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Compact-NMF

We reduce the dimension of the matrix X by compacting the information of some of its columns (that
is, SNP probes in the case of dealing with CN data) even before applying NMF. The idea is that we are
given computational resources that are able to solve an NMF instance up to matrices Y of dimension
n X p, but we still want to approximate the (eventually much larger) n X m matrix X. The problem we
want to solve is to find Y such that solving the NMF problem:
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where Y = Wy - Hy, will lead to a minimum value of
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where D : N,,, — N,, is a partition of the m columns of X into p bins (recall that N, was defined as the
positive integers not greater than x).

Eq. (1) represents the NMF instance we can actually solve in a computer, while Eq. (2) is the original
problem we wanted to solve (the underlying assumption is that columns from the same bin are very
similar, thus estimated equally). The Compact-NMF directly approximates the original matrix X, still
by solving the smaller NMF over Y.

Let |D(j)| = >, Z(D(k) = j) be the number of elements in the bin j € N, and apply the variable
change defined by H,(i,j) = |[D(j)|Hy(i,7) and W, = Wy. Simple manipulations of Eq. (2) (by
grouping terms of the same bin) achieve
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where
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which in words means to sum the columns that are put together in the same bin j'. Now note that the
argument Z = W - H, which minimizes Eq. (3) is the same as the one which minimizes
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because the ratio within the logarithm in Eq. (3) splits in two terms, with the second being a constant
with respect to Z. Hence, we can use Y = Xp with the aim of (optimally) minimizing the divergence
function of the NMF for X, as defined in Eq. (2). If desired, it is possible to trace back the value of Y
using the relation between Y and Z, but for clustering purposes this is not necessary, as W, = Wy is
already the result we want.



Supplementary Tables

Table S1. Measures of rank quality for each of the four data sets.

Rank
Measure 2 3 4 5 6 7 8
Data set 1

Cophenetic 0.98 0.98 0.96 0.95 0.93 0.93 0.94
Within-cluster scatter 67.5 35.9 59.5 82.6 99.8 107.2  112.8
Davies-Bouldin 1.61 1.84 1.96 3.63 1.99 2.24 2.15
Silhouette 0.58 0.84 0.70 0.58 0.50 0.46 0.44
Gamma statistic 0.74 0.99 0.96 0.94 0.84 0.88 0.79
Hubert & Levin test 0.35 0.16 0.16 0.23 0.25 0.30 0.36
AUC Elbow 0.004 0.12 0.23 0.21 0.21 0.23 0.24
Intra-cluster similarity 0.74 0.84 0.72 0.63 0.58 0.56 0.57
Maximum Intra-cluster sim. 0.76 0.90 0.86 0.82 0.75 0.71 0.70

Data set 2

Cophenetic 0.96 0.87 0.90 0.90 0.92 0.92 0.92
Within-cluster scatter 17.6 355 37.6 36.5 37.8 38.7 40.3
Davies-Bouldin 1.82 3.06 1.63 2.35 1.92 2.29 2.51
Silhouette 0.80 0.50 0.53 0.56 0.54 0.52 0.49
Gamma statistic 0.99 0.92 0.93 0.94 0.96 0.97 0.94
Hubert & Levin test 0.34 0.35 0.40 0.38 0.40 0.38 0.35
AUC Elbow 0.01 0.05 0.07 0.11 0.18 0.24  0.27

Intra-cluster similarity 0.82 064 0.64 0.67 0.60 0.58 0.59
Maximum Intra-cluster sim. 0.85  0.72 0.75 0.80 0.77 0.81 0.84

Data set 3
Cophenetic 0.99 0.95 0.95 0.93 0.92 0.93 0.93
Within-cluster scatter 0.94 172 20.7 31.4 36.4 35.5 36.3
Davies-Bouldin 1.52 2.09 1.80 2.19 1.87 2.03 1.87
Silhouette 0.98 0.75 0.75 0.55 0.50 0.53 0.55
Gamma statistic 1.00 0.98 0.99 0.96 0.96 0.96 0.96
Hubert & Levin test 0.02 0.25 0.29 0.33 0.42 0.42 0.34
AUC Elbow 0.45 0.36 0.34 0.37 0.39 0.41 0.44

Intra-cluster similarity 0.98 0.82 0.79 0.67 0.60 0.63 0.62
Maximum Intra-cluster sim. 0.99 0.89 0.87 0.82 0.86 0.85 0.80

Data set 4
Cophenetic 0.90 0.99 0.96 0.96 0.94 0.94 0.93
Within-cluster scatter 117.2 13.5 105.2 128.8 175.3 182.3 207.0
Davies-Bouldin 1.71  1.99 1.98 1.84 1.93 1.82 2.26
Silhouette 0.66 0.97 0.74 0.69 0.57 0.57 0.48
Gamma statistic 091 1.00 0.99 0.99 0.96 0.96 0.93
Hubert & Levin test 0.35 0.04 0.23 0.22 0.26 0.28 0.28
AUC Elbow 0.13 0.48 0.47 0.46 0.46 047  0.49
Intra-cluster similarity 0.78 0.97 0.79 0.73 0.63 0.64 0.60

Maximum Intra-cluster sim. 0.81 0.98 0.91 0.92 0.88 0.88 0.88

Results from distinct measures do not completely agree, but overall they suggest rank 3 as the best
option for Data sets 1 and 4, and rank 2 as the best option for Data sets 2 and 3.



