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Statistical Modeling and Analysis 

Data 

We focused on the six loci having both patient-specific and donor-specific alleles, since 
they seemed the most informative for the questions considered below. Each of these six 
loci also happened to have one shared allele. A graphical display of the RFU data for 
these loci is shown in Fig. S6. Allele peaks that did not reach a height of at least 50 
Relative Florescence units (RFU) were not called as ‘alleles’ and were not scored with 
numeric values, due to questions about validity below 50 RFU, which in this genotyping 
system is considered a qualitative threshold for signal to noise reasons. Therefore, our 
models treated such allelic peaks as left-censored (1); that is, only the information that 
the peak value was less than 50 RFU was used. 

 

Fig. S6. RFU data for the six tumor loci exhibiting donor specific (red), patient specific 
(blue) and shared alleles (black). Horizontal dashed lines represent the height of 50 RFU 
in each plot.  
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Implausibility of contamination: a first approach 

An alternative potential explanation for the presence of donor-specific alleles is that, 
despite extensive procedural precautions and pathological analyses described in the text, 
our tumor samples were contaminated by leukocytes, ultimately derived from the donor. 
However, simple numerical observations suggest this is unlikely. For 1, , 9s =  , let sd  

denote the donor contamination ratio for section s, defined to be the ratio of the number 
of donor leukocytes to the number of patient cancer cells in section s. A simple indication 
of contamination levels necessary to explain the donor alleles is given by ratios of donor-
specific alleles to patient-specific alleles. Let slP  and slD  denote, respectively, the 

patient- and donor-specific allelic peaks (measured in RFU) in section s  at locus l , and 
let li  denote the number of patient-specific alleles at locus l  in each patient cancer cell 

(which may be greater than 1, e.g., due to aneuploidy). Letting sn  denote the number of 

patient cancer cells in section s , if each of these cells has li  patient-specific alleles at 

locus l , there will be a total of s ln i  patient-specific alleles. By definition, there are also 

s snd  donor leukocytes in section s , having 1 donor-specific allele each, and contributing 

a total of s snd  donor-specific alleles. So the ratio of counts of donor-specific to patient-

specific alleles in section s  at locus l  is s s s

s l l

n

n i i

d d
= . Therefore, assuming that slP  and slD  

are expected to be proportional to the total number of patient- and donor-specific alleles 

at locus l  in section s  leads to an expectation that sl s

sl l

D

P i

d
» . Thus, in a contamination 

scenario, if patient-specific alleles are detected (so that 1li ³ ), sd  is expected to be at 

least sl

sl

D

P
. For example, in section 3 of locus D19S433, the donor-specific and patient-

specific RFU’s are 575 and 553, respectively, suggesting that 575
3 553

104%d ³ = . However, 

our pathology studies concluded that donor contamination levels like 3d  are likely less 

than 1% and very unlikely to reach as high as 5%. Thus, such a high value for 3d  would 

not be credible, casting doubt upon a contamination explanation. In a similar way, many 
other combinations of section and locus argue against contamination. 

Statistical Models of fusion and contamination 

The preceding considerations suggest that the credibility of donor contamination as an 
explanation for the donor alleles is low. To provide a more quantitative probabilistic 
analysis, we assumed that deviations from exact equality in expected approximations 

such as sl s

sl l

D

P i

d
»  may be described by statistical distributions. We fit a number of 

Bayesian statistical models (2) to the data for the six loci showing both patient and donor 
specific alleles. Here we will report in detail on two models, referred to as “fusion” and 
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“contamination,” which assumed that the donor alleles are explained by fusion and by 
donor contamination, respectively.  
 
We modeled the RFU intensity for each allele at a given locus and section as a random 
variable with a Normal distribution whose mean is proportional to the number of such 
alleles present in the section, and whose variance incorporates both additive and 
multiplicative random perturbations. To describe the models, let P , S , and D  
generically denote patient-specific, shared, and donor-specific alleles in genotypes. In the 
fusion model, the cancer cells are hybrids resulting from fusion, and at locus l  we 
assumed the cancer cells have genotypes of the form l l li P j S k D⋅ + ⋅ + ⋅ , that is, li  

copies of the patient-specific allele, lj  copies of the shared allele, and lk  copies of the 

donor-specific allele, where li , lj , and lk  are nonnegative integers. In the contamination 

model, the patient cancer cells have genotypes of the form l li P j S⋅ + ⋅ , and the donor 

alleles in section s  are explained by donor contamination at level sd  arising from blood 

cells having genotype 1 1S D⋅ + ⋅ , where the allelic copy numbers are assumed to be 1 
since these are not cancer cells. The fusion model assumes that donor contamination is 
negligible and the source of the donor alleles is the hybrid cancer cells. Both models 
allow contamination of the samples by patient non-cancer cells at level sp , defined as the 

ratio of the number of patient non-cancer cells (having genotype 1 1P S⋅ + ⋅ ) to the 
number of patient cancer cells in section .s  
 
For the fusion model, allelic peak heights slP , slS , and slD  are modeled as random 

variables having Normal distributions with the following means and variances: 
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Letting sll  denote the expected sum of the allelic peaks at locus l  in section s , the 

expressions for the means follow from the assumption that tumor section s  consists of a 
mixture, in proportions 1 to sp , of cancer cells having genotype l l li P j S k D⋅ + ⋅ + ⋅  at 

locus l  and patient noncancer cells having genotype 1 1 0P S D⋅ + ⋅ + ⋅ . Together with 
the assumption that the expected value of an allelic peak should be proportional to the 
number of copies of that allele in the section, this leads to  
 ( ) ( )( ), ( ), ( ) 1 ( , , ) (1,1, 0) , , .sl sl sl l l l s l s l s lE P E S E D i j k i j kp p pµ ⋅ + ⋅ = + +  

The expressions for the variances allow the allelic peaks to be subject to additive and 
multiplicative random perturbations. These expressions arise by assuming, for example, 

that ( )mult add
mult add( ) 1sl sl sl slP E P Z Zs s= + + , where mult

slZ  and add
slZ  are independent 
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random variables having Normal distributions with mean 0 and variance 1. We refer to 
2
adds  and 2

mults  as the additive variance and multiplicative variance, respectively.  

 
 
The contamination model assumes a mixture of patient cancer cells having genotype 

0l li P j S D⋅ + ⋅ + ⋅ , patient noncancer cells having genotype 1 1 0P S D⋅ + ⋅ + ⋅ , and 

donor noncancer cells having genotype 0 1 1P S D⋅ + ⋅ + ⋅ , in numbers proportional to 1, 

sp , and sd  in section s . Thus,  

 ( )( ), ( ), ( ) 1 ( , , 0) (1,1, 0) (0,1,1)sl sl sl l l s sE P E S E D i j p dµ ⋅ + ⋅ + ⋅ , 

and so the above expressions for the means are replaced by  
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Bayesian models require prior distributions for all unknown parameters. We assumed the 
total intensities sll  were drawn from an Exponential distribution with mean 10,000, 

modeling diffuse prior distributions spread over a wide range. Patient and donor 
contamination levels were assumed to come from Exponential distributions truncated at 
an upper bound of 0.2. Pathology studies concluding that contamination levels are 
probably less than 0.01 and very unlikely to be as high as 0.05 support confidence in 0.2 
as a conservative upper bound. The Exponential shape was again meant to be 
conservative, allowing high probabilities for contamination levels up to 0.2 (in fact this 
choice hardly differs from a uniform distribution on that interval). The additive standard 
deviation adds  was taken to have a half-Cauchy distribution with scale parameter 25 (3), 

and the multiplicative variance 2
mults , a uniform distribution on the interval from 0 to 

0.25. Finally, for cancer cells, we need a prior for the number of copies of each allele at 
each locus, that is, a probability distribution governing the numbers li , lj , and lk . To 

check for undesirable sensitivity to this choice we repeated our analysis with the two 
different distributions p1 and p2 whose probabilities are shown in Table S2. 
 
 

Number of copies 
 0 1 2 3 4 5 6 7 8 9 10 

Distribution 
p1 .10 .25 .18 .13 .10 .08 .06 .04 .03 .02 .01 
p2 .07 .80 .07 .03 .01 .006 .003 .001 .0005 .0002 .0001

Table S2. Two prior distributions for allelic copy numbers in cancer cells. 
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These distributions incorporate the aneuploidy that occurs in cancer cells, so that alleles 
can be lost or gained. Such losses and gains are less likely in distribution p2 than they are 
in p1. In both distributions, increasing copy numbers of 2 through 10 are assigned 
decreasing probabilities. These p2 probabilities decrease more quickly than the p1 
probabilities, so that p2 assigns much smaller probability to high copy numbers than p1 
does. To avoid duplication we will report results in detail mainly for distribution p1; in 
fact the conclusions turned out to be the same using both distributions, showing stability 
and lack of sensitivity to these different choices of prior distribution. 

Model fitting 

The models were fit by Markov chain Monte Carlo (MCMC, e.g., (4)), using the software 
JAGS (5). We used two different run lengths for different models: shorter runs of 
110,000 iterations with the first 10,000 iterations discarded as “burn-in”, and 1,100,000 
iterations with the first 100,000 iterations discarded. The shorter runs were used in many 
initial investigations of new models and also in creating the calibration distributions in 
the computationally intensive calibration procedure described below. Informal checks of 
time-series plots of the parameters as well as the deviances (defined as twice the negative 
log likelihood; smaller deviance indicates better fit) indicated that in fact very little burn-
in was needed and the amount discarded was more than enough. The longer runs were 
used for extra accuracy and to increase certainty that better regions of the parameter 
space were not being missed.  The longer runs were also used in establishing good initial 
values for the shorter runs in the calibration distributions, and choosing these initial 
values helped the shorter runs to work well. Fig. S7 shows plots of the deviances 
obtained by two of the longer runs. They support confidence that the mixing of the 
Markov chains is satisfactory. 
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Fig. S7. Plots of deviance ( 2-  times log likelihood) over MCMC runs of fusion and 
contamination models.  
 
 
The result of each MCMC run for a given model is a sample of parameter values 
approximately from the posterior distribution for that model, and the distributions of 
these samples are summarized in the following figures. We begin with the fusion model. 
The next figure shows the posterior samples for the allele counts of the patient-specific, 
shared, and donor-specific alleles. It suggests, for example, that at the FGA locus, the 
fusion cells had several copies of the patient-specific and shared alleles, and one copy of 
the donor specific allele, and at the D13S317 locus, the patient-specific allele was lost in 
the fusion cell.  
 

 
 
 

The distributions of the patient contamination levels are summarized in the following 
histograms. 
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These distributions are not so different from the assumed prior, indicating that the data 
are not very informative about these parameters. The additive and multiplicative error 
distributions are described by the following histograms. 

 
These suggest that the additive standard deviation is around 30 RFU or so, and the 
multiplicative error standard deviation is on the order of 10 to 15 percent or so. 
 
We calculated standardized Bayesian residuals defined by 

( )( ) ( )( | ) / SD( | )t t
sl sl slY E Y Yq q- , where slY  is replaced by slP , slS , or slD , and ( )tq  

denotes the parameters sampled at iteration t  of the MCMC simulation. After doing so, 
we could check for flagrant violations of the Normality assumptions by plotting these 
residuals against the quantiles of a standard Normal distribution; Fig. S8 shows this plot 
for the fusion model. The ideal expectation under perfect Normality in such a plot would 

be a straight line sloped upwards at 45 , and so Fig. S8 shows that the Normality 
assumptions appear to be very reasonable.  
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Fig S8. Graphical checks of the Normality distributional assumptions for residuals. 
 
 
The following plots show corresponding pictures for the contamination model. The allele 
count distributions and the patient contamination levels are shown in the next two plots. 
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Perhaps most telling are the donor contamination levels sd , which came out as follows: 

 

Note that in several of the tumor sections, the fitted model suggests that the donor 
contamination levels are very high, approaching the assumed upper limit of 0.2. In fact, if 
the prior distributions had not been constrained by the upper limit of 0.2, the Markov 
chain would have resorted to even higher to levels of contamination that are much too 
high to be plausible. 
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Model comparison 

To compare the fits of the contamination and fusion models, a quick first indication was 
obtained by inspecting the deviances for each model.  
 

 
 

The deviances for the fusion model were clearly smaller than those for the contamination 
model, indicating a better fit for fusion. In view of the fact that the fusion model has 
fewer parameters (6 more allele count parameters but 9 fewer contamination parameters) 
than the contamination model, which is expected to put the fusion model at a 
disadvantage as far as deviances are concerned, this comparison is all the more striking.  
 
For a probabilistic comparison we turned to the log pseudo-marginal likelihood (LPML, 
(6)), a measure of model fit advocated in the statistical literature (1,2). We calculated the 
LPML for both the fusion model and contamination model as fit to our observed data. 
These two individual values are not particularly meaningful on their own, but the 
difference (also known as the log pseudo-Bayes factor) is of interest, indicating how 
much better the fusion model fit our data than the contamination model did. An important 
advantage of this approach over those based on standard Bayes factors is that the 
quantities we are computing are much less sensitive to the choice of prior distributions. 
For our data, the LPML difference turned out to be 71.4, the positive value indicating that 
the fusion model fit the data better than the contamination model. To assess the statistical 
significance of the value 71.4, we used a computationally intensive calibration procedure 
(7,8), in which 400 random data sets were simulated under the two models, and for each 
simulated data set, an LPML difference was calculated. The calibration distributions 
obtained by this procedure are shown in the histograms in Fig. S9, where the red lines 
show the calculated value 71.4 of this LPML difference for our data.  
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Fig S9. Calibration distributions of LPML differences under contamination and fusion 
models. 
 
 
As shown in Fig. S9, under contamination, all 400 of the LPML differences were less 

than 71.4, leading to an empirical two-sided P value bounded by 
2

0.005
400

P < = . Thus, 

LPML differences as high as 71.4 are very rare under the contamination model. In 
contrast, under the fusion model, a LPML difference of 71.4 was quite typical, being at 
the 18.5 percentile of the calibration distribution, leading to a P value of 0.37. The 
finding of a small P value for contamination supports the assertion that the contamination 
model fails to explain our data. In contrast, the much larger P value for fusion indicates 
that our data is consistent with the fusion model.  
 

Model variations 

A number of variations of the above models were considered and evaluated by the same 
methods. As mentioned above, we tried varying the prior distributions for allele counts in 
the cancer cells from the distribution p1 to the distribution p2 defined in Table S2. 
Compared to p1, the distribution p2 places more probability on 1 copy and less 
probability on losses and gains, particularly the higher copy numbers. But the prior p2 led 
to the same conclusions, giving a P value less than 0.005 for contamination and P=0.645 
for fusion. Another modification was to replace the Normal error distributions by t 
distributions, which have longer tails and allow more extreme outliers. We also 
investigated a simple form of tumor evolution by extending the above models to allow 
repeat numbers within a single locus to take two different values over the different tumor 
sections. None of these more complicated models was found to provide a significant 
improvement over the final models presented above in fitting our data.   
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