Appendix S2

Derivation of Δr

According to Eq. (11) in the main body of the paper, the herding degree of bull markets $(r(t)>0)$ and bear markets $(r(t)<0)$ are defined as

$$
\left\{\begin{array}{c}
d_{\text {bull }}(r(t))=\sum_{t, r(t)>0}[V(t) \cdot r(t)] / \sum_{t, r(t)>0} V(t) \\
d_{\text {bear }}(r(t))=\sum_{t, r(t)<0}[V(t) \cdot|r(t)|] / \sum_{t, r(t)<0} V(t)
\end{array} .\right.
$$

We introduce a shifting of $r(t)$, denoted by Δr, such that $d_{\text {bull }}\left(r^{\prime}(t)\right)=d_{\text {bear }}\left(r^{\prime}(t)\right)$ with $r^{\prime}(t)=r(t)+\Delta r$. With $r(t)$ replaced by $r^{\prime}(t)$ in the above equation, we have

$$
\left\{\begin{array}{c}
d_{\text {bull }}\left(r^{\prime}(t)\right)=\sum_{t, r^{\prime}(t)>0}\{V(t) \cdot[r(t)+\Delta r]\} / \sum_{t, r^{\prime}(t)>0} V(t) \\
d_{\text {bear }}\left(r^{\prime}(t)\right)=\sum_{t, r^{\prime}(t)<0}[V(t) \cdot|r(t)+\Delta r|] / \sum_{t, r^{\prime}(t)<0} V(t)
\end{array} .\right.
$$

Δr is first assumed to be small, and this is verified from the practical calculation. Hence, $r^{\prime}(t)>0$ and $r^{\prime}(t)<0$ are approximately $r(t)>0$ and $r(t)<0$, respectively. Therefore,

$$
\left\{\begin{array}{l}
d_{\text {bull }}\left(r^{\prime}(t)\right)=\sum_{t, r(t)>0}\{V(t) \cdot[r(t)+\Delta r]\} / \sum_{t, r(t)>0} V(t) \\
d_{\text {bear }}\left(r^{\prime}(t)\right)=\sum_{t, r(t)<0}[V(t) \cdot|r(t)+\Delta r|] / \sum_{t, r(t)<0} V(t)
\end{array} .\right.
$$

Thus, we have

$$
d_{b u l l}\left(r^{\prime}(t)\right)=\sum_{t, r(t)>0}[V(t) \cdot r(t)] / \sum_{t, r(t)>0} V(t)+\Delta r
$$

and

$$
\begin{aligned}
d_{\text {bear }}\left(r^{\prime}(t)\right) & =-\sum_{t, r(t)<0}[V(t) \cdot r(t)] / \sum_{t, r(t)<0} V(t)-\Delta r \\
& =\sum_{t, r(t)<0}[V(t) \cdot|r(t)|] / \sum_{t, r(t)<0} V(t)-\Delta r .
\end{aligned}
$$

Inserting the above two equations into $d_{\text {bull }}\left(r^{\prime}(t)\right)=d_{\text {bear }}\left(r^{\prime}(t)\right)$, we have

$$
\sum_{t, r(t)>0}[V(t) \cdot r(t)] / \sum_{t, r(t)>0} V(t)-\sum_{t, r(t)<0}[V(t) \cdot|r(t)|] / \sum_{t, r(t)<0} V(t)+2 \Delta r=0 .
$$

Therefore,

$$
\begin{aligned}
\Delta r & =\frac{1}{2}\left\{\frac{\sum_{t, r(t)<0}[V(t) \cdot|r(t)|]}{\sum_{t, r(t)<0} V(t)}-\frac{\sum_{t, r(t)>0}[V(t) \cdot r(t)]}{\sum_{t, r(t)>0} V(t)}\right\} \\
& =\frac{1}{2}\left[d_{\text {bear }}(r(t))-d_{\text {bull }}(r(t))\right] .
\end{aligned}
$$

