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1. Hidden Markov Model for Paired SNP-array data (PSHMM)   

1.1. Introduction 

For SNP-arrays, the genotyping signals include probe intensities presenting 

abundance of A and B alleles at each interrogated SNP, respectively. In practice, 

genotyping signals are transformed into two different measurements: Log R Ratio 

(LRR) and B Allele Frequency (BAF). The LRR measurement represents total probe 

intensity and is associated with the copy number of both A and B alleles, whilst BAF 

reflects the proportion of B allele at each probe, described as the ratio of the probe 

intensity of B allele to the total probe intensity. More detailed information regarding 

the definition and calculation of LRR and BAF measurements from raw genotyping 

signals can be found in for Illumina platform and for Affymetrix platform[1, 2].  

From the SNP-array data of normal DNA sample, calling copy number variation 

at each SNP (CNV) is a relatively easy task. Many approaches, such as PennCNV [3], 

have been demonstrated as efficient tools for such studies. However, it is much more 

challenging to accurately identify somatic genomic aberrations, such as copy number 

alterations (CNA) and loss of heterozygosity (LOH), from SNP-array data of tumor 

sample, mainly because tumor sample usually includes not only cancer but also 

normal cells [4-15].  

Generally, suppose there are two samples collected in the study: one is a mixed 

sample consisting of two kinds of genetically related cells (denoted as c1, c2) with 

different genotypes, and the other is a paired sample consisting of only c2. SNP-array 

experiments are performed on both samples rendering a pair of genotyping data. The 

genotype of c2 can be explicitly determined from SNP-array data of the paired sample, 

but the genotype of c2 is “hidden” as the genotyping signal of the mixed sample is 

actually generated from a mixture of DNA from both c1 and c2 with unknown 

proportion. So the goal is to determine c1‟s genotype information (represented by total 

copy number contributed by both alleles and proportion of B allele, denoted as
 
ni,c1 

ui,c1 (i =1,...,n)) and corresponding genomic aberrations from the SNP-array data of 

the mixed sample with the aid of genotype information of c2 inferred from SNP-array 

of the paired sample. Note that the genotype of c2 is obtainable by analyzing the 

SNP-array data of the paired pure sample using available tools such as GPHMM[6], 
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therefore by using the genotyping information, we can uniquely determine the 

corresponding total copy number contributed by both alleles and proportion of B 

allele, denoted as
2,cin and ),...,1(

2, niu ci   respectively. It should be pointed out that 

with the existence of germline aberration, c2 is not restricted to diploid genotypes AA, 

AB or BB. Instead, it can be any possible genotype associated with different genomic 

variations described in Table S1.  

1.2. Hidden States 

Table S1 shows the definitions of the hidden states used in PSHMM, including 

different kinds of genomic abnormalities such as copy number gain/ loss and LOH. 

Due to saturation effects in array hybridization, hidden states are limited to 

aberrations with copy number less than 8 to ensure they are discriminable by the 

genotyping signals.  

1.3. Emission models 

One important step toward profiling c1‟s genomic aberration from mixed 

genotyping signal in SNP-array experiment is to determine the proportion of c2 in the 

mixed sample. Some computational methods [6, 11, 14, 15] have been proposed to 

automatically infer the proportion of cancer cells by de-convoluting the genotyping 

signals generated from mixed sample DNAs. In PSHMM, we adopted empirical 

formulas proposed by SiDCoN [16], in which relationship of LRR/BAF 

measurements and cancer cell proportion in mixed sample is quantitatively modeled. 

Specifically, let the LRR and BAF of the i
th

 probe be il and ),...,1( nibi  , then their 

expectations can be formulated as follow: 

E(li ) = log10((wni,c1 + (1-w)ni,c2 ) / 2)     (1) 

E(bi ) =
wni,c1ui,c1 + (1-w)ni,c2ui,c2

wni,c1 + (1-w)ni,c2
      (2) 

where w is the proportion of cancer cells in the mixed sample.  

 On the other hand, owning to the complicated characteristic of tumor, genotyping 

signals of SNP-array are affected by other factors in practice, such as tumor 

aneuploidy [6, 11, 12, 14, 15] and genomic waves related to local GC contents [17]. 

We further use following formula to take all these effects into account.  

E(li ) = log10((wni,c1 + (1-w)ni,c2 ) / 2+hgi +o)     (3) 



5 

 

where gi is the local GC percentage at the i
th

 probe and h is the coefficient. o is the 

shift of the LRR baseline. By assuming genotyping signals are normally distributed, 

we can then formulate the emission probabilities of each observed (li,bi ) given 

hidden state s(s>1) and k
th

 genotype of c1: 

fp(li |w,h,o,s l, s,ni,c2 )=
1

s l

f(
li - (2log10(yi,p(s) / 2)+o+hgi )

s l

)    (4) 

  fp(bi |w,s b,k, s,ni,c2,ui,c2 )=
1

s b

pi(k | s)f(
bi - zi,p(k, s) / yi,p(s)

s b

)
k=1

G

å    (5) 

with 

yi,p(s)=wni,c1(s)+ (1-w)ni,c2       (6) 

 

zi,p(k, s)=wni,c1ui,c1(k, s)+ (1-w)ni,c2ui,c2     (7) 

where bl σσ , denote the variance of LRR and BAF, respectively. G is the number of 

genotypes in state s. pi(k | s) is the prior probability of observing k
th

 genotype 

(conditional on s) at the i
th

 probe in the mixed sample by splitting the probabilities of 

homozygous and heterozygous genotypes estimated from the allelic frequencies in 

population. Note that the genotypes of c1 and c2 are genetically related, therefore 

restrictions are imposed on equation (4) and (5). For example, if c2‟s genotype is „AA‟ 

then we need to rule out the possibility that c2 has genotype „ABB‟, since a 

homozygous genotype cannot turn into a heterozygous genotype during somatic 

aberrations. 

 We incorporate the effect of signal fluctuation in the emission models of PSHMM, 

and in this case a uniform distribution is employed to approximate the statistical 

distributions of LRR and BAF: 

 

      (8) 

                  (9) 

     

 Note that genotyping error also happens in the SNP-array of the paired sample, 
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rendering wrong identification of genotypes in c2, therefore equation (4) and (5) 

should be replaced with the emission models used for single SNP-array analysis [6], 

in which the genotypes of c2 are limited to normal by assuming there is no genomic 

variant: 

fe(li |w,h,o,s l, s)=
1

s l

f(
li - (2log10(yi,e(s) / 2)+o+hgi )

s l

)    (10) 

fe(bi |w,s b,k, s)=
1

s b

pi(k, s)f(
bi - zi,e(k, s) yi,e(s)

s b

)
k=1

G

å     (11) 

with 

yi,e(s)= 2+ (ni,s -2)w       (12) 

zi,e(k, s)= 2ui,c2 + (ni,sui,k,s -2ui,c2 )w      (13) 

Taken together, the emission probability of PSHMM is formulated as the total 

probability:  

f (li,bi |w,h,o,s l,s b,k, s,ni,c2,ui,c2 ) =

(1- pi,l )[(1- pi,e ) fp(li |w,h,o,s l, s,ni,c2 ) fp(bi |w,s b,k, s,,ni,c2,ui,c2 )

+ pi,e fe(li |w,h,o,s l, s) fe(bi |w,s b,k, s)]+ pi,l fl (li ) fl (bi )

  (14) 

where pi,e is the probability of genotype errors in paired sample for the i
th

 probe 

(default value is 0.01). pi,l is the probability of observing genotyping signal fluctuation 

in the mixed sample for the i
th

 probe (default value is 0.01).  

 

1.4. Transition matrix and initial state distribution 

In PSHMM, we use a transition matrix similar with that adopted in our previous work 

[6], associated with an ergodic Markov chain with initial transition matrix A
0
 defined 

as follow: 

Akl
(0) =

pt / (M -1), k ¹ l

1- pt, k = l

ì

í
ï

îï
, k, l =1,2,...,M      (15) 

where Akl
(0)

 indicates the element of the k
th

 row and l
th

 column in the initial transition 

matrix, pt is the initial probability of transitions from state i to any other states (default 

value is 10
-5

). M is the number of all hidden state. By assuming there is no additional 

information of the hidden states, the prior probabilities of initial states are then: 

 p k
(0) =1 N , k =1,2,...,M       (16) 
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1.5. EM algorithm for parameter estimation 

We use Expectation Maximization (EM) algorithm [18] for HMM training and 

parameter estimation in this study, which is aimed to find maximum likelihood 

estimates of parameters associated with hidden latent variables. The EM algorithm 

consists of an expectation (E) step and a maximization (M) step. During the E step, 

the expectation of the log-likelihood is calculated by using the current estimate for the 

parameters, whilst during the M step, parameters are updated by maximizing the 

expected log-likelihood generated in the E step. These two steps are performed 

iteratively until the algorithm converges to a local maxima or reaches to a pre-defined 

threshold for maximal number of iterations. In addition, as we previously proposed 

[6], a grid search of parameters o and w is performed in PSHMM in order to find 

optimal initial values. 

 To update the elements of state transition matrix, we adopt the standard approach 

of HMM modeling: 

Akl
(n) =

xi
(n)(k, l)

i=1

N-1

å

g i
(n)(k)

i=1

N-1

å
       (17)

 

where xi
(n)(k, l) is the probability of state transition from k (probe i) to l (probe i+1) 

calculated the n
th

 iteration, given all observed data and the HMM model with 

parameters calculated in the n-1
th

 iteration. Similarly,g i
(n)(k)  is the probability of state 

k at the probe i in the n
th

 iteration. Both xi
(n)(k, l)and g i

(n)(k)  are obtainable using the 

forward-backward algorithm and more detailed information is provided in [18]. Also 

the probabilities of initial states are updated as follow: 

p k

(n) =g1

(n)(k)
        

(18) 

Furthermore, to estimate parameters in emission probability such as o and l , we 

need to reformulate the EM algorithm. Given LRR and BAF of the mixed sample, as 

the E step we first calculate the partial log-likelihood containing emission probability 

functions [18] as follow: 

LL = Ii(s)log( f (li,bi |w,h,o,s l,s b,k, s,ni,c2,ui,c2 ))
k=1

Ng

å
s=1

M

å
i=1

N

å    (19) 

where Ii(s) is an indicator function with value 1 if the i
th

 SNP is in state s, otherwise 
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it is set to 0. Then the expectation of the partial log-likelihood is then formulated as: 

E(LL)= g i,p
(n)(s){log( fp(li |w,h,o,s l, s,ni,c2 ))+ log( fp(bi |w,s b,k, s,ni,c2,ui,c2 ))}

s=1

M

å
i=1

N

å

+g i,e
(n)(s){log( fe(li |w,h,o,s l, s))+ log( fe(bi |w,s b,k, s))}+ (1-g i,p

(n)(s)-g i,e
(n)(s))

{log( fl (li ))+ log( fl (bi ))}  

(20) 

where g i,p
(n)(s)  and g i,e

(n)(s)are the conditional probabilities that equation (4-5) and 

(9-10) hold respectively, given state s at the probe i in the n
th

 iteration, which can be 

calculated by the following equations: 

gi,p
(n)(s) =g i

(n)(s)(1- pi,e
' - pi, f

' )        (21) 

gi,e
(n)(s) =gi

(n)(s)(1- pi,e
' )       (22) 

where pi,e
'

and pi, f
'

indicate probabilities of genotyping error and fluctuation given

 all aforementioned parameters and data: 

pi,e
' =

(1- pi,l )pi,e fe(li |w,h,o,s l, s) fe(bi |w,s b,k, s)

f (li,bi |w,h,o,s l,s b,k, s,ni,c2,ui,c2 )
    (23) 

pi,l
' =

pi,l fl (li ) fl (bi )

f (li,bi |w,h,o,s l,s b,k, s,ni,c2,ui,c2 )
     (24) 

 

Next, in order to derive the formula for updating o in the M step, we take the 

partial derivative with respect to o: 

¶E(LL)

¶o
= 0          (25) 

By solving above equation, we obtain the formula as follow, in which the values of all 

other parameters are determined in previous iteration. 

o(n) =

g i,p
(n)(s)

s=1

M

å
i=1

N

å gi[li -h
(n-1)gi - 2log10 (yi,p

(n)(s) / 2)]+g i,e
(n)(s)gi[li - h

(n-1)gi - 2log10(yi,e
(n)(s) / 2)]

g i,p
(n)(s)+g i,e

(n)(s)
s=1

M

å
i=1

N

å
 

(26) 

Similarly, we use following formulas to update the remaining parameters appeared in 

the emission model consecutively. Note that once the value of a parameter is changed 

in the n
th

 iteration, it will be then used for the following updating procedure of other 
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parameters.   

h(n) =

g i,p
(n)(s)

s=1

M

å
i=1

N

å gi[li -o
(n) - 2log10 (yi,p

(n)(s) / 2)]+g i,e
(n)(s)gi[li -o

(n) - 2log10 (yi,e
(n)(s) / 2)]

(g i,p
(n)(s)+g i,e

(n)(s))gi
2

s=1

M

å
i=1

N

å
 

(27) 

s l

(n) = [

g i,p
(n)(s)

s=1

M

å
i=1

N

å (li -o
(n) - h(n)gi - 2log10 (yi,p

(n)(s) / 2))2

g i,p
(n)(s)+g i,e

(n)(s)
s=1

M

å
i=1

N

å

+

g i,e
(n)(s)

s=1

M

å
i=1

N

å (li -o
(n) - h(n)gi - 2log10 (yi,e

(n)(s) / 2))2

g i,p
(n)(s)+g i,e

(n)(s)
s=1

M

å
i=1

N

å
]

1

2

   (28) 

 

s b

(n) = [

g i,p
(n)(s) pi (k | s)

k=1

G

å (bi -
zi,p

(n)(k, s)

yi,p
(n)(k, s)

)2 + g i,e
(n)(s) pi (k | s)

k=1

G

å (bi -
zi,e

(n)(k, s)

yi,e
(n)(k, s)

)2

s=1

M

å
i=1

N

å
s=1

M

å
i=1

N

å

g i,p
(n)(s)+g i,e

(n)(s)
s=1

M

å
i=1

N

å
]

1

2

 

(29) 

with 

      y
i,p

(n)(s)=w(n-1)ni,s + (1-w(n-1))ni,c2       (30) 

z
i,p

(n)(k, s)=w(n-1)ni,sui,k,s + (1-w(n-1))ni,c2ui,c2      (31) 

yi,e
(n)(s)= 2+ (ni,s -2)w(n-1)        (32) 

z
i,e

(n)(k, s)= 2ui,c2 + (ni,sui,k,s -2ui,c2 )w(n-1)     (33) 

Unfortunately, there is no close-form solution for equation: 

¶E(LL)

¶w
= 0

        (34) 

therefore we use the Newton-Raphson method to numerically increase the expectation 

of the log-likelihood, and update w using the following formula: 

w(n) = w(n-1) -

¶E(LL)

¶w
¶2E(LL)

¶2w

       (35) 
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2. Test of Statistical significance for tumor aberrations  

Somatic aberrations in cancer genome can be classified as two subtypes: 

passenger and driver aberration, and the latter is associated with tumorigenesis due to 

its functional importance. A statistical approach has been introduced in GISTIC [19, 

20] to discover driver aberrations that are statistically significant in multiple tumor 

samples across whole genome. However, one shortcoming of this approach is that it 

directly uses raw affymetrix SNP-array data and therefore is prone to critical issues 

that can largely affect the raw genotyping signals, such as normal cell contamination, 

signal baseline shift and signal noise by GC content. To solve this problem, we 

propose to use the genome-wide somatic aberration profiles generated by GIANT for 

pinpointing driver aberrations, which can efficiently avoid aforementioned issues. 

Suppose there are totally M tumor samples and each consists of N probes along 

the genome. For amplified aberrations, we used statistic Gi
amp

 to reflect the amplitude 

and frequency of an amplified region in the aberration profiles of these tumor samples, 

which is defined as follow:  





M

j

N

ij

N

ij

T

ij

amp

i xICCG
1

)()0,max(       (36) 

where Cij
T
 and Ci

(N
 are the copy numbers for the i

th
 probe in tumor sample j and its 

matched normal sample, respectively. To make sure the aberration is indeed somatic, 

we require that the statistic only accounts for aberration regions where there is no 

germline mutation in the corresponding genomic region of the normal sample. It is 

implemented by indicator function I(xij
N
), which returns 0 if the inferred state xij

N
  

for probe i of normal sample j is the normal state and 1 otherwise. Similarly, for 

deleted regions the statistic Gi
del

 is calculated as below: 





M

j

N

ij

T

ij

N

ij

del

i xICCG
1

)()0,max(      (37) 

On the other hand, the statistic for LOH regions Gi
LOH

 is defined as below 





M

j

N

ij

T

ij

LOH

i xILG
1

)(         (38) 
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where Lij
T
 is the inferred LOH state in tumor sample.  

To get the empirical distribution of statistic Gi under the null hypothesis that the 

pinpointed region is not driver but passenger mutation, we adopted the procedure 

introduced in [19] by which the exact estimation of the null distribution can be 

efficiently obtained by assuming the sum of the statistic across all samples equals the 

convolution of the statistic in each tumor sample. Specifically, let hi be the histogram 

of the statistics in the i
th

 sample obtained by above equations. The exact distribution H 

of statistic Gi can be obtained by calculating their convolutions:  

        (39) 

Based on the null distribution, we can estimate the statistical significance of each 

aberration by measuring the associated p-value using statistic Gi. In addition, to 

diminish the rate of the type I errors in multiple hypothesis testing, we made further 

corrections by adopting the q-values from FDR. The q-value threshold of 0.25 used in 

GISTIC was adopted in this study. If an aberration has an associated q-value less than 

this threshold, it will be determined as significant driver mutation. 
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