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1 Derivation of a reduced model for the JK-latch with indepen-

dent heterodimer binding sites

The reactions describing the genetic JK-latch, presented in Table S1 and S2 can be classified into three

different categories: protein-protein reactions (including protein degradation), protein-DNA reactions

and gene expression (including transcription and degradation of mRNA and translation into proteins).

A full deterministic model can be derived by setting up a rate equation for the mean concentration

of each biochemical species in the reactions. A first step towards a reduced model is to assume the

occupation states of the promoters (that is the protein-DNA reactions) to be in equilibrium with the

current transcription factor concentrations at all times. Since all TF’s act as repressors, we assume that

the only promoter state contributing to mRNA production is the unoccupied one. Therefore the rate

equation for mRNA of, for instance, gene A is,

dmA(t)

dt
= νmAPA(t)− λmmA(t) , (1)

where νmA is the maximal transcription rate, λm the mRNA degradation rate and PA(t) denotes the

promoter activity function, that is, the probability of the promoter to be unoccupied and free to bind RNA

polymerase at a certain point in time. Hence, assuming all protein-DNA reactions to be in equilibrium,

PA(t) describes the equilibrium probability to find the promoter unoccupied as a function of current

transcription factor concentration. This probability can also be calculated by thermodynamic models,
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corresponding to [1,2]. Their specific form for the genetic JK-latch is defined in the boxes of Figs. 2 and

3.

As a further simplification, we assume all protein-protein reactions to rapidly reach equilibrium with

the current total concentration of reacting proteins. For instance, for the concentrations of all protein

species containing A and K this leads to the following set of equations1

Atot = A+ 2A2 + KA , (2)

kon
A2A

2 − koff
A2A2 − λpA2 = 0 , (3)

kon
KAK·A− koff

KAKA− λpKA = 0 , (4)

where we can additionally set K = Ktot−KA. After solving this system for the concentrations of homo-

and heterodimers all promoter activity functions in Figs. 2 and 3 of the main text can then be expressed

in terms of total concentrations, i.e., PA(B2,KA) = PA(Atot, Btot,Ktot, Jtot).

Altogether, we are left with two equations left to describe the total concentration of each gene product.

For instance, the equations for gene product A are

dAtot(t)

dt
= νpAmA(t)− λpAtot(t) , (5)

dmA(t)

dt
= νmAPA(t)− λmA(t) . (6)

As a last step, we set Eq. (6) to zero thereby assuming mRNA translation to be fast with respect to

transcription (we will discuss this assumption in the next section). Solving the resulting equation for mA

and substituting it in Eq. (5) leads to

dAtot(t)

dt
= νAPA(t)− λpAtot(t) , (7)

with an effective maximal expression rate νA = νmAνpA/λm. Thus, each gene product in our models can

be described by a single effective equation.

1Note that we consider protein degradation to occur at the same rate for monomers and dimers (no cooperative stability),
such that the total concentration of a gene product degrades with the same rate as monomers and dimers, see e.g. Ref. [3].
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2 Derivation of a reduced model for the genetic J-K latch with

mutually exclusive heterodimer binding sites

Making the same quasi-equilibrium assumptions for protein-protein and protein-DNA as in Section I, the

reduced model of the genetic J-K latch with mutually exclusive binding sites for the heterodimers KA

and JB reads

dAtot

dt
= αAOB(B2)OKA(KA, JB)− λAtot ,

(8)

dBtot

dt
= αBOA(A2)OJB (KA, JB)− λBtot ,

where only the operator occupancy functions of the heterodimers now also depend on the respective other

heterodimer:

OB(B2) =

(
1 +

B2

KB2

)−2

, OA(A2) =

(
1 +

A2

KA2

)−2

, (9a)

OKA(KA, JB) =

(
1 +

KA

KKA(1 + (JB/KJB ))

)−1

, (9b)

OJB (KA, JB) =

(
1 +

JB

KJB (1 + (KA/KKA))

)−1

. (9c)

However, in order to introduce a delay required for a successful toggle operation, the unbinding

kinetics of the overlapping operator sites needs to be slow (see main text), such that the quasi-equilibrium

assumption that lead to Eqs. (9a) and (9b) is not strictly valid. To describe the slow dynamics of the

overlapping operator complex we set up the master equation for the occupancy states of the overlapping

operators. There are three states to be accounted for: (i) the binding site for KA is occupied, (ii) the

binding site for JB is occupied and (iii) both binding sites are unoccupied. We denote the probabilities

of these states as qKA, qJB and q0, respectively. The probabilities equivalent to Eqs. (9b) and (9c) to find

the operator in an unoccupied state are then given by OKA = 1 − qKA and OJB = 1 − qJB . Taking kon
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to be the on rate of both operators and koff the respective off-rate, the master equations read:

q̇KA = konKA q0 − koff qKA (10a)

q̇JB = konJB q0 − koff qJB (10b)

q̇0 = koff(qKA + qJB )− kon(KA + JB) q0 . (10c)

These equations are controlled by the external variables KA and JB . For given values of these variables,

the system has a unique fixed point, which we denote by (q∗KA,q∗JB ,q∗0). In the fixed point, the right hand

side of Eq. (10) becomes zero, thus we can rewrite Eqs. (10a) and (10b) as

q̇KA = konKA(q0 − q∗0)− koff(qKA − q∗KA) (11a)

q̇JB = konJB(q0 − q∗0)− koff(qJB − q∗JB ) . (11b)

Furthermore, we want to investigate Eqs. (10) under a constant toggle signal. Therefore, it is reasonable

to assume that both heterodimers KA or JB are abundant in the system at all times. Then, the effective

on-rates konKA and konJB are much faster than the off-rate koff and thus the probability q0 to find the

overlapping operator sites unoccupied is approximately zero. Additionally, substituting qKA = 1− OKA

and qJB = 1−OJB , the approximated equations can be written as

ȮKA ≈ −koff(OKA −O∗KA) , (12a)

ȮJB ≈ −koff(OJB −O∗JB ) . (12b)

We can identify the fixed points O∗KA and O∗JB with the quasi-equilibrium operator occupancy functions

defined in Eqs. (9b) and (9c), which are functions of the time dependent heterodimer concentration.

These equations can then be solved by variation of the constant:

OKA(t) =

∫ ∞
0

koffe
−koff (t−τ)O∗KA(τ) dτ =

∫ ∞
0

gk(τ)O∗KA(t− τ) dτ , (13a)

OJB (t) =

∫ ∞
0

koffe
−koff (t−τ)O∗JB (τ) dτ =

∫ ∞
0

gk(τ)O∗JB (t− τ) dτ , (13b)

with “memory kernel” gk(τ) = koffe
−koffτ . Instead of accounting for the initial conditions in an own term,
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we formally assume that for all negative times the system is held fixed at the initial point and integrate

infinitely long into the past. This auxiliary assumption also simplifies the initial condition problem for

the delayed dynamical system: for a distributed delay, instead of a single initial value, strictly the entire

history prior to t = 0 has to be defined. Since we are interested in the qualitative long term behavior of the

solution, we assume this history to be a single point from which the system is released at t = 0. Putting

this result back into Eq. (8) leads to the delayed differential equations with exponentially distributed

delay introduced in Fig. 3 Model 2.

Additional delays in the reduced model. For the following stability analysis, we include the

additional delay caused by the translation process. While this is done for the sake of completeness, this

additional delay is about ten times smaller than the delay caused by the overlapping heterodimer operators

and is therefore not considered in the discussion of the main text. The additional delay arises from the

reaction chain between the beginning of mRNA transcription and completion of protein translation. In

principle, these kinds of delay alone can already lead to oscillations [4, 5]. Consider the rate equation

for an arbitrary protein concentration A, with regulated transcription, linear degradation and an explicit

equation for its mRNA denoted by mA:

dA

dt
= νpmA − λpA , (14)

dmA

dt
= νmPA(t)− λmmA . (15)

Here, PA(t) denotes an arbitrary promoter activity function of gene A. Solving Eq. (15) and treating the

initial conditions as above leads to

mA(t) =
νm
λm

∫ ∞
0

λme
−λmτPA(t− τ) dτ . (16)

Putting this back into Eq. 14 leads to

dA

dt
= νA

∫ ∞
0

gλ(τ)PA(t− τ) dτ − λpA (17)

with an effective expression rate νA = νpνm/λm and a delay kernel gλ(τ) = λme
−λmτ . Thus, taking the

dynamics of mRNA into account, leads to an additional distributed delay acting on the entire promoter

activity function. In a reduced model the protein concentration therefore responds to a change in promoter
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activity on a timescale given by the mRNA degradation rate. This is generally valid for any gene

controlled by regulated recruitment. There are, however, mechanisms of gene regulation, involving active

degradation of mRNA [6, 7]. In that case, the dynamics of mRNA have to be accounted for by its full

dynamic description.

3 Linear stability analysis on a system with distributed delays

Here we discuss linear stability analysis for nonlinear systems with multiple cascaded exponentially dis-

tributed delays, which closely follows the book of [8]. The results presented here are generally applicable

to any system of that kind. The model system considered here is the simple J-K latch with overlapping

heterodimer operators in Eqs. (8) and (9). As discussed in the last sections, it contains delays on the

promoter activity functions PA and PB and, within those, on the operator occupation functions OKA

and OJB . The memory kernels gk(τ) and gλ(τ) of these delays are exponential distributions with rate

parameters koff and λm, respectively.

To perform a linear stability analysis on our model system, it first is important to note that while

delays change the stability of a fixed point, they do not alter their position with respect to the undelayed

system. This is easy to see: consider a fixed point FP = (A∗, B∗) of the undelayed system and the

delayed function Dgk ◦ OKA(A), where Dgk abbreviates a distributed delay with memory kernel g. We

assume that the delayed system has stayed in this fixed point for a very long time, such that the delayed

function can be written as

Dgk ◦OKA(A∗) =

∫ ∞
0

gk(τ)OKA (A∗(t− τ)) dτ (18)

= OKA(A∗)

∫ ∞
0

gk(τ) dτ = OKA(A∗) ,

for any normalized kernel gk(τ). Therefore, a fixed point of the undelayed system is a fixed point of the

delayed system as well.

To perform a linear stability analysis on the model system Eq. (8), we must take into account that the

dynamic variables A and B occur within different delay integrals and hence need to be treated separately

in the linearization around a fixed point FP . Therefore, we categorize A and B by the delays acting on
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them. The model system is

Ȧ = (19)∫ ∞
0

gλ(τ)O2
B(Bgλ(t− τ))

(∫ ∞
0

gk(τ ′)OKA(Agλ,k(t− τ − τ ′), Bgλ,k(t− τ − τ ′)) dτ ′
)
dτ − λpA

Ḃ = (20)∫ ∞
0

gλ(τ)O2
A(Agλ(t− τ))

(∫ ∞
0

gk(τ ′)OJB (Agλ,k(t− τ − τ ′), Bgλ,k(t− τ − τ ′)) dτ ′
)
dτ − λpB

which can more formally be written as

Ȧ = f
(
A,Bgλ , Agλ,k , Bgλ,k

)
, (21)

Ḃ = h
(
B,Agλ , Agλ,k , Bgλ,k

)
. (22)

Here, variables with subscript gλ occur in functions, which are delayed only by mRNA degradation,

whereas variables with subscript gλ,k are delayed by mRNA degradation and the off-rate of the overlapping

operators. We now can linearize the system around a fixed point FP = (A∗, B∗) and obtain linear

equations for small deviations Ã = A−A∗ and B̃ = B −B∗:

dÃ

dt
=

∂f

∂A

∣∣∣∣
FP

Ã+Dgλ ◦

(
∂f

∂Bgλ

∣∣∣∣
FP

B̃ +Dgk ◦

(
∂f

∂Agλ,k

∣∣∣∣
FP

Ã+
∂f

∂Bgλ,k

∣∣∣∣
FP

B̃

))
, (23)

dB̃

dt
=

∂h

∂B

∣∣∣∣
FP

B̃ +Dgλ ◦

(
∂h

∂Agλ

∣∣∣∣
FP

Ã+Dgk ◦

(
∂h

∂Bgλ,k

∣∣∣∣
FP

B̃ +
∂h

∂Agλ,k

∣∣∣∣
FP

Ã

))
, (24)

where Dgλ denotes a delay with kernel λme
−λmτ and Dgk a delay with kernel koffe

−koffτ . Since the

position of the fixed point does not change for delayed variables, all partial derivatives are evaluated in
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the same point FP . Taking into account that the functionals D are linear, the system can be written as

dÃ

dt
=

∂f

∂A

∣∣∣∣
FP

Ã

+
∂f

∂Bgλ

∣∣∣∣
FP

Dgλ ◦ B̃ +
∂f

∂Agλ,k

∣∣∣∣
FP

Dgλ ◦ Dgk ◦ Ã+
∂f

∂Bgλ,k

∣∣∣∣
FP

Dgλ ◦ Dgk ◦ B̃ , (25)

dB̃

dt
=

∂h

∂B

∣∣∣∣
FP

B̃

+
∂h

∂Agλ

∣∣∣∣
FP

Dgλ ◦ Ã+
∂h

∂Bgλ,k

∣∣∣∣
FP

Dgλ ◦ Dgk ◦ B̃ +
∂h

∂Agλ,k

∣∣∣∣
FP

Dgλ ◦ Dgk ◦ Ã . (26)

Herein, the delayed variables take the form

Dgλ ◦ Ã =

∫ ∞
0

λe−λτ Ã(t− τ) dτ , (27)

Dgλ ◦ Dgk ◦ Ã =

∫ ∞
0

λme
−λmτ

(∫ ∞
0

koffe
−koffτ ′

Ã(t− τ − τ ′) dτ ′
)
dτ . (28)

We make the usual ansatz for a linear system: Ã = cAe
zt and B̃ = cBe

zt with z ∈ C to be determined.

Upon this ansatz, the delayed variables become

Dgλ ◦ Ã = cA

∫ ∞
0

λme
−λmτez(t−τ) = cAe

zt

∫ ∞
0

λme
−λmτezτ = Ã× L(gλ(τ); z) , (29)

where L(gλ(τ); z) denotes the Laplace transform of the delay kernel. This holds for any normalized delay

kernel. Since gλ(τ) is an exponential distribition, its Laplace transform takes a particularly simple form:

L(gλ(τ); z) =
λm

λm + z
⇒ Dgλ ◦ Ã = Ã

λm
λm + z

. (30)

Variables with two delays can be evaluated in a similar way:

Dgλ ◦ Dgk ◦ Ã = cA

∫ ∞
0

λme
−λmτ

(∫ ∞
0

koffe
−koffτ ′

ez(t−τ−τ
′) dτ ′

)
dτ

= Ã

∫ ∞
0

λme
−λmτe−zτ dτ ×

∫ ∞
0

koffe
−koffτ ′

e−zτ dτ ′

= Ã
λm

λm + z

koff

koff + z
. (31)
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Putting these results back into Eqs. 25 and 26 yields a linear equation for the coefficients cA and cB :

cAz
cBz

 =

 ∂f
∂A + ∂f

∂Agλ,k

λm
λm+z

koff
koff+z

∂f
∂BD1

λm
λm+z + ∂f

∂Bgλ,k

λm
λm+z

koff
koff+z

∂h
∂Agλ

λm
λm+z + ∂h

∂Bgλ,k

λm
λm+z

koff
koff+z

∂h
∂B + ∂h

∂Bgλ,k

λm
λm+z

koff
koff+z


cA
cB

 . (32)

Note that all partial derivatives have to be evaluated at the fixed point under consideration. Subtracting

the left hand side from the diagonal elements of the right hand side leads to the familiar form a an

eigenvalue problem. Here, in contrast to a common linear stability analysis, additional polynomial terms

are incorporated, representing the delays. In order for the system to have a solution, its determinant has

to be zero. Thereby we obtain a characteristic equation for the exponents z.

∣∣∣∣∣∣∣
 ∂f

∂A + ∂f
∂Agλ,k

λm
λm+z

koff
koff+z

− z ∂f
∂BD1

λm
λm+z + ∂f

∂Bgλ,k

λm
λm+z

koff
koff+z

∂h
∂Agλ

λm
λm+z + ∂h

∂Bgλ,k

λm
λm+z

koff
koff+z

∂h
∂B + ∂h

∂Bgλ,k

λm
λm+z

koff
koff+z

− z


∣∣∣∣∣∣∣ = 0 . (33)

Evaluating the determinant, we obtain a polynomial of 6th order in z. In order for the considered fixed

point to be stable, each solution of Eq. 33 must have a negative real part. The timescales of the system

considered here are given by τλ = 1/λm and τk = 1/koff , which are the mean values of the memory

kernel. These characteristic times are usually referred to as the mean delay [8]. Written in terms of the

mean delay τ , the Laplace transform of an exponential distribution becomes 1/(1 + τz). Thus, if the

delay is small, its contributing terms in the characteristic equation are close to one and therefore do not

change the stability of a fixed point. In the following we will employ the derived method of linear stability

analysis to investigate the genetic JK-latch with overlapping heterodimer operators.

4 Analysis of deterministic and stochastic oscillations in the ge-

netic JK-latch

To analyze the stability properties of the genetic JK-latch with overlapping heterodimer operators for a

certain choice of parameters and concentration of input proteins Jtot and Ktot, we applied the following

procedure using Mathematica (Wolfram Research, Inc.): (i) calculate the concentrations of all homo-

and heterodimers using Eqs. (2)-(4). For the stability analysis we manipulate the concentration of input

proteins Jtot and Ktot directly, instead of controlling their transcription rate. (ii) Find all fixed points by
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setting Eq. (8) to zero. (iii) For each fixed point solve the characteristic equation defined in Eq. (31). If

the real parts of all solutions of the last step are negative, the fixed point is stable otherwise it is unstable.

(iv) If necessary, characterize the system’s qualitative behavior (e.g. oscillatory) by solving its equations

numerically. Employing this scheme for different parameter values we identify two important bifurcations:

the system undergoes a Hopf bifurcation [9, 10] if the concentration of input proteins Jtot and Ktot is

increased (see Fig. S2), then is oscillatory for a certain concentration range until it becomes stable again.

Additionally, the system exhibits another Hopf bifurcation if the mean delay time is increased (i.e. the

parameter koff is decreased), while a constant toggle signal is applied. This is illustrated in Fig. S3A: at

a critical operator dwell time τcrit ≈ 32 min the system becomes oscillatory with a period that increases

with the dwell time.

In the form we set up the reduced model for the genetic JK-latch with overlapping heterodimer

operators, we couple the dynamics of protein concentrations with the intrinsically fluctuating switching

of operator states. Therefore, although the deterministic model provides valuable insights into the working

principles of the circuit, the quantitative period of the stochastic system is not correctly reproduced. This

is shown in Fig. 3B, where it is apparent that the average of the stochastic period is much shorter than

the period of the deterministic model. Also the stochastic system displays oscillations in a regime of

short heterodimer dwell times, in which the deterministic system does not oscillate at all. In fact, it

is known that a small number of reactant molecules together with negative feedback and time delay in

gene expression can lead to delay-induced instabilities, such that a system turns oscillatory even when

its deterministic counterpart is not [4].

If the delay (dwell time) is long, the strength of the toggle signal is chosen appropriately and the

signal duration is well timed, then high probabilities of a correct toggle response can be achieved – as

can be seen in Fig. S4A and B.

5 Genetic master-slave latch

We extended the reaction system of the JK-latch to a master-slave latch by adding additional regulation

of the signal genes J and K – see Table S4. This was done by firstly including homodimerization of

signal proteins. J2 and K2 bind two operators on the promoter of the respective other gene to repress

it. Additionally, gene J is repressed by heterodimers KA by binding to a third operator in its promoter
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region, while gene K is repressed by JB in the same way. Notably, the restrictive promoter layout of

the overlapping heterodimer operators on genes A and B with very slow unbinding rates is no longer

necessary in the master-slave latch and is changed to independent operators with normal unbinding rates.

With this additional regulation, signal genes J and K become bistable when their maximal tran-

scription rate is increased externally (by the toggle signal) and thereby form the master toggle switch.

Then, the master toggle switch settles into a state that is determined by the current concentrations of

heterodimers and therefore by the current state of the slave latch. Dependent on the operator strengths

for homodimers and for heterodimers two kinds of erroneous responses are possible upon a toggle sig-

nal: If homodimers bind to strongly with respect to heterodimers, then the master switch is prone to

stochastic fluctuations at the onset of the toggle signal and biased towards that signal protein which is

first abundant enough to form homodimers. If, on the other hand, heterodimer binding is too strong,

random single bursts of the repressed signal gene can be sufficient to switch the state of the master latch.

Fig. S4C shows the toggle probability as a function of those key parameters for a toggle signal duration

of 60 min. It can be seen that the master-slave latch is robust in that sense, that it responds correctly

for a broad range of those parameters.
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JK-latch with overlapping heterodimer operators

Promoter and operator states

PA|· |·+B2

konOB2−−−→ PA|B2|· PA|B2|·
koffOB2−−−→ PA|· |·+B2

PA|· |·+B2

konOB2−−−→ PA|· |B2 PA|· |B2

koffOB2−−−→ PA|· |·+B2

PA|· |B2 +B2

konOB2−−−→ PA|B2|B2 PA|B2|B2

koffOB2−−−→ PA|· |B2 +B2

PA|B2|·+B2

konOB2−−−→ PA|B2|B2 PA|B2|B2

koffOB2−−−→ PA|B2|·+B2

PB |· |·+A2

konOA2−−−→ PB |A2|· PB |A2|·
koffOA2−−−→ PB |· |·+A2

PB |· |·+A2

konOA2−−−→ PB |· |A2 PB |· |A2

koffOA2−−−→ PB |· |·+A2

PB |· |A2 +A2

konOA2−−−→ PB |A2|A2 PB |A2|A2

koffOA2−−−→ PB |· |A2 +A2

PB |A2|·+A2

konOA2−−−→ PB |A2|A2 PB |A2|A2

koffOA2−−−→ PB |A2|·+A2

O|· |·+KA
konOKA−−−→ O|KA|· O|KA|·

koffOKA−−−→ O|· |·+KA

O|· |·+JB
konOKA−−−→ O|· |JB O|· |JB

koffOKA−−−→ O|· |·+JB
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Dimerization

2A
konA−−→ A2 J +A

konJ−−→ KA

2B
konB−−→ B2 K +B

konK−−→ JB

A2
koffA−−→ 2A KA

koffJ−−→ J +A

B2
koffB−−→ 2B JB

koffK−−→ K +B
Turnover

mA

λmA−−−→ ∅ A2
λp−→ ∅

mB

λmB−−−→ ∅ B2
λp−→ ∅

mJ
λm−−→ ∅ J

λp−→ ∅
mK

λm−−→ ∅ K
λp−→ ∅

A
λp−→ ∅ KA

λp−→ ∅
B

λp−→ ∅ JB
λp−→ ∅

Transcription and translation

PJ
νmJ−−−→ PJ +mJ mA

νpA−−→ mA +A

PK
νmK−−−→ PK +mK mB

νpB−−→ mB +B

PA|· |·+O|· |·
νmA−−−→ PA|· |·+O|· |·+mA mJ

νpJ−−→ mJ + J

PB |· |·+O|· |·
νmB−−−→ PB |· |·+O|· |·+mB mK

νpK−−−→ mK +K

PA|· |·+O|· |JB
νmA−−−→ PA|· |·+O|· |JB +mA

PB |· |·+O|KA|·
νmB−−−→ PB |· |·+O|KA|·+mB

Table S1. All reactions involved in the genetic JK-latch with overlapping heterodimer binding sites.
A graphical representation of the reaction network is shown in Fig. S1. Proteins and their dimers are
denoted by capital letters; transcripts of a gene X are denoted by mX . A gene X is represented by its
promoter PX , which can be occupied by transcriptions factors. Each occupation state of a promoter is
represented by an own species of reactants for which an empty operator is indicated by · and an
occupied operator by the name of the respective transcription factor. In this notation the different
binding sites are separated by the symbol |. To reduce the number of occupation state combinations the
operator complex for heterodimers is separated from the other promoter states and denoted by O. To
make transcription nevertheless conditional on heterodimers, we include the respective species for an
empty binding site as reactant and product into the corresponding transcription reaction. This ensures
that transcription requires an empty heterodimer operator to proceed but does not change its
concentration. All corresponding parameter values are listed in Table S3.

Additional reactions in J-K latch without overlapping heterodimer operators

O|· |JB + KA
konOKA−−−→ O|KA|JB O|KA|JB

koffOKA−−−→ O|· |JB + KA

O|KA|·+JB
konOJB−−−→ O|KA|JB O|KA|JB

koffOJB−−−→ O|KA|·+JB

Table S2. With independent heterodimer operators, heterodimers can bind simultaneously to their
binding sites. All other reactions are the same as in the JK-latch with overlapping heterodimer
operators, listed in Table S1.
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Parameter Value Description and References

Transcription

νmA , νmB 5 min−1 strong promoter [11]

νmJ , νmK (0.01− 1) min−1 inducible promoter [11]; induction can be

achieved e.g. by upstream binding activa-

tors [12] or via small non-coding RNAs [13]

Translation

νpA , νpB , νpJ , νpK 0.23 min−1 corresponds to a burst factor of b = 10 [14]

Degradation

λm 0.23 min−1 active degradation by RNase [15]; half-life

of 3 min

λp 0.138 min−1 active proteolysis by SsrA-tags [16]; half

life of 5 min

Dimerization

kon
A , kon

B , kon
KA, kon

JB 0.2 nM−1min−1 assumed to be diffusion limited [17]

koff
A , koff

B , koff
J , koff

K 2 min−1 typical value for dimerization

Protein-DNA binding

kon
OA2

, kon
OB2

0.2 nM−1min−1 assumed to be diffusion limited [17]

koff
OA2

, koff
OB2

2 min−1 modified operator sequence assumed; pa-

rameter in the range of tet-O1 binding

strength [18]

kon
OKA

, kon
OJB

0.2 nM−1min−1 assumed to be diffusion limited [17]

koff
OKA

, koff
OJB

0.0126 min−1 very slow off-rate assumed [19,20]

Table S3. Values and references for all parameters used in the reactions of the genetic JK-latch.
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Additional reactions in master-slave latch

Promoter and operator states

PJ |· |·+K2

sonOK2−−−→ PJ |K2|· PJ |K2|·
soffOK2−−−→ PJ |· |·+K2

PJ |· |·+K2

sonOK2−−−→ PJ |· |K2 PJ |· |K2

soffOK2−−−→ PJ |· |·+K2

PJ |· |K2 +K2

sonOK2−−−→ PJ |K2|K2 PJ |K2|K2

soffOK2−−−→ PJ |· |K2 +K2

PJ |K2|·+K2

sonOK2−−−→ PJ |K2|K2 PJ |K2|K2

soffOK2−−−→ PJ |K2|·+K2

PK |· |·+J2

sonOJ2−−−→ PK |J2|· PK |J2|·
soffOJ2−−−→ PK |· |·+J2

PK |· |·+J2

sonOJ2−−−→ PK |· |J2 PK |· |J2

soffOJ2−−−→ PK |· |·+J2

PK |· |J2 + J2

sonOJ2−−−→ PK |J2|J2 PK |J2|J2

soffOJ2−−−→ PK |· |J2 + J2

PK |J2|·+J2

sonOJ2−−−→ PK |J2|J2 PK |J2|J2

soffOJ2−−−→ PK |J2|·+J2

OJ |·+KA
sonOKA−−−→ OJ |KA OJ |KA

soffOKA−−−→ OJ |·+KA

OK |·+JB
sonOJB−−−→ OK |JB OK |JB

soffOJB−−−→ OK |·+JB

Dimerization

2J
sonJ−−→ J2 J2

soffJ−−→ 2J

2K
sonK−−→ K2 K2

soffK−−→ 2K

Turnover

J2
λp−→ ∅ K2

λp−→ ∅

Transcription

PJ |· |·+OJ |·
νmJ−−−→ PJ |· |·+OJ |·+mJ PK |· |·+OK |·

νmK−−−→ PK |· |·+OK |·+mK

Table S4. Additional reactions involved in regulation of genes J and K. All other reactions are the
same as in the genetic JK-latch with independent heterodimer operators. Values of new parameters are
listed in Table S5.
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Parameter Value Description and References

Transcription

νmJ , νmK (0.05− 5) min−1 strong inducible promoter [11]; induction can

be achieved e.g. by upstream binding activa-

tors [12] or via small non-coding RNAs [13]

Dimerization

son
J , son

K 0.2 nM−1min−1 assumed to be diffusion limited [17]

soff
J , soff

K 2 min−1 equal to dimerization of A and B

Protein-DNA binding

son
OJ2

, son
OK2

0.2 nM−1min−1 diffusion limited [17]

soff
OJ2

, soff
OK2

2 min−1 optimized for highest toggle probability

son
OKA

, son
OJB

0.2 nM−1min−1 binding to the operator on the promoter

soff
OKA

, soff
OJB

0.35 min−1 optimized for highest toggle probability

Changes in slave circuit

koff
OKA

, koff
OJB

2 min−1 use same binding strength as homodimers

Table S5. Additional parameters used in the genetic master-slave latch. Instead of the symbol k for
rates in the slave circuit, the symbol s is used for rates of all addtional processes (dimerization and
protein-DNA binding of signal proteins) in the master circuit. Since a delay in heterodimer binding is
no longer needed, the assumption of very slow unbinding kinetics of heterodimers from promoters of
genes A and B has been released.
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B B B B A A A A

J BK A

B BA A
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mutual exclusion
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K OK A
K OJ B

Figure S1. Schematic of the reaction network of the JK-latch with overlapping heterodimer
operators. All reactions contained in the model are depicted together with their rates. On- and off-rates
(kon and koff) are combined to dissociation constants K = koff/kon.
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Figure S2. (A) Bifurcation diagram of the genetic JK-latch with overlapping heterodimer operators.
The relative position of the system’s fixed points is shown with the total concentrations of input
proteins Jtot and Ktot as synchronously tuned bifurcation parameter. (B) Value of the critical root
calculated in the linear stability analysis, presented in Section 3, for the upmost fixed point (ON state)
in Fig. (A). The root is critical in that sense that it is the only solution of the characteristic equation,
which becomes positive for certain values of Jtot/Ktot. Starting from a low concentration of input
proteins the system initially has two stable (solid line) and one unstable (dotted line) fixed point. The
upper stable fixed point represents the ON state, whereas the lower one represents the OFF state. As
the concentration of input proteins is increased, the two stable fixed points loose their stability at a
critical concentration c1, after which delay induced oscillations commence (orange lines). At input
protein concentration c2 the three fixed points collapse to one. That, however, does not alter the
system’s oscillatory behavior. At concentration c3 the system’s single fixed point becomes stable again.
This is due to depletion of homodimers by increasingly forming heterodimers, which eventually
abolishes the switch-like behavior of genes A and B.
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Figure S3. (A) Frequency of the race condition as a function of the average dwell time τ of a
heterodimer on the overlapping operator complex (inset shows the period of the same). At a critical
dwell time τcrit ≈ 32 min the system undergoes a Hopf bifurcation and thereafter oscillates with a
period that is approximately linear in τ . (B) Average period of the stochastic race condition as a
function of the mean dwell time τ . In comparison to (A) the stochastic system oscillates even for small
dwell times (although with very low amplitude) and has a shorter period than the deterministic model.
The latter is due to the fact that the deterministic model couples the dynamics of protein concentrations
with probabilities of operator switching, which has a distorting effect on the oscillatory dynamics.
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Figure S4. Toggle probability ptoggle as a function of key parameters. Contours indicate equal
probability to toggle successfully into the complementary state. Each data point (a grid of 30 by 30 per
plot) is estimated by testing the final state of 5000 simulation runs of the respective full stochastic
model. (A) Dependence of ptoggle on the duration T and the strength of the toggle signal in the
JK-latch. Here the strength of the toggle signal is tuned by a concerted variation of the transcription
rates of genes J and K, i.e., νJ = νK = ν. (B) Dependence of ptoggle on the duration T of the toggle
signal and the off-rate koff for unbinding the overlapping operator sites. As expected, ptoggle increases
as the delay (dwell time of heterodimers on the binding site) is increased. (C) Dependence of ptoggle in
the master-slave latch on the additional rates soff

J2, soff
K2 for unbinding the homodimer operators and soff

JB ,
soff
KA for unbinding the heterodimer operators in the additional toggle switch (master latch). The

master-slave latch is robust in that sense that ptoggle is high for a broad range of parameters.
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Figure S5
Dynamics of the deterministic model of the master-slave latch. (A) Phase diagram of the toggle switch
as a function of the effective maximal transcription rates ν̃A and ν̃B. The parameters are chosen such
that the system is in the bistable regime in the absence of input signals (point O) and the circuit is
set to the ON state initially. The curves indicate dynamic changes of ν̃A and ν̃B, incurred by applying
the toggle signal (simultaneous expression of both input genes J and K) for 200 min (green solid curve)
and then releasing it (red curve). In contrast to the JK-latch, even if the toggle signal is applied a
long time, the system enters the correct monostable regime (A low, B high), switches to the OFF state
and returns to the bistable region without approaching the other monostable regime. In particular, the
master-slave latch does not oscillate, even under a continuous toggle signal. (B) The same trajectories
in the ([Atot],[Btot])-plane.
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