-0.04 [-0.46, 0.38]	
Ciechanowski 2004	-0.34318576	0.17798035	67	60	8.3%	-0.34 [-0.69, 0.01]	
Bernabei 1998	-0.40447154	0.15207651	88	87	11.2%	-0.40 [-0.70, -0.11]	
Luukinen 2006	-0.10410841	0.1411547	144	150	12.9%	-0.10 [-0.38, 0.17]	
Hendriks 2008	0.05020461	0.12426243	124	134	16.3%	0.05 [-0.19, 0.29]	_ _
Bouman 2008	-0.0923089	0.11675516	139	154	18.3%	-0.09 [-0.32, 0.14]	
Kono 2011	-0.04926539	0.11104022	161	162	20.0%	-0.05 [-0.27, 0.17]	
Subtotal (95% CI)			827	840	100.0%	-0.13 [-0.23, -0.02]	•
Heterogeneity: Tau ² =	0.00; Chi ² = 8.45, df =	8 (P = 0.39)	$l^2 = 5\%$				
Test for overall effect: 2	Z = 2.41 (P = 0.02)						
2.95.3 24-35 months							
Bouman 2008	-0.08667185	0.11676946	139	154	17.4%	-0.09 [-0.32, 0.14]	
Kono 2011	-0.02557471		161	162	18.5%		
Sommers 2000	-0.06566503		201				
Vetter 1984a	-0.28999705		206				
Vetter 1984b	0.05857493	0.09322435	241				
Subtotal (95% CI)			948	920	100.0%	-0.08 [-0.20, 0.04]	•
Heterogeneity: Tau ² =		4 (P = 0.14)	$l^2 = 42\%$				
Test for overall effect: 2	Z = 1.32 (P = 0.19)						
							-2 -1 0 1

Favours home visits Favours control

Analysis 77: Psychiatric (anxiety and depression); focus of visit subgroups

		Home visits Control				Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
2.96.1 Falls Only							
Lin 2007	-0.21979435 0.	22352157	39	40	3.1%	-0.22 [-0.66, 0.22]
Luukinen 2006	-0.10410841	0.1411547	144	150	6.7%	-0.10 [-0.38, 0.17	
Subtotal (95% CI)			183	190	9.8%	-0.14 [-0.37, 0.10	1 🔶
	= 0.00; Chi ² = 0.19, df = 1	(P = 0.66); I	$^{2} = 0\%$				
Test for overall effect	Z = 1.15 (P = 0.25)						
2.96.2 MGA Only							
Shapiro 2002	-0.38438454 0.	27919357	32	21	2.1%	-0.38 [-0.93, 0.16]
Kono 2004	-0.1249206 0.	26073557	32	26	2.3%	-0.12 [-0.64, 0.39	1
Balaban 1988	-0.04008557 0.	21429989	40	46	3.3%	-0.04 [-0.46, 0.38	j <u> </u>
Bernabei 1998	-0.40447154 0.	15207651	88	87	6.0%	-0.40 [-0.70, -0.11]
Markle-Reid 2006	0.01619677 0.	13202045	113	115	7.5%	0.02 [-0.24, 0.27]
Bouman 2008	-0.08667185 0.	11676946	139	154	9.0%	-0.09 [-0.32, 0.14]
Kono 2011	-0.02557471 0.	11102786	161	162	9.6%	-0.03 [-0.24, 0.19	
Sommers 2000	-0.06566503 0		201	183	10.8%	-0.07 [-0.27, 0.13	
Vetter 1984a	-0.28999705 0.		206	202	11.2%	-0.29 [-0.48, -0.10	
Vetter 1984b	0.05857493 0.	.09322435	241	219	12.1%	0.06 [-0.12, 0.24	
Subtotal (95% CI)			1253	1215	73.8%	-0.11 [-0.21, -0.01	1 •
	= 0.01; Chi ² = 13.03, df =	9 (P = 0.16);	$l^2 = 31\%$				
Test for overall effect	Z = 2.11 (P = 0.04)						
2.96.3 Both							
Markle-Reid 2010	0.14926786 0.		49	43	3.5%	0.15 [-0.26, 0.56	
Hendriks 2008	0.05020461 0.	12426243	124	134	8.2%	0.05 [-0.19, 0.29	
Subtotal (95% CI)			173	177	11.7%	0.08 [-0.13, 0.29	1 🔶
	= 0.00; Chi ² = 0.17, df = 1	(P = 0.68); I	$^{2} = 0\%$				
Test for overall effect	Z = 0.72 (P = 0.47)						
2.96.4 Neither							
Ciechanowski 2004	-0.34318576 0.	17798035	67	60	4.6%	-0.34 [-0.69, 0.01	
Subtotal (95% CI)			67	60	4.6%	-0.34 [-0.69, 0.01	
Heterogeneity: Not ap							
Test for overall effect	Z = 1.93 (P = 0.05)						
Total (95% CI)			1676	1642	100.0%	-0.10 [-0.18, -0.02	1 🔶
Heterogeneity: Tau ² =	= 0.01; Chi ² = 18.06, df =	14 (P = 0.20)); $I^2 = 22\%$				-1 -05 0 05 1
	Z = 2.37 (P = 0.02)						-'1 -0'.5 0 0.'5 1 Favours home visits Favours control
Test for subgroup dif	ferences: Chi ² = 4.71. df =	3 (P = 0.19)	$I^2 = 36.3\%$				ravours nome visits Favours control

Analysis 78: Psychiatric (anxiety and depression); age of participants subgroups

		He	ome visits C	ontrol		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% C	IV, Random, 95% CI
2.97.1 <= 70							
Balaban 1988	-0.04008557 0.	21429989	40	46	3.4%	-0.04 [-0.46, 0.38]	
Subtotal (95% CI)			40	46	3.4%	-0.04 [-0.46, 0.38]	
Heterogeneity: Not ap							
Test for overall effect:	Z = 0.19 (P = 0.85)						
2.97.2 71-75							
Ciechanowski 2004	-0.34318576 0.	17798035	67	60	4.7%	-0.34 [-0.69, 0.01]	·
Hendriks 2008	0.05020461 0.	12426243	124	134	8.5%	0.05 [-0.19, 0.29]	i —
Subtotal (95% CI)			191	194	13.2%	-0.13 [-0.51, 0.26]	-
	0.05; Chi ² = 3.28, df = 1	$(P = 0.07); I^2$	= 70%				
Test for overall effect:	Z = 0.64 (P = 0.52)						
2.97.3 76-80							
Shapiro 2002	-0.38438454 0.	27919357	32	21	2.1%	-0.38 [-0.93, 0.16]	
Lin 2007	-0.21979435 0.	22352157	39	40	3.2%	-0.22 [-0.66, 0.22]	
Bouman 2008	-0.08667185 0.	11676946	139	154	9.3%	-0.09 [-0.32, 0.14]	
Kono 2011	-0.02557471 0.	11102786	161	162	10.0%	-0.03 [-0.24, 0.19]	
Sommers 2000	-0.06566503 0.	10200118	201	183	11.2%	-0.07 [-0.27, 0.13]	
Vetter 1984a	-0.28999705 0.	09935649	206	202	11.6%	-0.29 [-0.48, -0.10]	_ _
Vetter 1984b	0.05857493 0.	09322435	241	219	12.6%	0.06 [-0.12, 0.24]	
Subtotal (95% CI)			1019	981	60.1%	-0.10 [-0.21, 0.01]	
Heterogeneity: Tau ² =	0.01; Chi ² = 8.43, df = 6	$(P = 0.21); I^2$	= 29%				
Test for overall effect:	Z = 1.80 (P = 0.07)						
2.97.4 81-85							
Kono 2004	-0.1249206 0.	26073557	32	26	2.4%	-0.12 [-0.64, 0.39]	· · · · · · · · · · · · · · · · · · ·
Bernabei 1998	-0.40447154 0.	15207651	88	87	6.2%	-0.40 [-0.70, -0.11]	
Markle-Reid 2006	0.01619677 0.	13202045	113	115	7.7%	0.02 [-0.24, 0.27]	i —
Subtotal (95% CI)			233	228	16.3%	-0.17 [-0.46, 0.12]	-
Heterogeneity: Tau ² =	0.03; Chi ² = 4.38, df = 2	$(P = 0.11); I^2$	= 54%				
Test for overall effect:	Z = 1.16 (P = 0.25)						
2.97.5 86+							
Luukinen 2006	-0.10410841	0.1411547	144	150	7.0%	-0.10 [-0.38, 0.17]	∣
Subtotal (95% CI)			144	150	7.0%	-0.10 [-0.38, 0.17]	
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.74 (P = 0.46)						
Total (95% CI)			1627	1599	100.0%	-0.11 [-0.19, -0.02]	• ◆
Heterogeneity: Tau ² =	0.01; Chi ² = 16.65, df =	13 (P = 0.22)	$I^2 = 22\%$				
Test for overall effect:							-1 -0.5 0 0.5 1
	$erences: Chi^2 = 0.31, df =$	4 (P = 0.99)	$ ^2 = 0\%$				Favours home visits Favours control

Analysis 79: Psychiatric (anxiety and depression); type of visitor subgroups

			Home visits			Std. Mean Difference	
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
2.98.1 Nurse							
Shapiro 2002	-0.38438454		32		2.1%		
Kono 2004	-0.1249206		32	26	2.3%	-0.12 [-0.64, 0.39	
Markle-Reid 2006	0.01619677	0.13202045	113		7.5%	0.02 [-0.24, 0.27	
Bouman 2008	-0.08667185	0.11676946	139		9.0%	-0.09 [-0.32, 0.14	
Subtotal (95% CI)			316	316	20.8%	-0.08 [-0.23, 0.08	1 🔶
	0.00; Chi ² = 1.75, df =	3 (P = 0.63)	$l^2 = 0\%$				
Test for overall effect:	Z = 0.97 (P = 0.33)						
2.98.2 Other							
Lin 2007	-0.21979435	0.22352157	39	40	3.1%	-0.22 [-0.66, 0.22]
Ciechanowski 2004	-0.34318576	0.17798035	67	60	4.6%	-0.34 [-0.69, 0.01	j <u> </u>
Bernabei 1998	-0.40447154	0.15207651	88	87	6.0%	-0.40 [-0.70, -0.11]
Vetter 1984a	-0.28999705	0.09935649	206	202	11.2%	-0.29 [-0.48, -0.10]
Vetter 1984b	0.05857493	0.09322435	241	219	12.1%	0.06 [-0.12, 0.24]
Subtotal (95% CI)			641	608	36.9%	-0.22 [-0.42, -0.02] 🔶
Heterogeneity: Tau ² =	: 0.03; Chi ² = 10.82, df	= 4 (P = 0.03)); I ² = 63%				
Test for overall effect:	Z = 2.18 (P = 0.03)						
2.98.3 Combined							
Balaban 1988	-0.04008557	0.21429989	40	46	3.3%	-0.04 [-0.46, 0.38]
Markle-Reid 2010	0.14926786	0.20750508	49	43	3.5%	0.15 [-0.26, 0.56]
Luukinen 2006	-0.10410841	0.1411547	144	150	6.7%	-0.10 [-0.38, 0.17]+
Hendriks 2008	0.05020461	0.12426243	124	134	8.2%	0.05 [-0.19, 0.29]
Kono 2011	-0.02557471	0.11102786	161	162	9.6%	-0.03 [-0.24, 0.19]
Sommers 2000	-0.06566503	0.10200118	201	183	10.8%	-0.07 [-0.27, 0.13	1
Subtotal (95% CI)			719	718	42.2%	-0.02 [-0.13, 0.08	1 🔶
Heterogeneity: Tau ² =	0.00; Chi ² = 1.55, df =	5 (P = 0.91)	$l^2 = 0\%$				
Test for overall effect:	Z = 0.42 (P = 0.67)						
Total (95% CI)			1676	1642	100.0%	-0.10 [-0.18, -0.02	1 🔶
Heterogeneity: Tau ² =	0.01; Chi ² = 18.06, df	= 14 (P = 0.2)	0); $I^2 = 22\%$				
Test for overall effect: $Z = 2.37$ (P = 0.02)							-1 -0.5 0 0.5 1 Favours home visits Favours control
Test for subaroup diff	erences: Chi ² = 2.96, df	= 2 (P = 0.23)	3), $I^2 = 32.5\%$				Favours nome visits Favours control

Analysis 80: Psychiatric (anxiety and depression); number of visits subgroups

			Home visits	Control		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
2.99.1 1 Visit							
Hendriks 2008	0.05020461	0.12426243	124		8.7%	0.05 [-0.19, 0.29	
Subtotal (95% CI)			124	134	8.7%	0.05 [-0.19, 0.29	
Heterogeneity: Not ap							
Test for overall effect:	Z = 0.40 (P = 0.69)						
2.99.2 2-4 Visits							
Kono 2004	-0.1249206	0.26073557	32	26	2.6%	-0.12 [-0.64, 0.39]
Luukinen 2006	-0.10410841	0.1411547	144	150	7.2%	-0.10 [-0.38, 0.17	j <u> </u>
Kono 2011	-0.02557471	0.11102786	161	162	10.1%	-0.03 [-0.24, 0.19	j <u> </u>
Vetter 1984a	-0.28999705	0.09935649	206	202	11.5%	-0.29 [-0.48, -0.10]
Vetter 1984b	0.05857493	0.09322435	241		12.4%	0.06 [-0.12, 0.24	
Subtotal (95% CI)			784	759	43.9%	-0.09 [-0.23, 0.05] 🔶
Heterogeneity: Tau ² =	= 0.01; Chi ² = 6.95, df =	= 4 (P = 0.14);	$l^2 = 42\%$				
Test for overall effect:	Z = 1.25 (P = 0.21)						
2.99.3 5 or More Vis	its						
Lin 2007	-0.21979435	0.22352157	39	40	3.4%	-0.22 [-0.66, 0.22]
Markle-Reid 2010	0.14926786	0.20750508	49	43	3.9%	0.15 [-0.26, 0.56	j — • • •
Ciechanowski 2004	-0.34318576	0.17798035	67	60	5.0%	-0.34 [-0.69, 0.01	j <u> </u>
Bernabei 1998	-0.40447154	0.15207651	88	87	6.5%	-0.40 [-0.70, -0.11]
Markle-Reid 2006	0.01619677	0.13202045	113	115	8.0%	0.02 [-0.24, 0.27] — —
Bouman 2008	-0.08667185	0.11676946	139	154	9.4%	-0.09 [-0.32, 0.14]
Sommers 2000	-0.06566503	0.10200118	201		11.2%	-0.07 [-0.27, 0.13]	
Subtotal (95% CI)			696	682	47.4%	-0.13 [-0.26, 0.00	1 🔶
	= 0.01; Chi ² = 8.38, df =	= 6 (P = 0.21);	$I^2 = 2.8\%$				
Test for overall effect:	Z = 1.91 (P = 0.06)						
Total (95% CI)			1604	1575	100.0%	-0.09 [-0.18, -0.01	1 🔶
Heterogeneity: Tau ² =	= 0.01; Chi ² = 16.90, df	= 12 (P = 0.1)	5); I ² = 29%				-1 -0.5 0 0.5 1
Test for overall effect:	Z = 2.14 (P = 0.03)						-1 -0.5 0 0.5 1 Favours home visits Favours control
Test for subgroup diff	ferences: Chi ² = 1.57, dt	r = 2 (P = 0.46)	5), $I^2 = 0\%$				ravours nome visits Favours control