Study	Tumor (n)	m _{over}	m _{under}	S	Frequency
Freije	50	11.99	8.15	1.54	55%
Gravendeel	159	9.98	5.37	1.39	64%
Lee HG-U133A	191	8.41	5.11	0.98	37%
Murat	70	9.45	6.11	1.09	53%
Petalidis*	35	7.39	4.68	S1 = 1.06; S2 = 0.75	74%
Phillips	56	9.81	4.98	1.84	73%
Sun	59	10.55	7.08	1.4	54%
TCGA HG-U133A	339	9.05	4.75	1.3	65%

Table S1: Frequency of IL13Rα2 over-expression for GBM based on NLS Model.

 m_{over} = mean expression of IL13Ra2 in the population of patients showing over-expression of IL13Ra2

 m_{under} = mean expression of IL13Ra2 in the population of patients showing under-expression of IL13Ra2

S = standard deviation for each population of patients, assumed to be the same for both overand under-expressing populations (*except for Petalidis where S1 and S2 are for over- and under-expressing patients, respectively).

	Euclidian Distance	Pearson Dissimilarity Distance
Verhaak TCGA		
Proneural	51.3	0.91
Neural	49.1	0.71
Classical	45.2	0.37
Mesenchymal	41.5	0.28
Phillips		
Proneural	68.9	0.74
Proliferative	44.2	0.31
Mesenchymal	43.2	0.26

Table S2: Average Distances between IL13Rα2 and Signature Genes

Distances are calculated for averaged signature gene expression as defined by Verhaak et al. [1] and Phillips et al. [2] in a dataset combining those of Gravendeel et al. [3] and Sun [4].

	Total Genes per subtype*	Positive Correlation§	Negative Correlation§	Mixed Correlation§	No Correlation§
Verhaak TCGA	4				
Proneural	178	5 (2.8%)	132 (74.2%)	33 (18.5%)	8 (4.5%)
Neural	128	28 (21.9%)	45 (35.2%)	55 (42.97%)	0 (0%)
Classical	162	51 (31.5%)	53 (32.7%)	51 (31.5%)	7 (4.3%)
Mesenchymal	215	171 (79.5%)	3 (1.4%)	40 (18.6%)	1 (0.5%)
Phillips					
Proneural	14	0 (0%)	13 (92.9%)	0 (0%)	1 (7.1%)
Proliferative	5	4 (80%)	0 (0%)	1 (20%)	0 (0%)
Mesenchymal	15	12 (80%)	0 (0%)	3 (20%)	0 (0%)

Table S3: Numbers of Glioma Subtype Signature Genes that Correlate with IL13Rα2 Expression.

*Number of genes per subtype evaluated for correlation with IL13Rα2 expression. Total number of genes assessed was 685 encompassing 8 studies [2-9].

§The number of genes and percentage of total (shown in parenthesis) whose expression show "positive correlation" and "negative correlation" with glioma IL13R α 2 expression (p < 0.05) in all eight datasets. One positive or negative correlation was sufficient to define a gene as showing positive or negative association with IL13R α 2. "Mixed correlations" were defined as genes with inconsistent probe correlations between the 8 studies, that being one probe/study showed a significant positive correlation (FDR < 0.05) and another probe/study showed a negative correlation (FDR < 0.05). "No correlations" were defined as genes that showed no significant probe correlations, either positive or negative, for all 8 studies.

Table S4: Numbers of Canonical Pathways Associated with Mesenchymal, Classical and Proneural Signature Genes in Common with IL13R α 2 Over-expression¹.

	MES ²	IL13Rα2 ^{pos} Cell Lines ³	IL13Rα2 ^{pos} Patient Samples ⁴	PN⁵	CL ⁶
MES ²	х	MES: 56; Overlap: 15 ; Cell Lines: 8; p = 3.75 x 10⁻⁸	MES: 54; Overlap: 17 ; Patient: 28; p = 0.00028	MES: 71; Overlap: 0; PN: 7; <i>p</i> = 0.76	MES: 68; Overlap: 3; CL: 11; <i>p</i> = 0.256
IL13Ra2 ^{pos} Cell Lines ³		х	Cell Lines: 9; Overlap: 14 ; Patients: 30; p = 1.3 x 10 ¹¹	Cell Lines: 23; Overlap: 0 ; PN: 7; <i>p</i> = 0.35	Cell Lines: 22; Overlap: 1; CL: 13; <i>p</i> = 0.203
IL13Rα2 ^{pos} Patient Samples ⁴			Х	Patients: 45; Overlap: 0 ; PN: 7; <i>p</i> = 0.59	Patients: 44; Overlap: 1 ; CL: 13; <i>p</i> = 0.507
PN⁵				Х	PN: 5; Overlap: 2; CL: 12; p = 0.00126
CL ⁶					Х

For IPA analysis 382 canonical pathways were evaluated. Note that no significant IPA pathways (FDR < 0.05) are enriched for the neural signature gene list of Verhaak et al. [1].

² MES: IPA canonical pathways (total of 71 with FDR < 0.05) associated with expression of mesenchymal signature genes (n = 216).

³ IL13R α 2^{pos} Cell Lines: IPA pathways (total of 23) associated with genes up-regulated in IL13R α 2-positive cell lines (fold-change| > 1.5 and FDR < 0.05)

⁴ IL13Rα2^{pos} Patient Samples: IPA pathways (total of 45) associated with genes up-regulated in patient samples in at least four of eight cohorts (FDR < 0.05)

⁵ PN : IPA canonical pathways (total of 7 with FDR < 0.05) associated with expression of proneural signature genes (n = 178)

 6 CL: IPA canonical pathways (total of 14 with FDR < 0.05) associated with expression of classical signature genes (n = 162)

Table S5: Canonical Pathways Associated with Genes Positively Correlated with IL13Ra2 in Patient Cohorts (FDR < 0.05). Immune-related pathways are shown in **bold** red, and pathways common to IL13Ra2 expression in patient cohorts and IL13Ra2-positive cell lines are highlighted.

	Ingenuity Canonical Pathways	FDR
1	Antigen Presentation Pathway	3.98E-05
2	Cell Cycle Control of Chromosomal Replication	3.98E-05
3	Cytotoxic T Lymphocyte-mediated Apoptosis of Target Cells	0.00012
4	Protein Ubiquitination Pathway	0.000646
5	Cdc42 Signaling	0.00123
6	Hepatic Fibrosis / Hepatic Stellate Cell Activation	0.00123
7	TREM1 Signaling	0.002138
8	Atherosclerosis Signaling	0.002455
9	Pyrimidine Metabolism	0.002512
10	Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses	0.003467
11	Type I Diabetes Mellitus Signaling	0.003631
12	Role of CHK Proteins in Cell Cycle Checkpoint Control	0.003802
13	HMGB1 Signaling	0.008511
14	Cell Cycle: G2/M DNA Damage Checkpoint Regulation	0.010715
15	Crosstalk between Dendritic Cells and Natural Killer Cells	0.010965
16	Actin Nucleation by ARP-WASP Complex	0.010965
17	Graft-versus-Host Disease Signaling	0.010965
18	Inhibition of Angiogenesis by TSP1	0.012023
19	Hereditary Breast Cancer Signaling	0.012303
20	Mitotic Roles of Polo-Like Kinase	0.012303
21	Death Receptor Signaling	0.012303
22	Acute Phase Response Signaling	0.012303
23	Caveolar-mediated Endocytosis Signaling	0.012303
24	N-Glycan Biosynthesis	0.012303
25	LXR/RXR Activation	0.014125
26	Integrin Signaling	0.014125
27	Tumoricidal Function of Hepatic Natural Killer Cells	0.014125
28	OX40 Signaling Pathway	0.014454
29	Allograft Rejection Signaling	0.015136
30	Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis	0.018621
31	Dendritic Cell Maturation	0.020417
32	Complement System	0.022909
33	Mismatch Repair in Eukaryotes	0.025119
34	TWEAK Signaling	0.026915
35	Oxidative Phosphorylation	0.027542
36	Agrin Interactions at Neuromuscular Junction	0.030903

37	TNFR1 Signaling	0.032359
38	Communication between Innate and Adaptive Immune Cells	0.032359
39	NRF2-mediated Oxidative Stress Response	0.038019
40	Autoimmune Thyroid Disease Signaling	0.039811
41	Toll-like Receptor Signaling	0.040738
42	Role of IL-17A in Psoriasis	0.040738
43	Role of BRCA1 in DNA Damage Response	0.040738
44	Germ Cell-Sertoli Cell Junction Signaling	0.041687
45	Mitochondrial Dysfunction	0.041687

Table S6: Canonical Pathways Associated with Genes Up-regulated in IL13R α 2-positive Cell Lines (FDR < 0.05). Immune-related pathways are shown in **bold red**, and pathways common to IL13R α 2 expression in patient cohorts and IL13R α 2-positive cell lines are highlighted.

	Ingenuity Canonical Pathways	FDR
1	NRF2-mediated Oxidative Stress Response	0.000214
2	Hepatic Fibrosis / Hepatic Stellate Cell Activation	0.000214
3	Caveolar-mediated Endocytosis Signaling	0.000617
4	Antigen Presentation Pathway	0.001096
5	p38 MAPK Signaling	0.001148
6	Communication between Innate and Adaptive Immune Cells	0.003631
7	Death Receptor Signaling	0.003631
8	TREM1 Signaling	0.003631
9	Oncostatin M Signaling	0.003631
10	Integrin Signaling	0.006761
11	Cdc42 Signaling	0.007079
12	Type I Diabetes Mellitus Signaling	0.00912
13	NF-κB Signaling	0.01
14	Graft-versus-Host Disease Signaling	0.016218
15	IL-6 Signaling	0.017378
16	Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis	0.020893
17	Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis	0.033884
18	Cholecystokinin/Gastrin-mediated Signaling	0.043652
19	Agrin Interactions at Neuromuscular Junction	0.044668
20	Altered T Cell and B Cell Signaling in Rheumatoid Arthritis	0.048978
21	Virus Entry via Endocytic Pathways	0.048978
22	Actin Nucleation by ARP-WASP Complex	0.048978
23	Dendritic Cell Maturation	0.048978

Table S7: Canonical Pathways Associated with Mesenchymal Signature Genes and their Relation to those Associated with Immune Activation and IL13Ra2 Expression (FDR < 0.05). Immune-related pathways are shown in **bold red**, pathways common to IL13Ra2 expression in both patient cohorts and IL13Ra2-positive cell lines are highlighted, and additional pathways common to only IL13Ra2-positive cell lines are italicized.

	Ingenuity Canonical Pathways	FDR
1	Hepatic Fibrosis / Hepatic Stellate Cell Activation	0.000005
2	TREM1 Signaling	0.000072
3	Dendritic Cell Maturation	0.000079
4	IL-6 Signaling	0.000132
5	HMGB1 Signaling	0.000132
6	IL-10 Signaling	0.000132
7	Coagulation System	0.000155
8	NF-ĸB Signaling	0.000269
9	Acute Phase Response Signaling	0.000331
10	Leukocyte Extravasation Signaling	0.000851
11	N-Glycan Degradation	0.000851
12	Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	0.000851
13	NF-κB Activation by Viruses	0.000955
14	LXR/RXR Activation	0.001230
15	IL-15 Signaling	0.002455
16	Integrin Signaling	0.002570
17	Agrin Interactions at Neuromuscular Junction	0.003311
18	IL-4 Signaling	0.004266
19	Toll-like Receptor Signaling	0.004786
20	PTEN Signaling	0.005495
21	VDR/RXR Activation	0.005623
22	Natural Killer Cell Signaling	0.006607
23	B Cell Receptor Signaling	0.006607
24	Glioma Invasiveness Signaling	0.008318
25	Oncostatin M Signaling	0.008511
26	LPS/IL-1 Mediated Inhibition of RXR Function	0.010471
27	Inhibition of Angiogenesis by TSP1	0.010715
28	JAK/Stat Signaling	0.012023
29	Ephrin Receptor Signaling	0.013804
30	Actin Cytoskeleton Signaling	0.013804
31	Atherosclerosis Signaling	0.014454
32	T Helper Cell Differentiation	0.014454
33	p38 MAPK Signaling	0.015849
34	IL-3 Signaling	0.015849
35	Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis	0.015849

36	Rac Signaling	0.015849
37	Systemic Lupus Erythematosus Signaling	0.015849
38	IL-17 Signaling	0.015849
39	FLT3 Signaling in Hematopoietic Progenitor Cells	0.015849
40	Endothelin-1 Signaling	0.015849
41	Type I Diabetes Mellitus Signaling	0.015849
42	Caveolar-mediated Endocytosis Signaling	0.015849
43	TGF-β Signaling	0.015849
44	TNFR1 Signaling	0.015849
45	MSP-RON Signaling Pathway	0.015849
46	Regulation of eIF4 and p70S6K Signaling	0.015849
47	Sphingosine-1-phosphate Signaling	0.016596
48	Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses	0.017378
49	IL-12 Signaling and Production in Macrophages	0.019055
50	CD28 Signaling in T Helper Cells	0.023988
51	Death Receptor Signaling	0.030200
52	Induction of Apoptosis by HIV1	0.031623
53	Intrinsic Prothrombin Activation Pathway	0.031623
54	CTLA4 Signaling in Cytotoxic T Lymphocytes	0.031623
55	PPAR Signaling	0.031623
56	Neuregulin Signaling	0.031623
57	Virus Entry via Endocytic Pathways	0.031623
58	Myc Mediated Apoptosis Signaling	0.033113
59	Axonal Guidance Signaling	0.033113
60	Type II Diabetes Mellitus Signaling	0.033113
61	Role of NFAT in Regulation of the Immune Response	0.033113
62	PI3K Signaling in B Lymphocytes	0.033113
63	MIF-mediated Glucocorticoid Regulation	0.035481
64	T Cell Receptor Signaling	0.038019
65	Hepatic Cholestasis	0.039811
66	Phospholipase C Signaling	0.039811
67	Macropinocytosis Signaling	0.039811
68	Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis	0.041687
69	Colorectal Cancer Metastasis Signaling	0.044668
70	Erythropoietin Signaling	0.047863
71	LPS-stimulated MAPK Signaling	0.047863

Table S8: Canonical Pathways associated with Classical Signature Genes in Relation to those associated with Immune Activation and IL13Ra2 Expression (FDR < 0.05). The immune-related pathway is shown in **bold red**, and the pathway common to IL13Ra2 expression in patient cohorts and IL13Ra2-positive cell lines is highlighted.

	Ingenuity Canonical Pathways	FDR
1	Wnt/β-catenin Signaling	0.001122
2	Human Embryonic Stem Cell Pluripotency	0.003715
3	Corticotropin Releasing Hormone Signaling	0.005495
4	Colorectal Cancer Metastasis Signaling	0.005495
5	CREB Signaling in Neurons	0.010715
6	Glioma Signaling	0.010715
7	nNOS Signaling in Skeletal Muscle Cells	0.010715
8	Axonal Guidance Signaling	0.011220
9	Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis	0.013490
10	Glioblastoma Multiforme Signaling	0.015136
11	Molecular Mechanisms of Cancer	0.032359
12	Factors Promoting Cardiogenesis in Vertebrates	0.032359
13	Ovarian Cancer Signaling	0.033113
14	Glutamate Receptor Signaling	0.037154

Table S9: Canonical Associated with Proneural Signature Genes and their Relation to those Associated with Immune Activation and IL13R α 2 Expression (FDR < 0.05). No immune-related pathways or pathways common to IL13R α 2 expression in patient cohorts and IL13R α 2-positive cell lines were reported.

	Ingenuity Canonical Pathways	FDR
1	Reelin Signaling in Neurons	0.008710
2	Cyclins and Cell Cycle Regulation	0.008710
3	Cell Cycle: G1/S Checkpoint Regulation	0.010471
4	Wnt/β-catenin Signaling	0.035481
5	Amyloid Processing	0.035481
6	Molecular Mechanisms of Cancer	0.035481
7	Semaphorin Signaling in Neurons	0.035481

Figure S1. Expression of IL13R α 2 does not change with tumor recurrence.

Shown are box plots (median bar, 25^{th} and 75^{th} percentile box and error bars representing 10^{th} and 90^{th} percentiles) of IL13Ra2 expression in primary (left) and recurrent (right) tumors. Differences in expression levels were not statistically significant (p > 0.05; t-test).

Figure S2. Validation of Silhouette plot analysis correlating expression of an individual gene with glioma subtypes. (A) Silhouette plots of Pearson correlation coefficients (r) for all significant correlations (FDR < 0.05) between individual signature genes (DLL3, EGFR and CHI3L1) representative of the proneural (PN), classical (CL), and mesenchymal (MES) subtypes, respectively. Correlations are sorted based upon GBM subtype and then ordered by increasing correlation coefficient values. (B) Silhouette plots as depicted in (A), except non-significant correlations are also plotted (spaces). (C, D) Silhouette plots of Pearson correlation coefficients (r) for all significant (FDR < 0.05) and non-significant correlations between IL13R α 2 and probes for genes defining glioma subtypes as defined by (C) Verhaak et al., and (D) Phillips et al.

Figure S3. Correlation of IL13R α 2 versus average mesenchymal signature gene expression for individual study cohorts. Shown are scatter plots of IL13R α 2 expression in individual tumors (vertical axis) plotted against average mesenchymal signature gene expression defined using the 173 mesenchymal gene probes of Verhaak for each of the 8 glioma cohorts. The orange line indicates the results of fitting a linear regression model to these data; p < 0.05 for all cohorts.

Figure S4. Dot plots showing distributions of RMA-normalized IL13R α 2 expression levels across molecularly-defined subtypes.

IL13R α 2 expression levels were evaluated with respect to molecularly-defined subtypes for (**A**) Verhaak et al. [1, 9], and (**B**) Phillips et al. [2]. The Verhaak dataset was obtained from TCGA (HT HG-U133A arrays) with subtype annotations for the 176 sample training set. The Phillips dataset was obtained from GEO (GSE4271) and subtype annotations from Phillips et al. [2]. Dot-plots of RMA-normalized IL13R α 2 expression levels (Partek[®] Genomics SuiteTM) showed a 1.68-fold increase (p=0.00015) in expression between mesenchymal and proneural tumors for Verhaak subtypes, and a 2.44-fold increase (p=0.028) in mesenchymal versus proneural expression for the Philips subtypes. Fold-change values were calculated based on the least-squares mean and p-values calculated based on 1-way ANOVA with appropriate linear contrast (Partek[®] Genomics SuiteTM).

While IL13R α 2 expression is significantly enriched in mesenchymal subclass tumors as defined by both studies, its expression is not limited to mesenchymal tumors. IL13R α 2 is also highly expressed in the proliferative subclass of Phillips et al., consistent with results of several approaches including the Silhouette analysis (Figure 2D), and the correlation plots (Figure 2F), suggesting that proliferative tumors are the next closest subtype associating with IL13R α 2. The high expression of IL13R α 2 in the neural subclass of Verhaak et al. likely reflects a bias in this small training dataset, because it is not found for the average neural expression in the larger dataset (Figure 2E), and no consistent association was suggested by our silhouette or PCA analyses (Figure 2A and 2C).

Figure S5. Density of correlation coefficients for average mesenchymal signature gene expression per study.

Shown are correlation coefficients for IL13R α 2 (red) versus average mesenchymal signature gene expression (black histogram) for eight study cohorts [2-9] (Table 1). The plots illustrate that the correlation of IL13R α 2 expression compared to known mesenchymal signature genes is close to but typically1-2 standard deviations below the average mesenchymal signature gene. IL13R α 2 correlation for each study is shown in red, and for comparison mean and standard deviations for the mesenchymal signature gene correlations are shown above each plot.

Figure S6. Comparison of a DLL3, EGFR, and CHI3L1 gene expression with respect to glioma subclass and malignancy grade.

(A) Dot plots for RMA-normalized expression of DLL3, EGFR and CHI3L1 representative of the proneural (PN), classical (CL), and mesenchymal (MES) molecular subtypes, respectively. Dot plots were produced using Partek Genomics Suite using expression data from Verhaak et al. [1]. DLL3 expression is represented by probe 219537_x_at (1/1 DLL3 probes), EGFR expression is represented by probe 201984_s_at (1/6 EGFR probes), and CHI3L1 expression is represented by probe 216546_s_at (1/3 CHI3L1 probes). Mesenchymal versus proneural fold-change values: DLL = -5.9-fold change (p = 8.8 x 10⁻¹⁶), EGFR = 6.6-fold change (p = 7.6 x 10⁻¹⁴), CHI3L1 = 3.2-fold change (p = 2.3 x 10⁻¹²). (B) RMA-normalized signature gene expression across WHO Grades using a dataset combining those of Sun et al. [4] and Gravendeel et al. [3]. Grade IV versus grade I/II/III fold-change values: DLL = -2.0-fold change (p = 2.3 x 10⁻⁵), EGFR = 2.1-fold change (p = 2.4 x 10⁻⁵), CHI3L1 = 1.6-fold change (p = 6.5 x 10⁻⁸). Grade III/IV versus grade I/II fold-change values: DLL = -1.2-fold change (p = 0.40), EGFR = 2.4-fold change (p = 1.2 x 10⁻⁴), CHI3L1 = 1.4-fold change (p = 0.0061).

Figure S7. Pathways identified by IPA for mesenchymal signature genes are also highly enriched for genes correlated with IL13R α 2 over-expression.

Pathways with the largest IPA enrichments (shown as $-\log(FDR)$ values on the vertical axis) for mesenchymal signature genes, compared to IPA enrichment of these same pathways for genes positive correlated with IL13Ra2 expression in patient cohorts, and genes up-regulated in IL13Ra2-positive cell lines. The horizontal black line marks the threshold for pathways enriched with an FDR < 0.05. Hepatic Fibrosis / Hepatic Stellate Cell Activation and TREM1 Signaling pathways are significantly enriched in IPA analyses of mesenchymal signature genes, upregulated patient sample genes, and genes up-regulated in IL13Ra2-positive cell lines (Table 2 and 3). In addition, IL-6, HMGB1 and NF- κ B signaling pathways are significantly enriched in two of these three groups.

Figure S8: Glioma survival analyses.

(A) Kaplan-Meier survival plot comparing high-grade (WHO III and IV) patient tumors with 'high' and 'low' IL13R α 2 expression among 8 patient cohorts evaluated in Figure 4 [2-9]. IL13R α 2 expression levels are associated with a 5.8 month difference in median survival time (p = 5.0×10^{-10} ; log-rank test) with a 13.8 month median survival time for 'high' IL13R α 2 expression (CI 95%: 12.4-14.8 months, n = 557) as compared to 19.6 months for 'low' IL13R α 2 expression (CI 95%: 16.9 – 22.2 months, n = 443).

(**B**) Kaplan-Meier survival plot for patients identified as having mesenchymal (MES), classical (CL), neural (NL), or proneural (PN) tumors as defined by Verhaak et al. [1] TCGA training dataset. No significant difference in the Kaplan-Meier curves (p > 0.05) is seen when all 4 subtypes are examined, but p approaches 0.05 when only mesenchymal and proneural subtypes are compared.

References for Supplemental Tables and Figures:

- 1. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer cell 2010;17:98-110.
- 2. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer cell 2006;9:157 73.
- 3. Gravendeel LAM, Kouwenhoven MCM, Gevaert O, de Rooi JJ, Stubbs AP, Duijm JE, et al. Intrinsic Gene Expression Profiles of Gliomas Are a Better Predictor of Survival than Histology. Cancer Research 2009;69:9065-72.
- 4. Sun L, Hui A-M, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, et al. Neuronal and gliomaderived stem cell factor induces angiogenesis within the brain. Cancer cell 2006;9:287-300.
- 5. Lee Y, Scheck A, Cloughesy T, Lai A, Dong J, Farooqi H, et al. Gene expression analysis of glioblastomas identifies the major molecular basis for the prognostic benefit of younger age. BMC Medical Genomics 2008;1:52.
- 6. Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM, et al. Gene expression profiling of gliomas strongly predicts survival. Cancer Res 2004;64:6503 10.
- 7. Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou M-F, et al. Stem Cell-Related "Self-Renewal" Signature and High Epidermal Growth Factor Receptor Expression Associated With Resistance to Concomitant Chemoradiotherapy in Glioblastoma. Journal of Clinical Oncology 2008;26:3015-24.
- 8. Petalidis LP, Oulas A, Backlund M, Wayland MT, Liu L, Plant K, et al. Improved grading and survival prediction of human astrocytic brain tumors by artificial neural network analysis of gene expression microarray data. Molecular Cancer Therapeutics 2008;7:1013-24.
- 9. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455:1061-8.