Appendix S1: estimation of the dominance

based on "mortality phenotypes"

A second estimation of dominance was based on the proportion of "mortality phenotypes" (mortality date) that were considered incompatible with the mortality pattern of susceptible individuals. Mortality in the S × S progenies reared on *Bt* was modeled as a function of time using a Weibull distribution characterized by both a shape parameter (k > 0) and a scale parameter ($\lambda > 0$). Maximum log-likelihood estimations of those parameters set the reference model (henceforth Φ_{ss}) which describes the mortality dynamics of susceptible individuals on *Bt* corn. Then, on the basis of this model, we computed the probability of individual mortality (in the R × R and R × S progenies) to be incompatible with the mortality phenotype of susceptible individuals (Φ_{ss}). The density probability associated to the proportion of "nonsusceptible" individuals (p – henceforth $p_{R\times S}$ and $p_{R\times R}$ relative to the crosses R × S and R × R, respectively) was calculated on the basis of a binomial distribution. The dominance (h_{ϕ}) was assessed using the following formula: $h_{\phi} = (p_{S\times S} - p_{R\times S}) / (p_{S\times S} - p_{R\times R})$, and its associated posterior probability distribution was computed accordingly.

Reference model

The mortality M(t) in the S × S progenies reared on Bt was modeled as a function of time using to a Weibull distribution:

$$M(t|k,\lambda) = 1 - e^{-\left(\frac{t}{\lambda}\right)^k}.$$

where k > 0 is a shape parameter and $\lambda > 0$ is a scale parameter of the distribution.

Under this model, we considered the probability for an individual *i*, originating from a $S \times S$ cross *c*, to die between two observation times T_{ci} and T_{ci} +1. The corresponding likelihood function used to fit the Weibull model was:

$$\ell(k,\lambda) = \prod_{c=1}^{C} \prod_{i=1}^{I} \left[M(T_{ci}+1|k,\lambda) - M(T_{ci}|k,\lambda) \right]$$

The maximum likelihood estimations of the parameters k and λ defined the reference model (henceforth, Φ_{ss}) describing the mortality dynamics of susceptible individuals (i.e., originating from S × S) on *Bt* corn.

Proportion of "non-susceptible" phenotypes in the $R \times R$ *and* $R \times S$ *progeny*

Then, on the basis of this model, we discriminated individuals of the R × R and R × S progenies whose observed mortality date was not compatible with the phenotype of susceptible individuals (Φ ss). We classified as "non-susceptible" any individual mortality events that had, conditionally to Φ ss, a probability to be observed lower than 0.001. The following criterion was considered:

$$1 - P(O_{ci} | \Phi_{SS}) > 0.999$$

where O_{ci} is the time interval within which the death an individual $R \times R$ or $R \times S$ is observed. Individuals surviving up to adult stage were *de facto* considered to meet this criterion.

The density probability of the proportion of individuals meeting this criterion in each cross (p – henceforth $p_{R\times S}$ and $p_{R\times R}$ relative to the crosses R × S and R × R, respectively) was calculated on the basis of a binomial distribution:

$$\Psi_{c}(p|n_{c},N_{c}) = C_{N_{c}}^{n_{c}} p^{n_{c}} (1-p)^{n_{c}}$$

where n_c denotes the observed number of individuals which were discriminated as noncompatible with the Φ_{ss} model out of the N_c individuals reared on *Bt*.

The dominance corresponding to those distributions was assessed using the same formula as before: $h_{\phi} = (p_{S \times S} - p_{R \times S}) / (p_{S \times S} - p_{R \times R})$, and the associated posterior probability distribution was computed accordingly.

Results

The maximum log-likelihood fit (-14.02) of the reference Weibull model (Φ_{ss}) was obtained with the parameter values k = 2.511 and $\lambda = 0.595$ (Figure S1). The maximum log-likelihood estimation of the proportions of individuals which did not die according to the modeled pattern of susceptible insects ($p_{R\times S}$ and $p_{R\times R}$) were comparable: $p_{R\times S} = 0.667$ and $p_{R\times R} = 0.610$. The interval defining 95% of their probability distribution, [0.539, 0.772] in R × S and [0.540, 0.676] in R × R overlapped (Figure S2). The maximum likelihood estimation of the dominance based on the mortality phenotype was close to 1, $h_{\phi} = 1.088$ with a 95%-interval of [0.854 – 1.327], while the dominance estimation based on larvae survival at the end of the experiment was higher, $h_S = 1.560$ with a 95%-interval [0.874, 2.566] (Figure S3).